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ABSTRACT 
Genetic algorithms (GAs) are multi-dimensional, blind heuristic 

search methods that involve complex interactions among 

parameters (such as population size, number of generations, GA 

operators and operator probabilities). The question whether the 

quality of results obtained by GAs depend upon the values given 

to these parameters, is a matter of research interest. This work 

studies the problem of how changes in four GA parameters 

(population size, number of generations, crossover and mutation 

probabilities) affect GA performance from a practical stand 

point. To examine the robustness of GA to these parameters, we 

have tested three groups of parameters and the interactions in 

each group (a) Crossover and mutation separately (b) Crossover 

combined with mutation together (c) Population size and 

number of generations. The results show that for simple 

problems mutation plays a momentous role, and for complex 

problems crossover is the key search operator. Based on our 

study we conclude that, complementary crossover and mutation 

probabilities combined with a reasonable population size is a 

reliable approach. 

 

Keywords: Genetic algorithm, control parameters, 

crossover, mutation, population sizing. 

1.  INTRODUCTION 
Genetic algorithms are a class of flexible optimization 

procedures inspired by evolution and natural selection, first 

applied to artificial systems by J H Holland. They are based on 

Darwinian evolutionary processes and naturally occurring 

genetic operations on chromosomes proposed by Koza. Though 

they are highly parallelizable mathematical algorithms, the 

implementation are often serialized and executed on serial 

machines. In essence, GAs transform population of individuals 

(representing solutions to the problem coded into binary strings), 

each with an associated fitness value, into new population of 

individuals (i.e next generation) using operators modeled on 

Darwinian principles of reproduction and survival of fittest. 

GAs begin by selecting a random sample of potential solutions 

to the problem to be solved – represented by the initial 

population. Initially, a set of starting solutions to the problem 

have to be coded into binary-string chromosome representation. 

In the second step, fitness value of every string is calculated 

according to the objective function defined. In the third step, a 

selection operator is applied to the initial set of potential 

solutions, whereby mostly individuals with higher fitness values 

are selected. In the fourth step, crossover and mutation operators 

are applied where binary bits of chromosomes are exchanged 

and mutated to generate a new population (set of solutions). 

Thus the life-cycle of one generation completes. After these 

iterative steps from second to fourth are repeated for a fixed 

number of times or until population converges (known as the 

number of generations). There are two essential events in the 

GA process: (i) Creation of new solutions or concepts to solve 

the problem through crossover (recombination) and mutation. 

(ii) Elimination of bad solutions by selection operator. The 

crossover operator serves as an accelerator and is expected to 

propagate existing „good‟ building blocks to the next generation 

i.e its role is of exploitation. Mutation is expected to add random 

diversity to the population at the expense of disrupting building 

blocks [1]. 

GAs are designed to search for global optima but cannot 

guarantee that the best solution will be found, sometimes the 

solutions converge to local rather than global optima. This 

problem can be avoided to a large extent by making use of 

appropriate control parameters choices. GA parameters (such as 

population size, GA operators employed, operator probabilities 

etc) interact in complex ways. Given a finite computational 

effort to obtain a solution to a problem, it is better to know the 

GA parameter settings that would lead to a good solution.  Since 

overall computational effort required to run a GA is proportional 

to the number of function evaluations needed, any advance 

knowledge of interaction among GA parameters will lead to 

better global solution in lesser time & making GA more robust. 

It is seen that lack of robustness in the design choices always 

lead to local optima and lower levels of performance. 

There are a number of studies that explore the interaction among 

different GA parameters in different application contexts 

(discussed in Section II). In this paper we investigate how 

changes in GA parameters affect the GA performance in the 

context of optimization of functions. We have carried out a large 

number of tests to evaluate a range of GA parameters and their 

combinations. Based on these tests we conclude that the choice 

of GA parameters affect the solutions obtained when GAs are 

restricted to finite computational resources.   

There are three conditions that are relevant to GA design: (i) 

Encoding (ii) Operators, and (iii) control parameters. Our study 

is limited to the third of these i.e control parameters. For 

encoding we use the most commonly used binary coding. For 

operators we have chosen roulette wheel selection, one point 

crossover and bit level representation mutation. Since there are a 

number of other selection schemes such as Bolzman selection, 

Tournament Selection, Rank Selection, steady state selection 

etc., we do not have any reason to justify the choice of roulette 

wheel selection. We have chosen roulette wheel selection due to 

its simplicity and its wide mention in GA literature. Our interest 

is only centered on the analysis of control parameters: Crossover 
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and mutation probabilities, number of generations, and size of 

the population. 

To examine the robustness of the GA to control parameters we 

test three groups of parameters and the interactions inside each 

group: (a) Crossover and mutation applied separately (b) 

Crossover combined with mutation (c) Population size and 

number of generations. 

In our study we evaluate the changes in the performance of GA 

with respect to the changes in the control parameters. This paper 

is organized as follows: Section 2 presents a literature survey, 

Section 3 describes the experimental details, Section 4 reports 

the results obtained, and the analysis thereof, while conclusions 

and future work appear in Section 5 and Section 6 respectively. 

2.  LITERATURE SURVEY  
Analysis of various selection schemes used in modern GA such 

as Roulette wheel, rank, tournament and steady state has been 

done [1] and [10]. Schemes are compared and verified according 

to convergence time and growth ratio. A parameter less Genetic 

Algorithm which is one step closer in the direction of making 

GA more robust [2]. In case of dominant set of decision variable 

the crossover does not have a significant effect on the 

performance measures, whereas high mutation rates are more 

suitable [3]. The problem of finding optimal parameters have 

been studied by many. Optimization of control parameters of 

GA is often time consuming. An approach of having meta level 

GA for control parameter optimization is a good approach [4]. 

To study dynamics of these interactions more sophisticated 

stochastic models using Markov chain have also been developed 

and analyzed [5]. 

It is found that parameter values adjusted during evaluation 

gives better results than if set in advance [6]. This has potential 

of adjusting the algorithm to the problem while solving the 

problem. Crossover operator is largely dependent on the coding 

used to represent the decision variables [7]. The success of 

Genetic algorithm depends on how well the crossover operator 

respects the underlying coding of the problem [8]. The effect of 

crossover and mutation can be interchanged by using a suitable 

coding transformation [9]. It does not help in terms of deciding 

to which operator we should give importance. Crossover is 

useful in problems where preservation of building block is 

necessary. Mutation may destroy already obtained good 

information [10]-[12]. With this in mind it is suggested that GAs 

will work well with high crossover and low mutation probability 

[13]. A crossover hill climbing algorithm is presented illustrates 

the power of mechanics of crossover [14].  Comparison between 

normal GA and a GA that uses random crossover has been 

made. The merits of crossover for genetic research has been 

questioned [15]. Exploratory power of crossover depends on the 

differences between its parents. Recent work has extended the 

theoretical analysis of n-point and uniform crossover with 

respect to random sampling distributions [16]. An adapting 

mechanism for controlling the use of crossover in a 

Evolutionary algorithm is a better approach [17]. An adaptive 

genetic algorithm that describes the optimal crossover 

probability as it runs has been proposed [18].  

It has been suggested that optimal mutation rate is proportional 

to the length of chromosomes [19]. For deceptive functions an 

evolutionary algorithm with a good hill climbing strategy and 

reasonable mutation rate performs the best. It has been shown 

that optimal mutation probability is dependent on the 

representation being used [20]. Adaptive crossover and mutation 

probabilities help in locating global optimum in a multimodal 

landscape [21]. It has been shown that mutation can be an 

independent operator [22]. On implementing on an infinite 

population model it is found that mutation is a poorer operator 

than had been recognized [23]. A model of GA has been 

proposed that applies varying mutations parallel to crossover 

and background mutation by using extinctive selection to 

enhance the effectiveness of GA by [24]. It has also been seen 

that complementary crossover and mutation probabilities are a 

reliable approach [26]. This paper studies the problem of how 

changes in the four GA parameters (population size, number of 

generations, crossover and mutation probabilities) in isolation or 

in combination have an effect on GA performance in the context 

of function optimization problems. 

3.  EXPERIMENTAL DETAILS 
The overall computational effort required to run a GA is 

proportional to the number of function evaluations needed. 

Number of function evaluations (S) that is to be assigned for an 

application is product of number of generations (T) and the 

population size (N) i.e. S = T × N. The minimum number of 

function evaluations required for an application depends on the 

nature of the function being optimized. It is understood that if 

function is „difficult‟ than number of function evaluations 

required would be higher. Following are the major complexities 

that may be present in an arbitrary problem: 1. Multi Modality 2. 

Deception 3. Isolation  4.  Collateral noise. In this research we 

have chosen a one-variable uni-modal function, a two-variable 

function from the De Jong test function bed, a two-variable uni-

modal function and a two-variable four-peaked function. Each 

test function is described below. 

A. Test Functions 

One-variable Uni-modal function:  

This function has only one optimum solution. We evaluate 

the function: 
.1 )(

Coeff

xxf  . The actual value of coeff. is chosen to 

normalize the x variable for a bit string of length 30 bits. Thus, 

Coeff. = 230 – 1 which is equal to 1073741823.  

Two-variable De Jong Function: 

Our second function: f2(x1,x2) is a two variable function from 

De Jong five function test bed. The function has convex 

characteristics. It is a two variable uni-modal function: 
2

1

2

2

2

1212 )1()(100),( xxxxxf   

When the search space is restricted to the range of −2 ≤ x1, x2   

≤ 2, it has a single maximum point at (−2, −2) with a function 

value equal to 3609. Variables x1 and x2 are represented as 10 

bit binary strings. Hence total search space is 1024 × 1024. 

Two-variable Uni-modal function: 

 Our third function: 

 22

21

2

2

2

1213 )7()11(),(  xxxxxxf  is a two-variable 

uni-modal function (Himmelblau function) often used in 

optimization literature [25]. The search space is of range 0 ≤ 

x1,x2  ≤ 6 in which the above function has a single minimum 

point a (3,2), with a function value equal to zero. Here we 

converted minimization problem into maximization problem by 

using the formula:  

)),(1(
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x1,x2 are represented as 10 bit binary strings and the total search 

space is 1024 ×1024. 



International Journal of Computer Applications (0975 – 8887) 

Volume 31– No.6, October 2011 

 

 22 

Four-peaked function: 

This function is same as the previous one, but the ranges for 

x1,x2 are extended to −6≤ x1,x2 ≤6 . The function has a total of 

four minima, one in each quadrant. All minima have function 

values equal to zero. In order to make one of them the global 

minimum, we add a term to the above function. 
22

21

2
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1213 )7()11(),(  xxxxxxf                                                     

2
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As x1, x2 are represented as 10 bit binary strings; the total search 

space is 1024 × 1024. 

All the above functions have been tested for various 

crossover and mutation probabilities for fixed function 

evaluations and population sizes in our earlier work [26]. The 

results obtained can be summarized as follows:  

 Mutation alone approaches perform better for only simple 

problems. 

 Crossover alone based GA performs better than mutation 

alone based GA for all the function tested and for all parameters. 

 GA with all three operators (Crossover, Mutation and 

Selection) performs better compared to crossover alone and 

mutation alone based GAs.  

In this study we have limited the computational resources 

employed by choosing the total number of function evaluations 

S = 5000. In order to reduce bias in the initial population, we run 

each experiment with 50 different initial populations. Four 

program in C++ were implemented for this study (one for each 

function) for varying population sizes and number of 

generations.  

4.  EXPERIMENTAL RESULTS AND 

ANALYSIS 
Our earlier research [26] assessed the functioning of the GA for 

different combinations of crossover and mutation parameters. 

However it did not provide a clear answer to the question of the 

effect of varying population sizes keeping number of function 

evaluations constant, on the results obtained by GA. 

In continuation of our previous work in this paper, we present 

a formal statistical analysis of the results of our previous work, 

and the effect of varying population sizes on the robustness of 

GA.  

A. Mutation Alone 

Mutation plays a secondary role in the operation of GA. 

Mutation adds random diversity in the population, which helps 

in avoiding the possibility of getting trapped in a local optima. 

Here each bit is selected probabilistically and then flipped 

(assuming a bit level representation). Mutation reverses a 0 to a 

1 and vice versa. The mutation operator considered due to its 

high explorative power.  

 Statistical data presented in Table I shows that there is an 

increase in the mean values as mutation probability increases 

from 0.01 to 0.2. Mean values in function f1 increases from 

0.9746 to 0.9830. This is due to the fact that high mutation rate 

sometimes deletes low order schemata and introduces new 

desirable high order schemata. 

 To gauge reliability of mean and to compare the series with 

regard to stability, we have calculated the standard deviation. It 

was seen that dispersion for function f1 increases to 0.017 as the 

mutation rate is increases. This is due to the fact that diversity in 

the population increases due to high mutation rate.  

 There is a considerable decrease in solution quality or 

performance of GA for function f2, f3, f4 as shown in Table 1. 

Mean values for the functions f2, f3, f4 for all mutation 

parameters tested are comparatively low as compared with 

function f1. Thus, it is clear that effect of mutation alone based 

GA is deleterious for complex functions. Thus mutation based 

GA fails for difficult problems. 

In furtherance of our experiments, in this section we discuss 

the effect of mutation alone based GA with varying population 

sizes on robustness of GA: 

 When mutation alone with selection is applied with varying 

population sizes, it is observed from Figures 1 and 2 that 

performance is poorer for small population sizes. As shown in 

Table 1, as the population size increases the mean value also 

increases. In case of small population size, the graph is noisy. 

This is due to the fact that probability of getting an optimal 

solution in the next generation is small. A small population has a 

low probability of taking step in right direction. When an 

incorrect step is taken, it requires several generations to come 

back to the optimal point, thus causing the GA to spend a large 

number of function evaluations (S) or generations (T) in 

searches before returning to optimal point as shown in Figures 1 

and 2. Whereas with large population sizes diversity in the 

initial population is expected to be large and the best solution is 

expected to be close to optimal point. The dispersion value for 

small population sizes (P=20) is large considered with other 

population sizes as shown in Table 4. This is due to the fact that 

high mutation rate (M=0.2) combined with low population sizes 

disrupt the schemata in every generation more frequently.  

Fig. 1. Maximum performance (f1) measure versus 

generations with different population sizes for mutation 

alone based GA. 

 There is a considerable increase in mean values of each 

function as the population size increases as shown in Table 2. 

Thus there exists a minimum population size, below which GA 

will have difficulty in reaching optimal point. The observation 

leads us to conclude that mutation based GA perform somewhat 

poorly for small population size and moderately for large 

population. 

Fig. 2. Maximum performance (f3) measure versus 

generations with different population sizes for mutation 

alone based GA. 
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Table 1. Mean function values for different mutation / crossover probability settings 

Function 

Only Mutation Only Crossover Mutation with Crossover 

M= 

0.01 

M= 

0.05 

M= 

0.09 

M= 

0.2 

C= 

0.25 

C= 

0.5 

C= 

0.75 

C= 

0.95 

C=0.9, 

M=0.01 

C=0.9, 

M=0.1 

C=0.1, 

M=0.01 

C=0.1, 

M=0.1 

f1 0.974 0.972 0.985 0.983 0.984 0.98 0.997 0.991 0.997 0.994 0.988 0.986 

f2 2686 2608 2772 2779 3167 3283 3461 3561 3474 3400 3002 2728 

f3 0.205 0.256 0.279 0.292 0.926 0.978 0.979 0.671 0.991 0.962 0.744 0.368 

f4 0.217 0.249 0.285 0.306 0.924 0.968 0.988 0.996 0.995 0.952 0.881 0.477 

TABLE 2. Mean function values for varying population sizes 

 

Function 

Only Mutation 

M= 0.2 

Only Crossover 

C=0.75 

Mutation with Crossover 

M=0.01, C=0.75 

P=20 P=50 P=70 P=100 P=20 P=50 P=70 P=100 P=20 P=50 P=70 P=100 

f1 0.95 0.985 0.986 0.997 0.842 0.907 0.938 0.949 0.9 0.932 0.988 0.973 

f2 2587 2689 2765 2794 2398 2941 3368 3393 2393 2740 2484 2539 

f3 0.1766 0.29 0.34 0.391 0.752 0.903 0.798 0.826 0.758 0.967 0.889 0.952 

f4 0.166 0.164 0.201 0.247 0.728 0.894 0.809 0.83 0.764 0.956 0.893 0.947 

TABLE 3. Standard deviation of function values for different mutation / crossover probability settings 

 

Function 

Only Mutation Only Crossover Mutation with Crossover 

M= 

0.01 

M= 

0.05 

M= 

0.09 

M= 

0.2 

C= 

0.25 

C= 

0.5 

C= 

0.75 

C= 

0.95 

C=0.9, 

M=0.01 

C=0.9, 

M=0.1 

C=0.1, 

M=0.01 

C=0.1, 

M=0.1 

f1 0.02 0.032 0.014 0.016 0.012 0.019 0.006 0.003 0.004 0.005 0.0075 0.0138 

f2 294.8 509.4 441.1 453.9 373.2 49.37 3.79 29.93 143.48 143.96 335.04 401.31 

f3 0.285 0.161 0.197 0.209 0.008 0.01 0.05 0.0001 0.0103 0.059 0.352 0.3614 

f4 0.267 0.127 0.172 0.193 0.007 0.013 0.067 0.00002 0.0101 0.019 0.332 0.3458 

TABLE 4. Standard deviation of function values for varying population sizes 

 

Function 

Only Mutation 

M= 0.2 

Only Crossover 

C=0.75 

Mutation with Crossover 

M=0.01, C=0.75 

P=20 P=50 P=70 P=100 P=20 P=50 P=70 P=100 P=20 P=50 P=70 P=100 

f1 

0.04

7 

0.01

4 

0.01

1 0.005 

0.01

4 

0.01

6 

0.00

2 0.0049 0.057 

0.047

8 0.053 

0.091

8 

f2 

510.

4 

473.

9 

415.

5 396.8 

234.

8 

329.

6 

390.

7 500.35 

220.8

3 

239.5

8 

285.5

4 

258.7

4 

f3 

0.19

8 

0.20

5 

0.19

0 0.189 

0.09

7 

0.16

4 0.16 0.183 

0.078

6 0.059 

0.058

7 

0.051

1 

f4 

0.18

8 

0.20

0 

0.19

5 0.199 

0.09

8 

0.17

2 

0.16

1 0.184 0.077 0.058 0.059 0.052 

(In Tables 1 to 4: M = Mutation Probability, C = Crossover Probability, P = Population Size) 

 

B. Crossover Alone 

In GA literature crossover is considered to be a powerful 

operator. Role of crossover is of constructive i.e. of preserving 

in nature. Crossover constructs higher order hyper planes from 

lower order hyper planes that have higher observed average 

fitness. Crossover is used where qualities of construction and 

survival are required for good performance. The results obtained 

are discussed below: 

 Mean function values for C = 0.75 is high compared to 

other crossover probabilities for all function as shown in Table I. 

Mean values obtained are higher for all crossover probabilities 

when compared with mutation based GA as shown in Table 1. 

 It is seen that as generations progress, the function value 

becomes stagnant. This is due to the fact that crossover loses its 

power as the population loses its diversity (i.e. number of 

common alleles increases) and it limits the types of exploration 

that crossover can perform. Standard deviation readings for 

crossover in Table 3 shows us that there is a significant decrease 

in standard deviation for all crossover probabilities when 

compared with mutation alone based GA.  
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Crossover Probability 0.75 for varying population
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In furtherance of our experiments, in this section we discuss 

the effect of crossover alone based GA with varying population 

sizes on the robustness of GA: 

 From Figures 3 and 4 it is seen that for population less 

than N = 50, the function value degrades and the optimal 

solution is not reached. This is due to the fact that the population 

loses its diversity at an early stage due to which the function 

value stagnates as there is no mechanism to add diversity in the 

population. Performance of GA improves as population size 

increases. This is due to the fact that diversity in the population 

also increases, increasing the power of the crossover operator.  

Mean function values increase as population size is increased as 

shown in Table 2. 

Fig. 3. Average performance (f1)  measure versus 

generations with different population sizes for mutation 

alone based GA. 

Fig. 4. Average performance (f3)  measure versus 

generations with different population sizes for mutation 

alone based  GA. 

 For large population sizes, the initial population will have a 

larger probability of having more individuals in the population 

having fitness close to optimal. The task of selection operator is 

to select such good solutions, in the middle of noise, from the 

initial population. Thus as these good solutions are selected 

repeatedly, the population loses diversity after each generation 

and performance stagnates. This is shown by the observation 

that mean values progressively decreases and standard deviation 

increases for large population sizes as shown in Table 3 and 

Table 4. 

C. Crossover and Mutation Combined 

It has been discussed earlier that role of mutation is to increase 

diversity in the population thus preventing the solutions getting 

trapped in local optima. Role of crossover is to construct and 

preserve good building blocks. Crossover guarantees 

preservation of alleles, while mutation guarantees diversity. We 

have performed experiments with different parameters with 

these two operators, since they are complimentary in nature.  

Based on our results we have found similarity in the 

performance of all the four functions described in Section 3. The 

following are the observations: 

 Mean function values for all combinations of crossover and 

mutation probabilities are high when compared with crossover 

and mutation alone based GAs for all functions as shown in 

Table I.  

 There is a significant increase in the mean value for C = 0.9 

and M = 0.01 as shown in Table 1. Is also seen from the results 

obtained that as mutation rate is increased to a value of M = 0.1, 

the function value starts to resemble a random noisy search, and 

that the mean value decreases considerably. This is due to the 

fact that mutation destroys already found good solutions or 

building blocks in the population. 

 Dispersion value for crossover probability C = 0.1 and 

mutation probability M = 0.1 for all the function is highest as 

shown in Table 3, which tells us that the data series is noisy in 

nature due high mutation probability and low crossover 

probability. 

In furtherance of our experiments, in this section we discuss 

the effect of crossover with mutation based GA under varying 

population sizes on the robustness of GA:  

 For varying population sizes keeping number of function 

evaluations (S) constant, results have shown that there is an 

„optimum‟ population size below and above which average 

performance degrades as shown in Figure 5 and 6. This is 

because, for small population sizes there is less diversity in the 

population and since mutation rate is small (0.01), there will be 

very little diversity added to the population in each generation. 

Hence GA performance degrades. In case of large population 

sizes, the performance does not reach optimal mark due to the 

limitation in number of generation (T) and as the number of 

function evaluations (S) is held constant, it stops near the 

optimal point without actually reaching optimality. For all 

population sizes, the performance is much better compared to 

crossover alone and mutation alone based GAs.  

 Mean values for all the functions are highest for population 

size 50 as shown in Table 2. Standard deviation for all functions 

increase as the population sizes increase, in keeping with 

increase in population diversity.  

Fig. 5  Average performance (f1) measure versus generations 

with different population sizes for crossover & mutation 

alone based GA. 

Fig. 6 Average performance (f3)  measure versus generations 

with different population sizes for crossover & mutation 

alone based GA. 



International Journal of Computer Applications (0975 – 8887) 

Volume 31– No.6, October 2011 

 

 25 

5.  CONCLUSIONS 
In this paper we have studied the effect of changes in GA 

parameters from a view of varying population sizes keeping 

number of function evaluation constant. Our aim is not to find 

the best population size for a particular problem, but to come up 

with general conclusions. We have applied GA for four different 

functions (one-variable uni-modal function, two-variable 

function from De Jong test function bed, two-variable uni-modal 

function and a two-variable four peaked function). We can 

derive the following conclusions from our study: 

 Results have shown that for simple problems mutation 

based approaches perform better. As complexity of problem 

increases, possibility of mutation alone based GAs to achieve 

global optima decrease. Mutation based GA fail miserably for 

complex problems.  

 Results obtained by mutation based GA are poor for both 

small and medium population sizes. 

 Crossover based GAs perform better than mutation based 

GAs for all the functions we had tested. But they have a 

tendency to get stuck at local optimum. 

 For simpler problems mutation based GAs requires larger 

population size as compared to crossover based GAs to achieve 

the same level of optimality. 

 In order to achieve good performance when the total 

number of function evaluations is held constant, correct 

population sizing is important.  

 In general, a high crossover rate combined with low 

mutation rate with a correct population size is a reliable 

approach. 

6.  FUTURE WORK 
We have been able to demonstrate empirically, the role of some 

parameters in the process of natural selection and randomized, 

structural recombination in artificial genetic search. In our zeal 

to keep things simple we have however, neglected several others 

interesting natural operators. Our research work is limited in that 

sense. There are many knowledge-augmenting natural genetic 

operators, that can be implemented and tested. For example, it is 

seen that in nature genetic constitution does not easily forget the 

lessons learned in previous environmental shifts. The redundant 

memory of diploidy permits multiple solutions to be carried 

along, with only one particular solution being expressed. In this 

way old lessons are remembered and tested occasionally. 

Analysis and implementation of various advanced genetic 

operators like diploidy-dominance, inversion, intra 

chromosomal duplication and deletion can be implemented for 

further improvement of GA. We strongly feel that more energy 

is needed to be spent in finding correct implementation of these 

operators. So that they limit the intensive use of computational 

recourses made by GA and reduces time to reach optimal 

solutions. 
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