
International Journal of Computer Applications (0975 – 8887)

Volume 31– No.6, October 2011

6

Enhancement in LLF Real-Time dynamic Scheduling

Algorithm using conventional RM algorithm

Prem Sindhi
M. Tech Computer Science

SSSIST, Sehore

Ravindra K. Gupta

Assistant Professor
Computer Science Department

SSSIST, Sehore

ABSTRACT

To achieve timing requirements in real-time systems

scheduling is very crucial. Essentiality of any Real-time

system task is decided on the basis of deadline, slack time,

or period of its occurrence. Earliest deadline first (EDF),

least-laxity-first (LLF) also known as smallest slack time

first, and rate-monotonic (RM) are well known algorithms

based on deadline, slack time and period respectively.

Among this EDF and LLF are dynamic scheduling

algorithms as priorities of jobs of periodic task changes

dynamically on the basis of deadline and slack time

respectively while RM is a static scheduling algorithm as

priority of jobs of periodic task is static on the bases of

period.

All these algorithms performance differs in overloaded and

under loaded condition. Dynamic scheduling algorithms

perform optimum in under loaded condition but as system

become slightly overloaded their performance deteriorate

very badly. Whereas static scheduling algorithms do not

perform optimally in under loaded condition but performs

fairly well in over loaded condition compared to dynamic

scheduling algorithm. None of dynamic or static algorithm

is best for both under-loaded as well as overloaded

condition.

Our aim is to combine the advantageous features of both

dynamic and static real-time scheduling algorithms

together. That is performance of dynamic algorithm in

under-loaded condition and performance of static

algorithm in over-loaded condition. In this paper we

enhanced the LLF dynamic real-time scheduling algorithm

with RM static real-time scheduling algorithm. In under-

loaded condition scheduler schedules jobs according to

LLF whereas in overloaded condition it schedules

according to RM.

General Terms
Dynamic scheduling of Real time systems, Performance

enhancement of scheduling algorithm in both underloaded

and overloaded condition of the scheduler.

Keywords

EDF, LLF, RM, Scheduling Algorithms, Real-Time

operating Systems.

1. INTRODUCTION
Real-time system is required to complete its work and

deliver its services on the basis of time. The results of real-

time systems are judged based on the time at which the

results are produced in addition to the logical results of

computations[3]. Therefore, real-time systems have well

defined, fixed time constraints i.e. processing must be done

within the defined constraints otherwise the system will

fail. Real-time systems can be categorized in two basic

types: Hard and Soft. In hard real-time systems, all jobs

must complete execution prior to their deadline - a missed

deadline constitutes a system failure. Such systems are

used where the consequences of missing a deadline may be

serious or even disastrous. A soft real-time system is less

restrictive. Jobs may continue execution beyond their

deadlines at some penalty - deadlines are considered as

guidelines, and the system tries to minimize the penalties

associated with missing them. Such systems are used when

the consequences of missing deadlines are smaller than the

cost of meeting them in all possible circumstances. Cell

phones and multimedia applications would both use soft

real-time systems. [2]

1.1 Real-Time Scheduler

Real-time scheduler schedules jobs of various periodic

tasks. Every periodic task delivers jobs at particular period.

Real-time scheduling techniques can be categorized in two

basic types: Static and Dynamic. Static algorithm assigns

all priorities at design time, and it remains constant for the

lifetime of a task. Dynamic algorithm assigns priority at

runtime, based on execution parameters of tasks. Dynamic

scheduling can be either with static priority or dynamic

priority. RM (Rate Monotonic) and DM (Deadline

Monotonic) are examples of dynamic scheduling with

static priority [1]. EDF (Earliest Deadline First) and LLF

(Least Laxity First) are examples of dynamic scheduling

with dynamic priority. Dynamic priority algorithms can be

divided into two categories depending on whether

individual jobs can change priority while they are active. –

In job-level fixed-priority algorithms, jobs cannot change

priorities. EDF is a job-level fixed-priority algorithm. – On

the other hand, in job-level dynamic-priority algorithms,

jobs may change priority during execution. For example,

the Least Laxity First (LLF) algorithm [1] is a job-level

dynamic-priority algorithm. At time t, the laxity of a job is

(d - t - f), where d is the jobs deadline and f is its

remaining execution requirement. Here, the laxity is the

maximum amount of time a job may be forced to wait if it

were to execute on a processor and still meet its deadline.

The LLF algorithm assigns higher priority to jobs with

smaller laxity. Since the laxity of a job can change over

time, the job priorities can change dynamically.

2. THE SCHEDULING ALGORITHMS

2.1 The LLF Scheduling Algorithm
In single processor systems, the least laxity algorithm is

another optimal algorithm. At any scheduling decision

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.6, October 2011

7

instant the task with the shortest laxity l, i.e., the difference

between the deadline interval d and the computation time c

is assigned the highest dynamic priority.

d − c = l

The Least-Laxity (LL) algorithm is a dynamic preemptive

scheduling algorithm based on dynamic task priorities. The

task with the shortest laxity is assigned the highest

dynamic priority [8].LLF algorithm compares the Slack

time of all jobs ready to run and declare the most important

job having the smallest Slack time.

 Let c i denote the remaining computation time of a task

at time i .At the arrival time of a task, c i is the

computation time of this task. Let d i denote the deadline

of a task relative to the current time i. Then the laxity (or

slack) of a task at time i is d i − c i . Thus the laxity of a

task is the maximum time the task can delay execution

without missing its deadline in the future. The LL

scheduler executes at every instant the ready task with the

smallest laxity. If more than one task has the same laxity,

LL randomly selects one for execution next [9].

2.2 The RM Scheduling Algorithm
The rate monotonic algorithm is a dynamic preemptive

algorithm based on static task priorities [8].

RM is a fixed-(static-) priority scheduler using the task’s

(fixed) period as the task’s priority. RM executes at any

time instant the instance of the ready task with the shortest

period first. If two or more tasks have the same period,

then RM randomly selects one for execution next [9].

Scheduling under the two algorithms referred are shown

in Figure 1 for the first few jobs of a task system with two

tasks T1 (1, 3, 5) and T2 (0, 4, 10). The two algorithms

differ in the complexity of their priority schemes and their

ability to meet the timing constraints and form the basis of

a priority-based classification of scheduling algorithms [7].

2.3 The LLF_RM Scheduling Algorithm
As LLF perform optimum in under-loaded condition but

not in over-loaded condition we tried to take an advantage

of RM algorithm in overloaded condition by enhancing

LLF algorithm by RM algorithm. Using this LLF_RM

algorithm scheduler switches between LLF and RM

according to load. As long as system is under-loaded it

follows LLF and as system become slightly overloaded it

switches to RM.

Figure 1: Scheduling Using (a) LLF (b) RM for a single

processor system with two tasks T1(3,5) and T2(4,10)

3 SYSTEM AND TASK MODEL
The system knows about the deadline and required

computation time of the task when the task is released. The

task set is assumed to be preemptive.

We call each unit of work that is scheduled and

executed by the system as a job and a set of related jobs,

which jointly provide some system function, is a task [1].

All the tasks are assumed to be periodic.

It has been assumed that the system is not having

resource contention problem. Moreover, preemption and

the scheduling algorithm incur no overhead. The system

knows about the deadline and required computation time

of the task when the task is released. The task set is

assumed to be preemptive. It has been assumed that the

systems are having soft timing constraints i.e. soft real-

time systems. In soft real-time systems, each task has a

positive value. If a task succeeds, then the system acquires

its value. If a task fails, then the system gains less value

from the task [5].

4. SIMULATION METHOD
We have implemented our algorithms in the same

environment and have run simulations to accumulate

empirical data. The results of the proposed algorithms are

compared with each other in the same environment. LLF is

dynamic while RM is a static algorithm. Periodic tasks

have been considered for taking the results. For periodic

tasks, load of the system can be defined as summation of

ratio of executable time and period of each task. We have

generated 50 task sets for 16 load values from 0.5 to 3.0.

Each task set is having 5 periodic tasks. Each task set is

simulated for 500 clock cycles.

The system is said to be overloaded when the tasks

offered to the scheduler cannot be feasibly scheduled even

by a clairvoyant scheduler A reasonable way to measure

the performance of a scheduling algorithm during an

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.6, October 2011

8

overload is by the amount of work the scheduler can

feasibly schedule according to the algorithm. Therefore,

Success Ratio (SR) and Effective Processor Utilization

(EPU) are considered as our main performance measuring

criteria and defined as:

1. In real-time systems, deadline meeting is the most

important. Therefore, the most appropriate performance

metric is the Success Ratio and defined as [6],

𝑆𝑅 =
Number of jobs successfully scheduled

Total number of jobs arrived

2. Effective Processor Utilization (EPU) gives information

about how efficiently the processor is used and it is

defined as [4],

EPU =
Vi

T
iϵR

Where,

 V is value of a job and,

o Value of a job = Execution time of a job, if the

job completes within its deadline.

o Value of a job = 0, if the job fails to meet the

deadline.

 R is set of all the jobs which are executed by the CPU.

 T is total time of scheduling.

The results are measured and compared in terms of SR and

EPU.

5. FINAL RESULTS
We have taken results for LLF, RM and LLF_RM

algorithms for different load conditions. Load of task sets

ranges from 0.5 (under loaded) to 3.0 (overloaded). Table

1 shows results in terms of SR and EPU for every

algorithm in different load conditions.

Table 1 Load Vs Success Ratio and Load Vs Effective

Processor Utilization for LLF, RM and LLF_RM

Loa

d

SR (%) EPU (%)

LLF RM
LLF_

RM
LLF RM

LLF

_RM

0.50 100 100 100 51.98 51.98 51.98

0.60 100 100 100 61.34 61.60 61.34

0.70 100 100 100 70.73 71.15 70.73

0.75 100 100 100 75.93 76.19 75.93

0.80 100 100 100 80.89 81.08 80.89

0.85 100 100 100 85.38 85.60 85.38

0.90 100 99.36 100 90.62 90.40 90.62

0.95 100 98.16 100 95.38 92.89 95.38

1.00 100 89.42 100 99.99 89.05 99.99

1.01 97.48 86.89 97.04 97.55 78.02 95.96

1.02 83.17 86.23 91.24 81.84 74.64 83.78

1.03 66.09 87.35 89.39 66.84 78.52 84.24

1.04 44.24 86.47 87.72 44.37 77.72 81.14

1.50 2.18 79.86 77.82 2.75 72.67 63.89

2.00 0.67 81.13 74.59 0.62 74.87 60.05

3.00 0.13 78.78 73.94 0.06 71.39 57.75

Figure 2 shows comparison of the results of Success

Ratio (SR) for LLF, RM and LLF_RM algorithms. The

results are taken from under loaded condition (load

value=0.50) to overloaded condition (load value=3.00).

Results show that LLF is optimal algorithm over single

processor system, when system is under loaded, but

performance start to degrade exponentially as system goes

towards overloaded condition. RM algorithm performance

starts to degrade when load increase from 0.85. while

enhanced algorithm performs optimal in under-loaded

conditions and also performs well in overloaded

conditions.

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.6, October 2011

9

Figure 2 Load Vs Success Ratio for LLF, RM and LLF_RM

Figure 3 Load Vs Effective Processor Utilization for LLF, RM and LLF_RM

Figure 3 shows comparison of the results of Effective

Processor Utilization (EPU) for LLF, RM and LLF_RM

algorithms.

6. CONCLUSION
The algorithms discussed in this paper are dynamic

scheduling algorithms with dynamic and static priority

for real-time single processor systems. LLF and

LLF_RM are dynamic scheduling algorithms with

dynamic priority, while RM is dynamic scheduling

algorithm with static priority.

We can conclude following from the results gained

during simulation

 In under loaded condition

o LLF shows an optimal performance

o Performance of RM starts to degrade after load

0.85 slightly.

o LLF_RM shows an optimal performance

 In overloaded condition

o Performance of LLF starts to degrade

exponentially as system become slightly

overloaded.

o RM algorithm performs well.

o LLF_RM performs well compared to LLF.

7. REFERENCES
[1] Liu C. L., Layland L., Scheduling algorithms for

multiprogramming in a hard-realtime environment,

Journal of ACM, Vol 20(1), pp. 46-61, 1973.

[2] Ketan Kotecha, Apurva Shah, Adaptive Scheduling

Algorithm for real-time operating system, In

proceedings of IEEE Congress on Evolutionary

Computation (CEC 2008), HongKong, pp. 2109-

2112, June 2008.

[3] Ramamritham K., Stankovik J. A., Scheduling

Algorithms and Operating Support for Real-Time

Systems, Proc. of the IEEE, Vol 82(1), pp. 55-67,

1994.

0

20

40

60

80

100

120

0
.5

0

0
.6

0

0
.7

0

0
.7

5

0
.8

0

0
.8

5

0
.9

0

0
.9

5

1
.0

0

1
.0

1

1
.0

2

1
.0

3

1
.0

4

1
.5

0

2
.0

0

3
.0

0

Su
cc

u
ss

 R
at

io
 (

%
)

Load

LLF

RM

LLF_RM

0

20

40

60

80

100

120

0
.5

0

0
.6

0

0
.7

0

0
.7

5

0
.8

0

0
.8

5

0
.9

0

0
.9

5

1
.0

0

1
.0

1

1
.0

2

1
.0

3

1
.0

4

1
.5

0

2
.0

0

3
.0

0Ef
fe

ct
iv

e
 P

ro
ce

ss
o

r
U

ti
liz

at
io

n

(%
)

Load

LLF

RM

LLF_RM

International Journal of Computer Applications (0975 – 8887)

Volume 31– No.6, October 2011

10

[4] Apurva Shah, Ketan Kotecha, Dipti Shah, Dynamic

Scheduling for Real-Time Distributed System using

ACO, To Appear in International Journal of

Intelligent Computing and Cybernetics, (IJICC).

[5] Locke C. D., Best Effort Decision Making for Real-

Time Scheduling, Ph.D. Thesis, Computer Science

Department, Carnegie-Mellon University, USA,

1986.

[6] Ramamritham K., Stankovik J. A., Shiah P. F.,

Efficient Scheduling Algorithms for Real-Time

Multiprocessor Systems, IEEE Transaction on

Parallel and Distributed Systems, Vol 1(2), pp. 184-

194, 1990.

[7] Carpenter J., Funk S. H., Holman P., Srinivasan A.,

Anderson J., Baruah S., A categorization of real-

time multiprocessor scheduling problems and

algorithms, In Joseph Y.T Leung, editor, Handbook

of Scheduling: Algorithms, Models, and

Performance Analysis, CRC Press LLC, 2003.

[8] Hermann Kopetz. Real-Time Systems Design

Principles for Distributed Embedded Applications

Second Edition

[9] ALBERT M. K., REAL-TIME SYSTEMS

Scheduling, Analysis, and Verification, CHENG,

University of Houston

