
International Journal of Computer Applications (0975 – 8887)

Volume 31– No.6, October 2011

 20

An Empirical Study of the Role of Control Parameters of

Genetic Algorithms in Function Optimization Problems

V.Kapoor
Institute of Engineering &

Technology
Devi Ahilya University,

Indore, India

S.Dey

Indian Institute of Management
Indore, India

A.P.Khurana

School of Computer Science
Devi Ahilya University

Indore, India

ABSTRACT
Genetic algorithms (GAs) are multi-dimensional, blind heuristic

search methods that involve complex interactions among

parameters (such as population size, number of generations, GA

operators and operator probabilities). The question whether the

quality of results obtained by GAs depend upon the values given

to these parameters, is a matter of research interest. This work

studies the problem of how changes in four GA parameters

(population size, number of generations, crossover and mutation

probabilities) affect GA performance from a practical stand

point. To examine the robustness of GA to these parameters, we

have tested three groups of parameters and the interactions in

each group (a) Crossover and mutation separately (b) Crossover

combined with mutation together (c) Population size and

number of generations. The results show that for simple

problems mutation plays a momentous role, and for complex

problems crossover is the key search operator. Based on our

study we conclude that, complementary crossover and mutation

probabilities combined with a reasonable population size is a

reliable approach.

Keywords: Genetic algorithm, control parameters,

crossover, mutation, population sizing.

1. INTRODUCTION
Genetic algorithms are a class of flexible optimization

procedures inspired by evolution and natural selection, first

applied to artificial systems by J H Holland. They are based on

Darwinian evolutionary processes and naturally occurring

genetic operations on chromosomes proposed by Koza. Though

they are highly parallelizable mathematical algorithms, the

implementation are often serialized and executed on serial

machines. In essence, GAs transform population of individuals

(representing solutions to the problem coded into binary strings),

each with an associated fitness value, into new population of

individuals (i.e next generation) using operators modeled on

Darwinian principles of reproduction and survival of fittest.

GAs begin by selecting a random sample of potential solutions

to the problem to be solved – represented by the initial

population. Initially, a set of starting solutions to the problem

have to be coded into binary-string chromosome representation.

In the second step, fitness value of every string is calculated

according to the objective function defined. In the third step, a

selection operator is applied to the initial set of potential

solutions, whereby mostly individuals with higher fitness values

are selected. In the fourth step, crossover and mutation operators

are applied where binary bits of chromosomes are exchanged

and mutated to generate a new population (set of solutions).

Thus the life-cycle of one generation completes. After these

iterative steps from second to fourth are repeated for a fixed

number of times or until population converges (known as the

number of generations). There are two essential events in the

GA process: (i) Creation of new solutions or concepts to solve

the problem through crossover (recombination) and mutation.

(ii) Elimination of bad solutions by selection operator. The

crossover operator serves as an accelerator and is expected to

propagate existing „good‟ building blocks to the next generation

i.e its role is of exploitation. Mutation is expected to add random

diversity to the population at the expense of disrupting building

blocks [1].

GAs are designed to search for global optima but cannot

guarantee that the best solution will be found, sometimes the

solutions converge to local rather than global optima. This

problem can be avoided to a large extent by making use of

appropriate control parameters choices. GA parameters (such as

population size, GA operators employed, operator probabilities

etc) interact in complex ways. Given a finite computational

effort to obtain a solution to a problem, it is better to know the

GA parameter settings that would lead to a good solution. Since

overall computational effort required to run a GA is proportional

to the number of function evaluations needed, any advance

knowledge of interaction among GA parameters will lead to

better global solution in lesser time & making GA more robust.

It is seen that lack of robustness in the design choices always

lead to local optima and lower levels of performance.

There are a number of studies that explore the interaction among

different GA parameters in different application contexts

(discussed in Section II). In this paper we investigate how

changes in GA parameters affect the GA performance in the

context of optimization of functions. We have carried out a large

number of tests to evaluate a range of GA parameters and their

combinations. Based on these tests we conclude that the choice

of GA parameters affect the solutions obtained when GAs are

restricted to finite computational resources.

There are three conditions that are relevant to GA design: (i)

Encoding (ii) Operators, and (iii) control parameters. Our study

is limited to the third of these i.e control parameters. For

encoding we use the most commonly used binary coding. For

operators we have chosen roulette wheel selection, one point

crossover and bit level representation mutation. Since there are a

number of other selection schemes such as Bolzman selection,

Tournament Selection, Rank Selection, steady state selection

etc., we do not have any reason to justify the choice of roulette

wheel selection. We have chosen roulette wheel selection due to

its simplicity and its wide mention in GA literature. Our interest

is only centered on the analysis of control parameters: Crossover

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.6, October 2011

 21

and mutation probabilities, number of generations, and size of

the population.

To examine the robustness of the GA to control parameters we

test three groups of parameters and the interactions inside each

group: (a) Crossover and mutation applied separately (b)

Crossover combined with mutation (c) Population size and

number of generations.

In our study we evaluate the changes in the performance of GA

with respect to the changes in the control parameters. This paper

is organized as follows: Section 2 presents a literature survey,

Section 3 describes the experimental details, Section 4 reports

the results obtained, and the analysis thereof, while conclusions

and future work appear in Section 5 and Section 6 respectively.

2. LITERATURE SURVEY
Analysis of various selection schemes used in modern GA such

as Roulette wheel, rank, tournament and steady state has been

done [1] and [10]. Schemes are compared and verified according

to convergence time and growth ratio. A parameter less Genetic

Algorithm which is one step closer in the direction of making

GA more robust [2]. In case of dominant set of decision variable

the crossover does not have a significant effect on the

performance measures, whereas high mutation rates are more

suitable [3]. The problem of finding optimal parameters have

been studied by many. Optimization of control parameters of

GA is often time consuming. An approach of having meta level

GA for control parameter optimization is a good approach [4].

To study dynamics of these interactions more sophisticated

stochastic models using Markov chain have also been developed

and analyzed [5].

It is found that parameter values adjusted during evaluation

gives better results than if set in advance [6]. This has potential

of adjusting the algorithm to the problem while solving the

problem. Crossover operator is largely dependent on the coding

used to represent the decision variables [7]. The success of

Genetic algorithm depends on how well the crossover operator

respects the underlying coding of the problem [8]. The effect of

crossover and mutation can be interchanged by using a suitable

coding transformation [9]. It does not help in terms of deciding

to which operator we should give importance. Crossover is

useful in problems where preservation of building block is

necessary. Mutation may destroy already obtained good

information [10]-[12]. With this in mind it is suggested that GAs

will work well with high crossover and low mutation probability

[13]. A crossover hill climbing algorithm is presented illustrates

the power of mechanics of crossover [14]. Comparison between

normal GA and a GA that uses random crossover has been

made. The merits of crossover for genetic research has been

questioned [15]. Exploratory power of crossover depends on the

differences between its parents. Recent work has extended the

theoretical analysis of n-point and uniform crossover with

respect to random sampling distributions [16]. An adapting

mechanism for controlling the use of crossover in a

Evolutionary algorithm is a better approach [17]. An adaptive

genetic algorithm that describes the optimal crossover

probability as it runs has been proposed [18].

It has been suggested that optimal mutation rate is proportional

to the length of chromosomes [19]. For deceptive functions an

evolutionary algorithm with a good hill climbing strategy and

reasonable mutation rate performs the best. It has been shown

that optimal mutation probability is dependent on the

representation being used [20]. Adaptive crossover and mutation

probabilities help in locating global optimum in a multimodal

landscape [21]. It has been shown that mutation can be an

independent operator [22]. On implementing on an infinite

population model it is found that mutation is a poorer operator

than had been recognized [23]. A model of GA has been

proposed that applies varying mutations parallel to crossover

and background mutation by using extinctive selection to

enhance the effectiveness of GA by [24]. It has also been seen

that complementary crossover and mutation probabilities are a

reliable approach [26]. This paper studies the problem of how

changes in the four GA parameters (population size, number of

generations, crossover and mutation probabilities) in isolation or

in combination have an effect on GA performance in the context

of function optimization problems.

3. EXPERIMENTAL DETAILS
The overall computational effort required to run a GA is

proportional to the number of function evaluations needed.

Number of function evaluations (S) that is to be assigned for an

application is product of number of generations (T) and the

population size (N) i.e. S = T × N. The minimum number of

function evaluations required for an application depends on the

nature of the function being optimized. It is understood that if

function is „difficult‟ than number of function evaluations

required would be higher. Following are the major complexities

that may be present in an arbitrary problem: 1. Multi Modality 2.

Deception 3. Isolation 4. Collateral noise. In this research we

have chosen a one-variable uni-modal function, a two-variable

function from the De Jong test function bed, a two-variable uni-

modal function and a two-variable four-peaked function. Each

test function is described below.

A. Test Functions

One-variable Uni-modal function:

This function has only one optimum solution. We evaluate

the function:
.1)(

Coeff

xxf . The actual value of coeff. is chosen to

normalize the x variable for a bit string of length 30 bits. Thus,

Coeff. = 230 – 1 which is equal to 1073741823.

Two-variable De Jong Function:

Our second function: f2(x1,x2) is a two variable function from

De Jong five function test bed. The function has convex

characteristics. It is a two variable uni-modal function:
2

1

2

2

2

1212)1()(100),(xxxxxf

When the search space is restricted to the range of −2 ≤ x1, x2

≤ 2, it has a single maximum point at (−2, −2) with a function

value equal to 3609. Variables x1 and x2 are represented as 10

bit binary strings. Hence total search space is 1024 × 1024.

Two-variable Uni-modal function:

 Our third function:

 22

21

2

2

2

1213)7()11(),(xxxxxxf is a two-variable

uni-modal function (Himmelblau function) often used in

optimization literature [25]. The search space is of range 0 ≤

x1,x2 ≤ 6 in which the above function has a single minimum

point a (3,2), with a function value equal to zero. Here we

converted minimization problem into maximization problem by

using the formula:

)),(1(
1

21

'

3 213
),(

xxf
xxf

x1,x2 are represented as 10 bit binary strings and the total search

space is 1024 ×1024.

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.6, October 2011

 22

Four-peaked function:

This function is same as the previous one, but the ranges for

x1,x2 are extended to −6≤ x1,x2 ≤6 . The function has a total of

four minima, one in each quadrant. All minima have function

values equal to zero. In order to make one of them the global

minimum, we add a term to the above function.
22

21

2

2

2

1213)7()11(),(xxxxxxf

2

2

2

1)2()3(1.0 xx

As x1, x2 are represented as 10 bit binary strings; the total search

space is 1024 × 1024.

All the above functions have been tested for various

crossover and mutation probabilities for fixed function

evaluations and population sizes in our earlier work [26]. The

results obtained can be summarized as follows:

 Mutation alone approaches perform better for only simple

problems.

 Crossover alone based GA performs better than mutation

alone based GA for all the function tested and for all parameters.

 GA with all three operators (Crossover, Mutation and

Selection) performs better compared to crossover alone and

mutation alone based GAs.

In this study we have limited the computational resources

employed by choosing the total number of function evaluations

S = 5000. In order to reduce bias in the initial population, we run

each experiment with 50 different initial populations. Four

program in C++ were implemented for this study (one for each

function) for varying population sizes and number of

generations.

4. EXPERIMENTAL RESULTS AND

ANALYSIS
Our earlier research [26] assessed the functioning of the GA for

different combinations of crossover and mutation parameters.

However it did not provide a clear answer to the question of the

effect of varying population sizes keeping number of function

evaluations constant, on the results obtained by GA.

In continuation of our previous work in this paper, we present

a formal statistical analysis of the results of our previous work,

and the effect of varying population sizes on the robustness of

GA.

A. Mutation Alone

Mutation plays a secondary role in the operation of GA.

Mutation adds random diversity in the population, which helps

in avoiding the possibility of getting trapped in a local optima.

Here each bit is selected probabilistically and then flipped

(assuming a bit level representation). Mutation reverses a 0 to a

1 and vice versa. The mutation operator considered due to its

high explorative power.

 Statistical data presented in Table I shows that there is an

increase in the mean values as mutation probability increases

from 0.01 to 0.2. Mean values in function f1 increases from

0.9746 to 0.9830. This is due to the fact that high mutation rate

sometimes deletes low order schemata and introduces new

desirable high order schemata.

 To gauge reliability of mean and to compare the series with

regard to stability, we have calculated the standard deviation. It

was seen that dispersion for function f1 increases to 0.017 as the

mutation rate is increases. This is due to the fact that diversity in

the population increases due to high mutation rate.

 There is a considerable decrease in solution quality or

performance of GA for function f2, f3, f4 as shown in Table 1.

Mean values for the functions f2, f3, f4 for all mutation

parameters tested are comparatively low as compared with

function f1. Thus, it is clear that effect of mutation alone based

GA is deleterious for complex functions. Thus mutation based

GA fails for difficult problems.

In furtherance of our experiments, in this section we discuss

the effect of mutation alone based GA with varying population

sizes on robustness of GA:

 When mutation alone with selection is applied with varying

population sizes, it is observed from Figures 1 and 2 that

performance is poorer for small population sizes. As shown in

Table 1, as the population size increases the mean value also

increases. In case of small population size, the graph is noisy.

This is due to the fact that probability of getting an optimal

solution in the next generation is small. A small population has a

low probability of taking step in right direction. When an

incorrect step is taken, it requires several generations to come

back to the optimal point, thus causing the GA to spend a large

number of function evaluations (S) or generations (T) in

searches before returning to optimal point as shown in Figures 1

and 2. Whereas with large population sizes diversity in the

initial population is expected to be large and the best solution is

expected to be close to optimal point. The dispersion value for

small population sizes (P=20) is large considered with other

population sizes as shown in Table 4. This is due to the fact that

high mutation rate (M=0.2) combined with low population sizes

disrupt the schemata in every generation more frequently.

Fig. 1. Maximum performance (f1) measure versus

generations with different population sizes for mutation

alone based GA.

 There is a considerable increase in mean values of each

function as the population size increases as shown in Table 2.

Thus there exists a minimum population size, below which GA

will have difficulty in reaching optimal point. The observation

leads us to conclude that mutation based GA perform somewhat

poorly for small population size and moderately for large

population.

Fig. 2. Maximum performance (f3) measure versus

generations with different population sizes for mutation

alone based GA.

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.6, October 2011

 23

Table 1. Mean function values for different mutation / crossover probability settings

Function

Only Mutation Only Crossover Mutation with Crossover

M=

0.01

M=

0.05

M=

0.09

M=

0.2

C=

0.25

C=

0.5

C=

0.75

C=

0.95

C=0.9,

M=0.01

C=0.9,

M=0.1

C=0.1,

M=0.01

C=0.1,

M=0.1

f1 0.974 0.972 0.985 0.983 0.984 0.98 0.997 0.991 0.997 0.994 0.988 0.986

f2 2686 2608 2772 2779 3167 3283 3461 3561 3474 3400 3002 2728

f3 0.205 0.256 0.279 0.292 0.926 0.978 0.979 0.671 0.991 0.962 0.744 0.368

f4 0.217 0.249 0.285 0.306 0.924 0.968 0.988 0.996 0.995 0.952 0.881 0.477

TABLE 2. Mean function values for varying population sizes

Function

Only Mutation

M= 0.2

Only Crossover

C=0.75

Mutation with Crossover

M=0.01, C=0.75

P=20 P=50 P=70 P=100 P=20 P=50 P=70 P=100 P=20 P=50 P=70 P=100

f1 0.95 0.985 0.986 0.997 0.842 0.907 0.938 0.949 0.9 0.932 0.988 0.973

f2 2587 2689 2765 2794 2398 2941 3368 3393 2393 2740 2484 2539

f3 0.1766 0.29 0.34 0.391 0.752 0.903 0.798 0.826 0.758 0.967 0.889 0.952

f4 0.166 0.164 0.201 0.247 0.728 0.894 0.809 0.83 0.764 0.956 0.893 0.947

TABLE 3. Standard deviation of function values for different mutation / crossover probability settings

Function

Only Mutation Only Crossover Mutation with Crossover

M=

0.01

M=

0.05

M=

0.09

M=

0.2

C=

0.25

C=

0.5

C=

0.75

C=

0.95

C=0.9,

M=0.01

C=0.9,

M=0.1

C=0.1,

M=0.01

C=0.1,

M=0.1

f1 0.02 0.032 0.014 0.016 0.012 0.019 0.006 0.003 0.004 0.005 0.0075 0.0138

f2 294.8 509.4 441.1 453.9 373.2 49.37 3.79 29.93 143.48 143.96 335.04 401.31

f3 0.285 0.161 0.197 0.209 0.008 0.01 0.05 0.0001 0.0103 0.059 0.352 0.3614

f4 0.267 0.127 0.172 0.193 0.007 0.013 0.067 0.00002 0.0101 0.019 0.332 0.3458

TABLE 4. Standard deviation of function values for varying population sizes

Function

Only Mutation

M= 0.2

Only Crossover

C=0.75

Mutation with Crossover

M=0.01, C=0.75

P=20 P=50 P=70 P=100 P=20 P=50 P=70 P=100 P=20 P=50 P=70 P=100

f1

0.04

7

0.01

4

0.01

1 0.005

0.01

4

0.01

6

0.00

2 0.0049 0.057

0.047

8 0.053

0.091

8

f2

510.

4

473.

9

415.

5 396.8

234.

8

329.

6

390.

7 500.35

220.8

3

239.5

8

285.5

4

258.7

4

f3

0.19

8

0.20

5

0.19

0 0.189

0.09

7

0.16

4 0.16 0.183

0.078

6 0.059

0.058

7

0.051

1

f4

0.18

8

0.20

0

0.19

5 0.199

0.09

8

0.17

2

0.16

1 0.184 0.077 0.058 0.059 0.052

(In Tables 1 to 4: M = Mutation Probability, C = Crossover Probability, P = Population Size)

B. Crossover Alone

In GA literature crossover is considered to be a powerful

operator. Role of crossover is of constructive i.e. of preserving

in nature. Crossover constructs higher order hyper planes from

lower order hyper planes that have higher observed average

fitness. Crossover is used where qualities of construction and

survival are required for good performance. The results obtained

are discussed below:

 Mean function values for C = 0.75 is high compared to

other crossover probabilities for all function as shown in Table I.

Mean values obtained are higher for all crossover probabilities

when compared with mutation based GA as shown in Table 1.

 It is seen that as generations progress, the function value

becomes stagnant. This is due to the fact that crossover loses its

power as the population loses its diversity (i.e. number of

common alleles increases) and it limits the types of exploration

that crossover can perform. Standard deviation readings for

crossover in Table 3 shows us that there is a significant decrease

in standard deviation for all crossover probabilities when

compared with mutation alone based GA.

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.6, October 2011

 24

Crossover Probability 0.75 for varying population

0

0.2

0.4

0.6

0.8

1

1.2

1 15 29 43 57 71 85 99 113 127 141 155 169 183 197 211 225 239

Generations

Av
er

ag
e

Pe
rfo

rm
an

ce
 f1

P-20

P-50

P-70

P-100

In furtherance of our experiments, in this section we discuss

the effect of crossover alone based GA with varying population

sizes on the robustness of GA:

 From Figures 3 and 4 it is seen that for population less

than N = 50, the function value degrades and the optimal

solution is not reached. This is due to the fact that the population

loses its diversity at an early stage due to which the function

value stagnates as there is no mechanism to add diversity in the

population. Performance of GA improves as population size

increases. This is due to the fact that diversity in the population

also increases, increasing the power of the crossover operator.

Mean function values increase as population size is increased as

shown in Table 2.

Fig. 3. Average performance (f1) measure versus

generations with different population sizes for mutation

alone based GA.

Fig. 4. Average performance (f3) measure versus

generations with different population sizes for mutation

alone based GA.

 For large population sizes, the initial population will have a

larger probability of having more individuals in the population

having fitness close to optimal. The task of selection operator is

to select such good solutions, in the middle of noise, from the

initial population. Thus as these good solutions are selected

repeatedly, the population loses diversity after each generation

and performance stagnates. This is shown by the observation

that mean values progressively decreases and standard deviation

increases for large population sizes as shown in Table 3 and

Table 4.

C. Crossover and Mutation Combined

It has been discussed earlier that role of mutation is to increase

diversity in the population thus preventing the solutions getting

trapped in local optima. Role of crossover is to construct and

preserve good building blocks. Crossover guarantees

preservation of alleles, while mutation guarantees diversity. We

have performed experiments with different parameters with

these two operators, since they are complimentary in nature.

Based on our results we have found similarity in the

performance of all the four functions described in Section 3. The

following are the observations:

 Mean function values for all combinations of crossover and

mutation probabilities are high when compared with crossover

and mutation alone based GAs for all functions as shown in

Table I.

 There is a significant increase in the mean value for C = 0.9

and M = 0.01 as shown in Table 1. Is also seen from the results

obtained that as mutation rate is increased to a value of M = 0.1,

the function value starts to resemble a random noisy search, and

that the mean value decreases considerably. This is due to the

fact that mutation destroys already found good solutions or

building blocks in the population.

 Dispersion value for crossover probability C = 0.1 and

mutation probability M = 0.1 for all the function is highest as

shown in Table 3, which tells us that the data series is noisy in

nature due high mutation probability and low crossover

probability.

In furtherance of our experiments, in this section we discuss

the effect of crossover with mutation based GA under varying

population sizes on the robustness of GA:

 For varying population sizes keeping number of function

evaluations (S) constant, results have shown that there is an

„optimum‟ population size below and above which average

performance degrades as shown in Figure 5 and 6. This is

because, for small population sizes there is less diversity in the

population and since mutation rate is small (0.01), there will be

very little diversity added to the population in each generation.

Hence GA performance degrades. In case of large population

sizes, the performance does not reach optimal mark due to the

limitation in number of generation (T) and as the number of

function evaluations (S) is held constant, it stops near the

optimal point without actually reaching optimality. For all

population sizes, the performance is much better compared to

crossover alone and mutation alone based GAs.

 Mean values for all the functions are highest for population

size 50 as shown in Table 2. Standard deviation for all functions

increase as the population sizes increase, in keeping with

increase in population diversity.

Fig. 5 Average performance (f1) measure versus generations

with different population sizes for crossover & mutation

alone based GA.

Fig. 6 Average performance (f3) measure versus generations

with different population sizes for crossover & mutation

alone based GA.

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.6, October 2011

 25

5. CONCLUSIONS
In this paper we have studied the effect of changes in GA

parameters from a view of varying population sizes keeping

number of function evaluation constant. Our aim is not to find

the best population size for a particular problem, but to come up

with general conclusions. We have applied GA for four different

functions (one-variable uni-modal function, two-variable

function from De Jong test function bed, two-variable uni-modal

function and a two-variable four peaked function). We can

derive the following conclusions from our study:

 Results have shown that for simple problems mutation

based approaches perform better. As complexity of problem

increases, possibility of mutation alone based GAs to achieve

global optima decrease. Mutation based GA fail miserably for

complex problems.

 Results obtained by mutation based GA are poor for both

small and medium population sizes.

 Crossover based GAs perform better than mutation based

GAs for all the functions we had tested. But they have a

tendency to get stuck at local optimum.

 For simpler problems mutation based GAs requires larger

population size as compared to crossover based GAs to achieve

the same level of optimality.

 In order to achieve good performance when the total

number of function evaluations is held constant, correct

population sizing is important.

 In general, a high crossover rate combined with low

mutation rate with a correct population size is a reliable

approach.

6. FUTURE WORK
We have been able to demonstrate empirically, the role of some

parameters in the process of natural selection and randomized,

structural recombination in artificial genetic search. In our zeal

to keep things simple we have however, neglected several others

interesting natural operators. Our research work is limited in that

sense. There are many knowledge-augmenting natural genetic

operators, that can be implemented and tested. For example, it is

seen that in nature genetic constitution does not easily forget the

lessons learned in previous environmental shifts. The redundant

memory of diploidy permits multiple solutions to be carried

along, with only one particular solution being expressed. In this

way old lessons are remembered and tested occasionally.

Analysis and implementation of various advanced genetic

operators like diploidy-dominance, inversion, intra

chromosomal duplication and deletion can be implemented for

further improvement of GA. We strongly feel that more energy

is needed to be spent in finding correct implementation of these

operators. So that they limit the intensive use of computational

recourses made by GA and reduces time to reach optimal

solutions.

7. REFERENCES
[1] D. E. Goldberg, K. Deb, “A comparative analysis of

selection schemes used in genetic algorithm,” In: Rawlins,

Gregory J.E. (Ed.), Foundations of Genetic Algorithms.

Morgan Kaufmann Publishers, Inc., pp. 69–93, 1991.

[2] R. G. Harik, F. G. Lobo, “A parameter-less genetic

algorithm,” IEEE transactions on evolutionary

computation. 1999. [Online]. Available:

http://w3.ualg.pt/~flobo/papers/plga-gecco99.pdf

[3] O. Boyabalti, I. Sabuncuoglu, “Parameter selection in

genetic algorithms” System, Cybernatics & Informatics.

Volume 2-Number 4, pp. 78-83, 2007. [Online]. Available:

http://www.iiisci.org/journal/CV$/sci/pdfs/P409090.pdf

[4] V. A. Cicirello, S. F. Smith, “Modelling GA Performance

for Control Parameter Optimization,” Proceedings of

Genetic & Evolutionary Computing Conference. GEECO-

2000. [Online]. Available:

http://.ri.cmu.edu/publication_view.html?pub_id=3329

[5] Y. J. Cao, Q. H. Wu, “Optimization of control parameters

in genetic algorithms: a stochastic approach,” International

journal of systems science, volume 30, number 2, pp. 551-

559, 1999. [Online]. Available:

http://www.informaworld.com/smpp/content~db=all~conte

nt=a713866076~frm=abslink

[6] A. E. Eiben, Z. Michalewich, M. Schoenaur, J. E. Smith,

“Parameter control in evolutionary algorithms,”

Proceedings of Genetic & Evolutionary Computing

Conference, 1999.

[7] N. Radcliffe, “Forma analysis and random respectful

recombination,” Proceedings of 4th International

conference on genetic algorithms, 1999.

[8] H. Kargupta, K. Deb, D. E. Goldberg, “Ordering genetic

algorithms and deception,” Parallel problem solving from

nature 2. pp. 47-53, 1992. [Online]. Available:

http://www.illigal.uiuc.edu/pub/papers/Publication

[9] J. C. Culberson, “Mutation-Crossover Isomorphism‟s and

the construction of discriminating functions,” Evolutionary

Computation 2(3). 279-311, 1994.

[10] D. E. Goldberg. Genetic algorithm in search, optimization

& machine learning. New York: Addison Wisley, 1989.

[11] W. M. Spears, K. A. De Jong, “On the virtues of uniform

crossover,” Proceedings of the Fourth International

Conference on Genetic Algorithms, 230-236. La Jolla, CA:

Morgan Kaufmann, 1991.

[12] W. M. Spears, K. A. De Jong, “An analysis of multi-point

crossover,” Proceedings of the Fourth International

Conference on Genetic Algorithms, 230-236. La Jolla, CA:

Morgan Kaufmann, 1993.

[13] D. E. Goldberg, "Sizing populations for serial and parallel

genetic algorithms,” In: Schaffer, J.D. (Ed), Proceedings of

the Third International Conference on Genetic Algorithms.

Morgan Kaufmann, Los Altos, CA, pp. 70–79, 1989.

[14] H. Kargupta, K. Deb, D. E. Goldberg, “Ordering genetic

algorithms and deception,” Parallel problem solving from

nature 2. pp. 47-53, 1999.

[15] S. Rana, “The distributional baises of crossover operators,”

Proceedings of Genetic & Evolutionary Computing

Conference, 1999.

[16] K. A. De Jong, , W. M. Spears, “An analysis of the

interacting roles of population size and crossover in genetic

algorithms,” Proceedings of the International Conference

on parallel problem solving from nature. Springer. pp. 38-

47, 1990.

[17] W. M. Spears, “Adapting crossover in evolutionary

algorithms,” Proceedings of the Fourth International

Conference on Evolutionary programming, 1995. [Online].

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.6, October 2011

 26

Available:

http://www.cs.uwyo.edu/~wspears/papers/ep95.pdf

[18] W. M. Spears, “Adapting crossover in a genetic algorithm,”

Artificial intelligence center internal report # AIC-94-019,

1995. [Online]. Available:

http://www.cs.uwyo.edu/~wspears/papers/adapt.cross

[19] H. Muhlenbein, “How genetic algorithms really work I.

Mutation and Hillclimbing,” Foundation of genetic

algorithms II pp. 15-25, 1992. [Online]. Available:

http://muehlenbein.org/mut92.pdf

[20] D. M. Tate, A. E. Smith, “Expected allele coverage and

role of mutation in genetic algorithms,” Proceedings of the

5th International Conference on Genetic Algorithms, pp.

31- 37, 1993.

[21] M. Srinivas, L. M. Patnaik, “Adaptive probabilities of

crossover and mutation in genetic algorithms,” IEEE

transactions on Systems, Man & Cybernatics, Vol. 24, No.

4, 1994. [Online]. Available:

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=28638

5&tag=1

[22] R. Hinterding, H. Gielewski, T. C. .Peachey, “The nature

of Mutation in Genetic Algorithms,” Proceedings of the 5th

International Conference on Genetic Algorithms, 1995.

[23] M. D. Vose, “A closer look at mutation in genetic

algorithms,” Annals of Mathematics and Artificial

Intelligence, Vol. 10, No. 4, pp 423-434, 1994.

[24] H. E. Aguirre, K. Tanaka, “Parallel varying mutation

genetic algorithms,” IEEE transactions, 2002.

[25] K. Deb. Optimization for Engineering Design. Algorithms

and Examples. Prentice Hall of India. New Delhi, 2000.

[26] V. Kapoor, S. Dey, A. P. Khurana, “Empirical analysis and

random respectful recombination of crossover and mutation

in genetic algorithms,” International Journal of Computer

Applications. Special issue on Evolutionary Computation

for Optimization. ECOT, 2010. pp. 5-30, 2010. [Online].

Avaliable:

http://www.ijcaonline.org/specialissues/ecot/number1/1530

-133

