
International Journal of Computer Applications (0975 – 8887)

Volume 31– No.6, October 2011

34

Crawler Indexing using Tree Structure and its
Implementation

 Deepika Sharma Parul Gupta Dr. A.K. Sharma

Department of Computer Engineering Department of Computer Engineering Department of Computer
 Apeejay College of Engineering YM.CAUST YM.CAUST

ABSTRACT
The plentiful content of the World-Wide Web is useful to

millions. Information seekers use a search engine such as

Google, Yahoo etc to begin their Web activity. Our aim is to

make a search tool that is cost-effective, efficient, fast and

user friendly. In response to a query, it should retrieve the

most relevant information which has been stored into the

database. It should also be portable, so that it can easily be

deployed at any platform without any cost and

inconvenience. Our goal is to make a Web Search Engine

that will retrieve the best matched WebPages in the shortest

possible time. This paper proposes an algorithm for crawler

in which crawler crawls the WebPages recursively and stores

the relevant data in the database. The algorithm uses the

basic principles of tree structure while maintaining the

crawled data by the crawler to be used by the search engine.

The proposed work makes the searching on the web more

efficient. It uses the tree/node structure in the database which

filters the searched word more efficiently and gives faster

results to the user. The paper has also implemented the

crawler indexing with tree structure using HTML based

Update File at Web Server‟ while making the crawling and

searching more efficient.

1. INTRODUCTION
The World Wide Web consists of millions of web sites. Each

of these websites themselves contains a number of web

pages. It is important to have some sort of a mechanism that

would allow an internet user to search through the internet

for specific data. Imagine a student, who wants to search for

information about his project, searching each and every

website which he must know. Search engines come to our

rescue in such cases. With a search engine, all the student

has to do is type in “keywords” relating to the information

that he needs. The search engine would then return a set of

results that match best with the keywords entered. A Web

Search Engine can therefore be defined as a software

program that takes input from the user, searches its database

and returns a set of results. It is important to note here that

the search engine does not search the internet; rather it

searches its database, which is populated with data from the

internet by its crawler(s). Web search engines work by

storing information about many web pages, which they

retrieve from the WWW itself. These pages are retrieved by

a Web crawler which follows every link it sees. Exclusions

can be made by the use of robots.txt. The contents of each

page are then analyzed to determine how it should be

indexed (for example, words are extracted from the titles,

headings, or special fields called meta tags). Data about web

pages are stored in an index database for use in later queries.

Therefore, we chose to develop a Web Search Engine to

understand the complex mechanism that takes place when

we give just a few keywords as input and receive a set of

valid and well organized results. The algorithm proposed in

this paper has used the basic principles of tree structure

while maintaining the crawled data by the crawler to be used

by the search engine. This makes the searching on the web

more efficient. It uses the tree/node structure in the database

which filters the searched word more efficiently and gives

faster results to the user.

2. RELATED WORK
In this paper, a review of previous work on index

organization is given. In this field of index organization and

maintenance, many algorithms and techniques have already

been proposed but they seem to be less efficient in

efficiently accessing the index.

In [1], the authors introduce a double indexing mechanism

for search engines based on campus Net. The Campus Net

Search Engine (CNSE) is based on full-text search engine,

but it is not general full-text search engine as it is basically a

private net. The CNSE consists of crawl machine, Chinese

automatic segmentation, index and search machine. They

proposed double-indexing mechanism, which means, it has

document index as well as word index. The so-called

document index is based on the documents do the clustering,

and ordered by the position in each document. In the

retrieval, the search engine first gets the document id of the

word in the word index, and then goes to the position of

corresponding word in the document index. Because in the

document index, the word in the same document is adjacent,

the search engine directly compares the largest word

matching assembly with the sentence that users submit. The

mechanism proposed by them seems to be time consuming

as the index exists at two levels.

Another work proposed was the reordering algorithm [2]

which partitions the set of documents into k ordered clusters

on the basis of similarity measure. According to this

algorithm, the biggest document is selected as centroid of the

first cluster and n/k1 most similar documents are assigned to

this cluster. Then the biggest document is selected and the

same process repeats. The process keeps on repeating until

all the k clusters are formed and each cluster gets completed

with n/k documents. This algorithm is not effective in

clustering the most similar documents. The biggest

document may not have similarity with any of the

http://en.wikipedia.org/wiki/Web_crawler
http://en.wikipedia.org/wiki/Robots.txt
http://en.wikipedia.org/wiki/Search_engine_indexing
http://en.wikipedia.org/wiki/Meta_tags

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.6, October 2011

35

documents but still it is taken as the representative of the

cluster.

Another proposed work was the threshold based clustering

algorithm [3] in which the number of clusters is unknown.

However, two documents are classified to the same cluster if

the similarity between them is below a specified threshold.

This threshold is defined by the user before the algorithm

starts. It is easy to see that if the threshold is small, all the

elements will get assigned to different clusters. If the

threshold is large, the elements may get assigned to just one

cluster. Thus the algorithm is sensitive to specification of

threshold.

3. PROPOSED WORK

For finding the pages the crawler visits the web server for

the first time looking at the Robot.txt as the reference. This

file contains URLs of updated pages. This file informs

updates to the crawler. File is placed at the root of website.

When pages in website are updated, web manager puts the

URLs of updated pages on this file. Crawler will only visit

this file and updated pages for updates, instead of visiting

the full website. New updates are at the top and old updates

at the bottom. The results are then stored in the local

database of the search engine with the details of the URL,

metadata/keywords.

The algorithm proposed in this paper crawls the web pages

recursively and stores the relevant data in the database. This

data includes title, meta keywords, meta title, meta

description, body etc of the Webpage. When a query is

submitted to the search engine, it searches its own database

in response to it. In universal search, it lists all the URLs that

match the query. The proposed algorithm has used the basic

principles of tree structure while maintaining the crawled

data by the crawler to be used by the search engine. This

makes the searching on the web more efficient. It uses the

tree/node structure in the database which filters the searched

word more efficiently and gives faster results to the user.

The storage of this data is done by storing each keyword in

the webpage in a separate row with the first character in the

root column. As a result of this when a user searches for a

word, instead of searching the complete data set, it will look

for the root word and will search selectively which will

significantly reduce the search time. The paper has also

implemented smart approach to reduce the web crawling

traffic of existing system using HTML based Update File at

Web Server while making the crawling and searching more

efficient.

3.1 Proposed algorithm for Crawling
1. Crawler visits all web pages of website for first

time.

2. It uses Robot.txt for reference.

3. Crawler checks the updates and compares with its

own last visit.

4. If updates in file are new for crawler, crawler visits

the updated pages and download pages for

indexing.

5. Crawler splits the keywords of each webpage.

6. For all separated keywords, Crawler takes the first

alphabet of keyword.

7. Crawler Initialize first alphabet of keyword as root

of the keyword.

8. Crawler Stores the keywords in database with their

roots.

3.2 Pseudo code for Crawling
TreeNodeslist [] – This array contains the keywords from the

document.

1. For (each document in local database) do

 Extract all different keywords from the

document

 TreeNodeslist [] = all the keywords

from a document.

2. For (i=0;i<=length of TreeNodeslist [];i++)

3. If (TreeNodeslist [] ==‟A‟ to „Z‟)

Root [BST] = Keyword

 Else

 If TreeNodeslist [] ==value(node[i]) then

 Add the pointer to this document in the

list of pointers to documents

 End of for in step 2

End of for in step 1

4. IMPLEMENTATION DETAILS
The proposed crawler algorithm implemented for the search

engine suggests that the time taken to search the keywords

on the web will be reduced significantly. Search engine with

‘Crawler indexing with tree structure’ will help in

segregating the meta data and will help in reducing the

search time. However the test collection was too small to

allow the effectiveness of the „Crawler indexing with tree

structure‟ to be assessed.

Furthermore it covers:

 Demonstrate the use old approach of crawling with

Robot.txt.

 Demonstrate the search results with the Old

crawler approach.

 Demonstrate the proposed crawler approach with

improvements on the older approach

 Demonstrate the search results with proposed

„Crawler indexing with tree structure‟

Old Crawler Approach: We have implemented the old

crawler approach in which Robot.txt is referenced for any

new updates or addition of web pages in WWW. For the first

time all the pages in the web are crawled and stored in the

local database of the search engine. In this approach for each

webpage URL is maintained with all the keywords in that

HTML pages stored in the same row.

 Proposed crawler approach: The proposed approach

shows that the improvements done are on the indexing of the

crawler by storing the URL‟s with each keyword in separate

row in the local database along with the root word in the root

column. This makes the data segregation in more details in

the database and looking at the root word the specific url‟s

are only reported. In case, the root word is referenced to the

same URL multiple times, then only one URL search result

is displayed.

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.6, October 2011

36

4.1 Flow chart for web crawling

4.2 Flowchart for Old Crawler

 Y

 N

 Y

 N

4.3 Flowchart for proposed Crawler

 Y

 N

 Y

 N

Web Crawler

Crawling for the

First time

Check whether

the Robot.txt is

updated

Crawl All Pages

No crawling

required

Database

Update the

Database

Web Crawler

Crawling

for the First

time

Check

whether the

Robot.txt is

updated

Crawl All

Pages

No crawling

required

Databa

se

Segregate the

crawled web

page with a

separate row

for each new

keyword in

the database.

Segregate the

crawled web

page with a

separate row

for each

keyword in

the database.

m_strTitle=Title(A

RG);

Start

 Enter URL

Begin Do While

Loop

ISAWebP

age(ARG)

;

Retur

n

Error

m_strMetaDescrip

tion=MetaDescrip

tion(ARG);

RemoveText(ARG)

;

getWebText(ARG);

BreakdownURL(A

RG);

m_strMetaKeyord

s=MetaKewords(A

RG);

m_strMetaTitle=

MetaTitle(ARG);

m_srtImages=Altt

ext(ARG);

m_strBody=Body(A

RG);;

Call

WriteToDBase(ARG): To

enter into the table

dbo.T_WEBSITE.

Obtain the value

of WSID from

dbo.T_WEBSITE

Call

WriteToDBaseWP(ARG

); To enter values in

the table

dbo.T_WEBPAGE

Call

ParsePageForOthe

rPages(ARG);

While(m_sPages!=N

ULL)

Is

ExternalURL

?

Stop

Y

N

Y

N

Y

N

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.6, October 2011

37

5. RESULTS

5.1 The results obtained with from the

base version approach are as under:
Column A = Contain experiment number.

Column B = Contain the updated page(s).

Column C = Contain URL of pages visited by crawler

Column D = Contain the start time of Crawler (Millisecond)

Column E = Contain the time to reach that page.

(Millisecond)

Column F = Time spend to visit particular page

(Millisecond)

A B C D E F

1 In

de

x

http://localhost:9254/C

rawWeb/update.jsph

1287490380435 1287490380669 234

 http://localhost:9254/C

rawWeb/index.jsp

 1287490380747 312

2 P1 http://localhost:9254/C

rawWeb/update.jsp

1287490577650 1287490577837 187

 http://localhost:9254/C

rawWeb/P1.jsp

 1287490577915 265

3 P2

3

http://localhost:9254/C

rawWeb/update.jsp

1287490730645 1287490730817 172

 http://localhost:9254/C

rawWeb/p23.jsp

 1287490730895 250

4 P1

1

an

d

P2

3

http://localhost:9254/C

rawWeb/update.jsp

1287477109254 1287477109426 172

 http://localhost:9254/C

rawWeb/p11.jsp

 1287477109722 468

 http://localhost:9254/C

rawWeb/p23.jsp

 1287477109987 733

5 P1

1,

P2

2

an

d

P3

3

http://localhost:9254/C

rawWeb/update.jsp

1287477421879 1287477422237 358

 http://localhost:9254/C

rawWeb/p33.jsp

 1287477422549 670

 http://localhost:9254/C

rawWeb/p22.jsp

 1287477422783 904

 http://localhost:9254/C

rawWeb/p11.jsp

 1287477422846 967

Fig 1 Old Crawler timings

A B C D E F

1 Index http://localhost:9254/C

rawWeb/update.jsp

1287490380435 1287490380639 204

 http://localhost:9254/C

rawWeb/index.jsp

 1287490380727 292

2 P1 http://localhost:9254/C

rawWeb/update.jsp

1287490577650 1287490577827 167

 http://localhost:9254/C

rawWeb/P1.jsp

 1287490577890 240

3 P23 http://localhost:9254/C

rawWeb/update.jsp

1287490730645 1287490730787 142

 http://localhost:9254/C

rawWeb/p23.jsp

 1287490730875 230

4 P11

and

P23

http://localhost:9254/C

rawWeb/update.jsp

1287477109254 1287477109386 132

 http://localhost:9254/C

rawWeb/p11.jsp

 1287477109702 448

 http://localhost:9254/C

rawWeb/p23.jsp

 1287477109947 693

5 P11,

P22

and

P33

http://localhost:9254/C

rawWeb/update.jsp

1287477421879 1287477422197 318

 http://localhost:9254/C

rawWeb/p33.jsp

 1287477422509 630

 http://localhost:9254/C

rawWeb/p22.jsp

 1287477422753 874

 http://localhost:9254/C

rawWeb/p11.jsp

 1287477422816 967

Fig 2 Proposed Crawler timings

Fig 3 Graphical Time Difference

5.2 Components List and description
 Home Page

o First Screen of our implemented project ,

It provide the Links to move to another

screens of our project as well as it

displays the data in the form of table

which contains indexed data from our

proposed algorithm.

 Crawl_Old.cs

o Another screen , i.e Crawl Old which

following the base algorithm of our

project , it crawls the websites on the

basis of old algorithm and display the

data in the form of table like structure.

 Crawl_New.cs

o Another screen, i.e Crawl New This

Screen Performs crawling on the basis of

our proposed algorithm, it splits the

different keywords and initializes them

root and stores in the database.

 Searching.cs

o Searching Screen is the form in which

we can place our query keywords and

perform searching on them. Searching

will be done using our proposed

algorithm it reduces the time of

searching.

 Searching Old.cs

o Searching old screen is based on

searching data gathered by base

algorithm. It searches the complete

database to search the keywords.

o That‟s why it take more time.

0
100
200
300
400

In
d

ex

P
2

3

P
1

1
,P

2
2

 …

In
Millisec

onds

Experiment Name

Old
Crawler

New
Crawler

http://localhost:9254/C
http://localhost:9254/C
http://localhost:9254/C
http://localhost:9254/C
http://localhost:9254/C
http://localhost:9254/C
http://localhost:9254/C
http://localhost:9254/C
http://localhost:9254/C
http://localhost:9254/C
http://localhost:9254/C
http://localhost:9254/C
http://localhost:9254/C
http://localhost:9254/C
http://localhost:9254/C
http://localhost:9254/C
http://localhost:9254/C

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.6, October 2011

38

5.3 Snapshots of Proposed Crawler

Application

Fig 4 Home Page

5.4 Navigation Details
The below section describes the navigation of all the

screens for the „Proposed Crawler application‟

 Crawl Old Crawl Old.cs (Base Crawler

Page)

 Crawl New Crawl New.cs (Proposed

Crawler Page)

 Searching Old Searching Old.cs (Base

Crawler Searching Page)

 Searching New Searching New.cs

(Proposed Crawler Searching Page)

Fig 5 Base Crawler

Fig 6 Proposed Crawler

Fig 7 Searching

Fig 8 Search Results

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.6, October 2011

39

6. CONCLUSION
The Websites submitted to the Crawler were crawled

without any issues. The number of WebPages and the rates,

at which they are crawled, depends on the speed of the

Internet. All the search results in response to a query are

successfully retrieved. The time taken for the retrieval of

results is a function of the size of the database. So, the aim

has been achieved by developing a search tool that gives the

most relevant output in response to a query. The algorithm

proposed and implemented in this paper is portable, cost

effective and efficient. It gives its users, relevant results at a

faster rate. It also has a user friendly interface.

7. REFERENCES
[1] Changshang Zhou, Wei Ding, Na Yang, Double

Indexing Mechanism of Search Engine based on

Campus Net, Proceedings of the 2006 IEEE Asia-

Pacific Conference on Services Computing

(APSCC'06).

[2] Fabrizio Silvestri, Raffaele Perego and Salvatore

Orlando. Assigning Document Identifiers to Enhance

Compressibility of Web Search Engines Indexes. In the

proceedings of SAC, 2004.

[3] Oren Zamir and Oren Etzioni. Web Document

Clustering: A feasibility demonstration. In the

proceedings of SIGIR, 1998.

[4] A. Jain and R. Dubes. Algorithms for Clustering Data.

Prentice Hall, 1988

[5] Berners-Lee, T., Hendler, J. and Lassila, O., “The

Semantic Web,” Scientific American.284(5):35-43,

2001.

[6] O. Zamir, O. Etzioni, O. Madanim, and R.M. Karp,

“Fast andIntuitive Clustering of Web Documents,”

Proc. Third Int‟l Conf. Knowledge Discovery and Data

Mining, pp. 287-290, Aug. 1997.

[7] Wang Jicheng, Huang Yuan, Wu Gangshan and Zhang

Fuyan, „Web Mining: Knowledge Discovery on the

Web‟ ,IEEE (1999).

[8] Frawley, W., Piatetsky-Shapiro, G., and Matheus, C.,

Knowledge Discovery in Databases: An Overview. Ai

Magazine, Vol. 13 (1992), pp.57-70.

[9] Changshang Zhou, Wei Ding, Na Yang, Double

Indexing Mechanism of Search Engine based on

Campus Net, Proceedings of the 2006 IEEE Asia-

Pacific Conference on Services Computing

(APSCC'06)

[10] Quan, T. T., Hui, S. C., Fong, A. C. M., and Cao, T. H.

(2004). Automatic generation of ontology for scholarly

semantic Web. In: Lecture Notes in Computer Science.

Vol. 3298. (pp. 726–740).

