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ABSTRACT 
Lot sizing and scheduling in flow shop has been considered in 

this paper. Our study includes a multi-level and multi-period 

capacitated lot sizing and scheduling problem (CLSP) with 

sequence-dependent setups, setups carry over in flow shop. In 

manufacturing environments backlogging is unavoidable. If the 

production capacity is infinite, any demand can be satisfied on 

time. But in the real world, production capacity is not infinite so 

some demand may not be satisfied on time. In this condition 

backlogging arises naturally. CLSP problems with considering 

backlogging has been studied fewer by researchers. Also, the 

sequence-dependent setups and setups carry over are two 

important events that occur occasionally in factories. In this 

study an exact mixed integer problem (MIP) in a flow shop 

CLSP problem with considering sequence-dependent setups, 

setups carry over and backlogging has been formulated. Our 

formulation is presented to optimize objective function 

(including, inventory costs, product costs and setup cost). Since 

the CLSP problems are extremely NP-hard a lower bound is 

developed and compared against the optimal solution. 

General Terms 
Lot sizing and Scheduling. 

Keywords 
Flow shop, sequence-dependent setups, backlogging, lot sizing 

and scheduling. 

1. INTRODUCTION 
Scheduling and lot sizing is applicable in diverse area, especially 

in manufacturing sector. Smooth and cost-efficient running of a 

factory often depends on its manager’s ability to select 

appropriate lot sizes and production schedules[1]. 

Since the hypothesis of improving performance through 

investments in new equipment and tools for quicker set-up times 

was rejected by the company, the solution was unavoidably 

oriented towards developing a very effective production 

planning model that also guarantees computational times 

consistent with rapid re-planning [2]. After proposing Economic 

Order Quantity (EOQ), Lot sizing problems have been studied 

widely. Since then other works have been developed in order to 

relax the restrictive assumption of the EOQ model. the 

Economic Lot Scheduling Problem (ELSP) takes into account 

capacity constraints.  

More recent works have studied combination of lot sizing and 

scheduling simultaneously. In the literatures has been seen so 

many article about scheduling and lot sizing. Models of lot 

sizing and scheduling are divided in the literature into small 

bucket and big bucket problems[3].  

Small bucket problems break the planning horizon in small time 

periods which limits the number of products manufactured in a 

single period. Small bucket problems are divided in the literature 

into discrete lot sizing and scheduling problem (DLSP) and 

proportional lot sizing and scheduling problem (PLSP). In DLSP 

at most one product can be manufactured in a single period, but 

PLSP allows up to two products [4].  

Also, one of the most difficult lots sizing problem is the 

capacitated lot-sizing and scheduling problem (CLSP) with 

sequence-dependent setup costs and non-zero setup times. The 

CLSP is encountered when one or more machines (or production 

facilities) are used to meet forecasted demand for multiple 

products over multiple periods. Factory managers must decide 

which products to make in which periods, and the exact 

production sequence and production quantities, in order to 

minimize the sum of setup and inventory holding costs. What 

makes this problem particularly difficult to solve in many 

applications is the fact that capacity is tight, setup costs are large 

and sequence-dependent, and setup times are non-zero [5]. 

Florian et al. [5] have proved that the single-item CLSP is NP-

hard. Later, Bitran and Yanasse[6] showed that even special 

cases which are solvable in polynomial time become NP-hard 

through the introduction of a second item. Trigeiro et al. [7] 

pointed out that for the CLSP with setup times the question 

whether a feasible schedule exists is already NP-complete. 

Trigeiro et al. [7] referred to bin packing as a special case of the 

CLSP with setup times. For the proof of NP-completeness see 

Garey and Johnson [8]. As the MLCLSP and the MLCLSPL can 

be reduced to the CLSP with setup times by setting some 

parameters to 0, they are at least as hard to solve and hence also 

NP-hard. 

Traditional CLSP models did not consider the backlogging. 

Those suppose that each demand must be delivered on time at 

the end of each period. In this study this restrictive constraint to 

be relaxed. In the real world we cannot be sure that every 

demand of a product could be produce on time because of 

unpredictability of manufacturing environments. For example, if 

the production rate of the machine is infinite, any demand can be 

satisfied on time. But if the production rate of the machine is 

finite, some demand may not be satisfied on time [9], and then 

backlogging would be occurred. 

Perishable goods are an important part of inventories and 

perishability and backlogging can be considered to be 
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complementary phenomena. When a good is highly perishable, 

the demand may need to be backlogged to contain costs due to 

deterioration. This way, the losses due to deterioration can be 

avoided and the good can be procured in an economic manner 

[10]. 

While only few lot-sizing approaches consider the possibility of 

back-ordering, it is of great importance in practical settings: If 

capacity is limited, some products may have to be back-ordered. 

However, it is no satisfactory result to understand that some 

demand volume cannot be produced on time. In fact, the 

question is, which demand volumes should be back-ordered and 

which should not? [11]. 

Despite its importance in practical settings, only few researchers 

have addressed capacitated lot-sizing problems with back-

ordering. Examples include the articles byDaniel Quadt, 

Heinrich Kuhn [11],Pochet and Wolsey [12], Millar and Yang 

[13], Karimi et al. [15], and. In some cases demand cannot be 

backlogged, but will be totally or partially lost. This situation is 

considered by Absi and Kedad-Sidhoum[16]. 

Further complication is the fact that a product can be set up at 

the end of one time period and the actual production start in the 

next time period. We call this property setup carry over[17]. In a 

manufacturing environment, there are instances where 

developing a feasible schedule is only possible when setup states 

are carried over from one period to another. Setup carry over is 

the continuation of a production run from one period to the next 

with- out an additional setup. Setup carry over in big-bucket 

models is concerned with ‘‘partial sequencing” of items. The 

sequence of items scheduled between the first and last does not 

affect the total required setup time unless the items are sequence 

dependent, where setups can be done in any order. The 

complexity of modeling setup carry over in CLSP problems is 

why it has not received much attention in the literature [18]. 

Diwakar Gupta and Thorkell Magnusson[1], have presented the 

single machine capacitated lot-sizing and scheduling problem 

(CLSP) with sequence-dependent setup costs and non-zero setup 

times, with the additional feature that setups may be carried over 

from one period to the next, and that setups are preserved over 

idle periods. They provided an exact formulation of this problem 

as a mixed-integer program. 

Florian Sahlinga, , LisbethBuschkühlb, Horst Tempelmeierb and 

Stefan Helber[19] presented a new algorithm for the dynamic 

multi-level capacitated lot sizing problem with setup carry-overs 

(MLCLSP-L). The MLCLSP-L is a big-bucket model that 

allows the production of any number of products within a 

period, but it incorporates partial sequencing of the production 

orders in the sense that the first and the last products produced in 

a period are determined by the model. 

Ik-Soo Shim, Hyeok-Chol Kim, Hyoung-Ho Doha and Dong-Ho 

Lee [20]considerd a single machine capacitated lot-sizing and 

scheduling problem. They considered sequence-dependent setup 

costs that depend on the type of the lot just completed and on the 

lot to be processed. The setup state preservation, i.e., the setup 

state at the end of a period is carried over to the next period, is 

also considered.  

In practice various methods can be used to solve the problem of 

simultaneous lot sizing and scheduling. These differ with regard 

to their specific features. Among the characteristic features of 

the models for lot sizing and scheduling are the segmentation of 

the planning horizon, the time dependence of the model 

parameters, the information degree of the model parameters, the 

number of products and production stages, the production 

structure and the capacity restrictions. 

Because of NP-hardness these models, often lower bounds, 

heuristics and metaheuristics are proposed. Diwakar Gupta and 

Thorkell Magnussonhave developed a heuristic for solving large 

problem instances. This is coupled with a procedure for 

obtaining a lower bound on the optimal solution. They have 

carried out a computational study to test the accuracy of several 

different lower bounding linear relaxations and the approximate 

solution obtained by the heuristic. . In this paper we present an 

exact formulation with a lower bound. We relax constraints to 

develop a lower bound. 

The rest of the paper is organized as follows. Section 

“mathematical model” includes a definition of the problem and 

assumptions; an illustrative example is presented too. In the 

section “Developing of lower bound”, one lower bound is 

developed. Section “Numerical examples” reports the numerical 

examples for lower bound and compares its resultsagainst 

obtained results of the exact model. In the last section 

“Conclusions” is devoted to the concluding remarks and 

recommendations for future studies. 

2. MATHEMATICAL MODEL 
In this section we describe model and assumptions. As 

mentioned above, one of the most difficult lots sizing problem is 

the capacitated lot sizing and scheduling problem (CLSP) with 

sequence-dependent setup costs and non-zero setup times and 

these problems are practical in so many sector. For example, 

glass container and some chemical industries [17]. 

Only few researchers have addressed capacitated lot sizing 

problems with back-ordering Daniel Quadt, Heinrich Kuhn [11], 

also the complexity of the modeling setup carry over in CLSP 

problems result in the not much attention in the literatures [18]. 

So in this paper we consider a lot sizing and scheduling in flow 

shop with sequence-dependent setups, setups carry over and 

backlogging. 

Assumptions of model follow. 

• Several products are produced in a flow shop structure 

• Each machine can produce only one product at the 

same time. 

• Capacity of each machine is constrained. 

• Setups are sequence-dependent and when a setup 

occurs, setup cost and setup time is charged. 

• A setup of a machine must be complete in a period 

• There must be precisely N (number of products) setups 

in each period on each machine, even if a setup is just 

from a product to itself. Setups follow the so-called 

triangular inequalities, i.e. it is never faster to change 

over from one product to another by means of a third 

product: otherwise over N setups in a time period 

could be obtained. Since a setup time (and cost) from 

a product to itself is zero, note that the model does not 

force a machine to have exactly N positive-time (and 

cost) setups but rather up to N such setups. The 

remaining zero-time (cost) setups are modeling 

phantoms and do not exist in reality (Clark and Clark 
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2000, Clark 2003). This feature makes possible for a 

lot size, or production run, to continue over 

consecutive time periods without incurring real setup 

for later period (setup carry over). 

• The required resources and parts must be ready for 

production. 

• External demand exists for final product but it is 

possible that demand is not satisfied at the end of each 

period, and then backlogging could occur. 

• Backlogging is permitted. If backlogging occurs at a 

period it could be responded at other period (back 

order).  

• There is no lead time between the different production 

levels. 

• A component cannot be produced earlier in a period 

than the production of its required component is 

finished, this assumption remains true even if there is 

inventory of the required component. In other words, 

production on a production level can only start if all 

products from the previous production level are 

available; this is called vertical interaction 

• To guarantee the vertical interaction, idleness between 

each setup and its production is defined with the help 

of shadow product (Fandel and Stammen- Hegene 

2006). 

• There are no demand and no storage costs for shadow 

products. 

• At the beginning of the planning horizon each 

machine is setup for a defined product. 

For formulating our model we use indices and parameters that 

follow. 

Indices 

 �� ��� Production type. 

 �� ��� ��� Designation for a specific setup number. 

 � Level of production. 

 � Period. 

Parameters 

 	 Planning horizon. 

 
 Number of different products. � Number of production levels/number of 

machines. 

 ��
� A large real number. ���� Available capacity of machine m in period t 

(in time units). ���� External demand for product j at the end of 

period t (in units of quantity). 

�����  Storage costs unit rate for product j in level 

m. �����  Shortage costs unit rate for product j at the 

end of period t. ���� Capacity of machine m required to produce 

a unit of product (or shadow product) j (in 

time units per quantity units). ������ Production costs to produce one unit of 

product j on machine m in period t (in 

money unit per quantity unit). ������ Sequence-dependent setup time for the setup 

of the machine m from production of 

product i to production of product j (in time 

units); for � � �� ������ � � and � ��� ������ � �� 
������ Sequence-dependent setup cost for the setup 

of the machine m from production of 

product i to production of product j (in 

money units); for � � �������� � � and � � �������� � �� 
��� The starting setup configuration on machine 

m. 

  !"�#�$��%&'�&�(!# )������  Stock of product j at level m at the end of 

period t. )����  Shortage of product j at the end of period t. 

*�������+  Binary variable, which indicates whether the 

nth setup on machine m in period t is from 

product i to product j (*�������+ � ,) or not 

(*�������+ � �-. 
.�����+  Quantity of product j produced after nth 

setup on machine m in period t. 

/�����+  Shadow product: the gap (in quantity units) 

between nth setup (to product j) on machine 

m in period t and its related production in 

order to ensure that direct predecessor of 

this product (production of product j on 

machine m in period t) has been completed. 

In other words, idle time (in quantity units) 

before production of product j on machine m 

in period t in order to guarantee vertical  

interaction.

2.1 formulation 
  

���00000������ � *�������+1
�23

4
�23

5
�23

5
�23

5
+23 60000������� .�����+1

�23
4
�23

5
�23

5
+23 6000����� � )������1

�23
4
�23

5
�23 600����� � )����1

�23
5
�23 �������7,-�� 
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Subject to 

 

���� � )��4���3� 60.��4��+ 85
+23 )��4��� 8 )����3� 6 )���� ������� � ,�9 � 
������ � ,�9 � 	��������������������������������������������������������������������7:- 

 

 

)������3� 60.�����+5
+23 � )������ 60.����3��+5

+23 ��������� � ,�9 � 
����� � ,�9 �� 8 ,����� � ,�9 � 	�����������������������������������������7;- 
 

 

��
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�23��>�7?@A7+=B3- 8 ,C 6000*�������+5
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6 0 0�D���35
D23

+==�3
+23 � .D���3��+ ��������� � ,� � � � � 
�

�� � ,� � � � � 
������� � ,� � � � � 
����� � ,� � � � � � 8 ,����� � ,� � � � � 	�������������������������������������������������������������7F-� 
 

 

 

000*�������+5
�23

5
�23

+
+23 � ������ 600����5

�23
+
+23 � .�����+ 600����5

�23
+
+23 � /�����+ E �������������� � ,� � � � � �� � � ,� � � � � 	��������������������������7G- 

 

.�����+ E H��������I � 0 *�������+5
�23��>�7?@A7+B3- ����� � ,� � � � � 
� � � ,� � � � � 
� � � ,� � � � � ��
� � ,� � � � � 	�����������������������������������������������������������������������������������������������������������������������������������������������������7J- 

 

/�����+ E H��������I �0*�������+5
�23 ����� � ,� � � � � 
� � � ,� � � � � 
� � � ,� � � � � �� � � ,� � � � � 	���������������������������7K- 

 

*������33 � ���� � ��� � � � ,� � � � � 
� � � ,� � � � � ���������������������������������������������������������������������������������������������������7L- 
 

0*�MN�����335
�23 � ,����� � ,� � � � � ������������������������������������������������������������������������������������������������������������������������������������������������7O- 

 

0*�������+5
�23 � 0*��D����+�35

D23 ���� � ,� � � � � 
� � � ,� � � � � 
� � � ,� � � � � �� � � ,� � � � � 	��������������������������������7,�- 
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0*��������355
�23 � 0*��D����35

D23 ���� � ,� � � � � 
� � � ,� � � � � 
� � � ,� � � � � �� � � :� � � � � 	���������������������������7,,- 
 *�������+ � ��$'�,���������������������������������������������������������������������������������������������������������������������������������������������������������������������������7,:- 
 

)������ � )���� � .�����+ � /�����+ � �����������������������������������������������������������������������������������������������������������������������������������������������������������7,;- 
 

)������ � ������� � ,� � � � � 
����� � ,� � � � � ���������������������������������������������������������������������������������������������������������������������������������7,F-
In our model, Equation (1), objective function, minimizes sum 

of the sequence-dependent setup costs, the storage costs, the 

production costs and the shortage cost. Equation (2) represents 

the shortage or storage at the end of each period. Constrain (3) 

ensures total of in-flows to each node is equal to of out-flows 

from that node.  

Equation (4) guarantees within one period each typical product j 

one machine m is produced before its direct successor (product j 

on machine m+1).  

The left side of Equation (4) is equal to the time between the 

beginning of period t and the end of production of product j on 

machine m if ��th setup in machine m and period t is from every 

product i to product j (for �� P ,� � � �), else it is a negative 

number. In other words, if .�����+=  cannot get a positive value the 

left side of Equation (4) would get a negative value. The right 

side of Equation (4) is equal to the time between the beginning 

of period t and the beginning of production of product j on 

machine m+1if ��� th setup in machine m+1 and period t is from 

every product i to product j (for ��� P ,� � � �), else it is a big 

number. In other words, if .����3��+==  cannot get a positive value, 

the right side of Equation (4) would get a big value. 

The capacity constraints of machine during period are 

represented by equation (5). Equation (6) considers setups in 

production process. Equation (7) shows the relationship between 

shadow products and setups. Constraints (8) and (9) ensure that 

for each machine, the first setup at the beginning of the planning 

horizon is from a defined product. Equation(10) and (11) 

represent the relationship between successive setups. Equation 

(8) to (11) ensure that for each triple (n,m,t) there is exactly one 

pair (i,j) which *�������+ � ,. The type of variables is defined by 

equations (12) and (13) and finally equation (14) indicates that 

at the end of planning horizon there is no on-hand inventory. 

2.2 Illustrative example 
A small problem has been presented to illustrate the model. We 

suppose a system with two serially-arranged machines that 

produce the products in flow shop environment. In addition, 

three products must be produced in two periods (M=2, N=3, 

T=2). Product 1 is produced at the beginning of the planning 

horizon. Table 1.shows demand of the products. Unit production 

times and costs are shown in Table 2. Holding cost unit rates are 

shown in Table 3.Table 4.shows setup times and costs. Capacity 

of the machines is showed in Table 5. Table 6.shows 

backlogging cost unit rates. 

With respect parameters LINGO software is utilized to find the 

optimal solution. Table 7.shows the optimal solution.

Table 1. Demand of product 

 Product 1 Product 2 Product 3 

Period 1 200 100 300 

Period 2 200 300 100 

 

Table 2.Unit production times and costs. 

  Machine 1   Machine 2  

 Product 1 Product 2 Product 3 Product 1 Product 2 Product 3 

Period 1 4.5 6 6 4.5 6 6 

Period 2 4.5 6 6 4.5 6 6 

 

Table 3. Holding cost unit rate. 

 Product 1 Product 2 Product 3 

Machine 1 3 2 4 

Machine 2 3 2 4 
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Table 4.Sequence-dependent setup times and costs. 

  Machine 1   Machine 2  

 Product 1 Product 2 Product 3 Product 1 Product 2 Product 3 

Product 1 0 100 70 0 100 70 

Product 2 90 0 80 90 0 80 

Product 3 110 100 6 110 100 6 

 

Table 5.Capasity of machines. 

 Machine 1 Machine 2 

Period 1 4000 5000 

Period 2 4000 5000 

 

Table 6. Backlogging cost unit rate. 

 Product 1 Product 2 Product 3 

Period 1 10 18 20 

Period  2 10 18 20 

 

Table 7. Non-Zero decision variables 

*3�3�3�33 � , *3�3�Q�33 � , *3�3�Q�33 � , 
*3�R�Q�3Q � , *Q�Q�3�Q3 � , *Q�Q�3�QQ � , 
*Q�Q�Q�Q3 � , *Q�Q�Q�QQ � , *Q�R�3وQR � , 
*R�Q�3�3R � , *R�Q�Q�3R � , .3�3�33 � :�� 
.3�Q�33 � :�� .Q�3�3R � ,�� .Q�3�Q3 � ;�� 
.Q�Q�3R � ,�� .Q�Q�Q3 � ;�� .R�3�3Q � :KK�G 
.R�3�QR � ,::�G .R�Q�3Q � :KK�G .R�Q�QR � ,::�G 
/3�Q�33 � ;K� /Q�Q�33 � ;OK�G )3�Q� � :�� 
)R�3� � ::�G   

 

The optimal solution based on the parameters is showed in 

Table. 7. The sequence in both machines in Period 1 is 1-3-2 and 

in Period 2 is 2-3.The optimal objective function is 14350. 

3. DEVELOPING OF LOWER BOUND 
Florian et al. [5] have proved that the single-item CLSP is NP-

hard. So solving of these problems in medium or large scale 

would take a polynomial time. Then, for solving our formulation 

we need to develop lower bound which not obtains an optimum 

solution necessary but a good solution in reasonable time. In this 

section we present a lower bound by relaxing some of 

constraints. we relax binary variables as continuous variables 

between 0 to 1. In this case, equation (4) does not impact on the 

problem because for non-integer values of *�������+  the left side of 

Equation (4) would be negative and the right side of Equation 

(4) would be a big number, therefore with this relaxing, 

Equation (4) does not guarantee vertical interaction.  

In this condition we do not have any binary variables. At the 

next section we present some numerical experiment to test and 
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compare this lower bound against exact formulation. In all of 

examples, we consider 10 hours to reaching the solution 

(optimum solution or near optimum solution).   

4. NUMERICAL EXPERIMENTS 
In order to test the performance of lower bound, we establish 

several numerical examples. In these examples we compare 

solution of the exact model against lower bound according to 

computation tests and percentage of difference between exact 

and lower bound. 

To solve the exact model and lower bound LINGO 8.0 is used. 

The models run in a personal computer with an Intel (R), Core 

(TM) 2 Duo CPU at 2.94 GHz. 

The required parameters are provided from the following 

uniform distribution: ���� �S T7G�,�-�  ����� �S T7G���,���-�    ����� �S T7G�,;-� ������ S T7G�,�-� ������ �S T7G�� ,��-� ������ �S T7G�� ,��-� ����� �S T7G�,:-� ���� �S T7G�����,�����-� 
The results of test are showed in Table. 8.

 

Table 8.Comparison of optimal solution and lower bound. 

Problem size 

(N.M.T) 
Optimal solution 

Computation times 

(Seconds) 

Lower bound 

solution 

Computation times 

(Seconds) 
Lower/optimal 

3.3.3 106173 105975 99.81% 9 0 

5.3.3 171169 171090 99.95% 66 1 

3.5.3 115464 115464 100.00% 1 0 

3.3.5 2373522 2373552 99.99% 322 1 

5.5.5 - 485340 - >36000* 3 

* Means that finding the optimum value requires more than 10 hours (36000 seconds). 

- Means that feasible solution has not been found after 10 hours.

Table 8. Also shows these problems are extremely NP-hard. A 

problem with size 3.3.5 only takes 322 seconds to finding 

optimum solution but the solution of a problem with size 5.5.5 

has not been found even during 36,000 Seconds. The result 

shows in the medium scale, the lower bound obtain a good near 

optimum solution, even in an example with 3.5.3 optimum 

solution is reached by lower bound. This means this lower 

bound could be an alternative to solve these problems at least in 

the medium scales. 

5. CONCLUSION 
In this paper we consider both the backlogging and sequence-

dependent setups in flow shop environment. Sequence-

dependent setups have been studied not much, also the practical 

importance of backlogging the result in we study these issue 

together. We develop a MIP exact formulation. Because of NP-

hardness of the model we develop one lower bound. To test 

accuracy of proposed lower bound, some numerical examples 

have been developed. The solution obtained by lower bound 

against optimal solution showed accuracy of lower bound. 

 

For future study we propose application heuristic and 

metaheuristic methods to solve this model. Considering to 

maintenance activities, constraint storage, machine breaking 

down and stochastic process time could be more contribution. 

The authors of this paper are studying about heuristic and 

metaheuristic methods, and developing a better lower bound. 
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