
International Journal of Computer Applications (0975 – 8887)

Volume 30– No.7, September 2011

1

Fault Simulation of Digital Circuits at Register

Transfer Level

Suma M.S

R.V.College of Engineering
 Department of E & C

Bangalore-59

 K.S.Gurumurthy

U.V.College of Engineering
Department of E & C

Bangalore-01

ABSTRACT

As the complexity of Very Large Scale Integration (VLSI) is

growing, testing becomes tedious and tougher. As of now fault

models are used to test digital circuits at the gate level or below

that level. By using fault models at the lower levels, testing

becomes cumbersome and will lead to delays in the design

cycle. In addition, developments in deep submicron technology

provide an opening to new defects. We must develop efficient

fault detection and location methods in order to reduce

manufacturing costs and time to market. Thus there is a need to

look for a new approach of testing the circuits at higher levels to

speed up the design cycle. This paper proposes on Register

Transfer Level (RTL) modeling for digital circuits and

computing the fault coverage. The result obtained through this

work establishes that the fault coverage with the RTL fault

model is comparable to the gate level fault coverage.

General Terms

Fault Model, Test Pattern Generation.

Keywords

Automatic test pattern generation (ATPG), fault coverage, fault

simulation, stuck-at fault, RTL.

1. INTRODUCTION
VLSI industry is growing as per Moore‟s law and integrated

circuit designs are accordingly becoming more and more

complex. As a result of this, VLSI testing has become expensive

in terms of cost. Existing gate level fault simulation techniques

exhibit poor performance standards when applied to such

designs and are unsuitable for early testability analysis or fault

simulations. Current computer-aided design tools must address

the needs for a new generation of integrated circuits such as

systems on chip. Test sequences consist of many thousands of

test patterns, which make gate-level fault simulation

inappropriate due to its lengthy computational time. Also test

generation and fault simulation efforts in the post synthesis

phase do not contribute to the improvement in the design.

Therefore, we need ATPG tools that reflect new design flows,

especially tools that work at a higher level of abstraction than

gate-level. Many high-level fault models and fault simulation

techniques have been proposed. No single fault model is

universally acceptable since no fault model has been developed

so far that comprehensively covers all classes of circuits. The

RTL description is at a higher level of abstraction and may not

cover all the gate level faults [2].To be widely accepted an RT-

level fault simulator must accept input formats in standard

hardware description languages such as VHDL or Verilog and

should show high efficiency. Fault simulation plays a key role in

ATPG systems; including high-level ATPG. Gate-level fault

simulation is not appropriate for large systems because of long

runtimes or large memory requirements. RT-level fault

simulation may be the only alternative for estimating the quality

of tests generated using high-level ATPG [3]. A high-level fault

model should guarantee fault coverage comparable to the gate-

level fault coverage obtained for the same test sequence.

The fault model proposed by F.Corno, G.Cumani, M.Sonza

Reorda and G.Squillero [2] adopts a particular instantiation of

the observability enhanced statement coverage metric in

addition to the single stuck-at bit faults on all assignments

targets of the executed statements. The model implies

observability enhanced statement coverage by modeling one of

the possible fault classes on executed statements. This is an

incomplete modeling of the various faults associated with the

RTL description of the circuit.

The fault model by Barry W. Johnson is developed via

abstraction of industry standard single-stuck-line (SSL) faults

into the behavioral domain. A functional analysis technique was

used to evaluate the effects of the SSL faults on gate-level

implementation. Since the gate-level netlist changes drastically

during logic synthesis, the authors in [4] concluded that

modeling all possible gate-level faults at the RTL is highly

inefficient.

The RTL fault model and simulation approach proposed by Mao

and Gulati [5] uses the single stuck-at fault for each bit of all

variables in the RTL model. The model employs both the RTL

description and functional verification patterns. But their

approach required one to run fault simulation twice, first in an

optimistic mode and then in the pessimistic mode and to use the

average of the results to reduce the difference between the RTL

and the gate-level fault coverage. The experimental data shows

as much as 10 % error between the actual gate-level fault

coverage and the RTL fault coverage.

Another fault model proposed by Devadas and Ghosh [6] is the

Observability Enhanced Statement Coverage Metric. This model

requires that all statements in the RTL description are executed

at least once and that their effects are propagated to at least one

primary output. As this approach can be fruitfully exploited for

the test pattern for fault simulation, more accurate results are

needed.

The fault model proposed by Karunaratne et al. [7] does not

consider stuck-at faults in the signal bit values and also not

International Journal of Computer Applications (0975 – 8887)

Volume 30– No.7, September 2011

2

account for these faults. Also the process of locating the RTL

faults and mapping them to the corresponding Gate-Level faults

is to be done. It is therefore desirable to develop the fault model

at a higher level of abstraction than the gate level. Fault

simulation and testing at the higher levels of abstraction have a

better chance of being integrated well into the overall design

process.

Jose M.Fernandes et al. [8] has proposed a new probabilistic

method for controllability evaluation based on a traitorously

selection of registers to form groups. This work needs further

optimization by computing the probabilistic impact of the

simultaneous correction of different testability problems.

Digital circuits are commonly designed at multiple levels of

abstraction, including the layout, transistor, gate, register-

transfer (RTL) and behavioral levels. Designers describe circuits

in a hierarchical, top-down fashion, typically using computer-

aided design (CAD) tools. To simplify the design process,

designers try to model circuits at a fairly abstract level.

Conventional gate-level implementation is hard to understand,

i.e., poor readability. By modeling circuits at a higher level, the

number of primitive elements in a circuit is reduced, thus

making the problem size more tractable. This allows larger

circuits to be handled in less time. The authors [9] conclude that

over 1000 times reduction in test-generation time is achievable

by performing automatic test pattern generation (ATPG) at the

RTL without any compromise in fault coverage.

The Unit II of the paper deals with the methodology, Unit III

deals with the fault model and simulation, Unit IV with results

and finally Unit V with conclusion.

2. METHODOLOGY
In this work Verilog Hardware Description Language is used for

writing the RTL models. Although extensive work has been

done on Verilog based simulation and synthesis, test generation

and other test related issues are still to explore the capabilities of

Verilog. The basic assumption is that the components are fault

free and only their interconnections are affected. These map to

the operators and variables in the RTL descriptions respectively.

Gate level primitives can be instantiated in a model using gate

instantiation as these are supported for synthesis. These

primitive gates describe the hardware. Therefore synthesizing a

gate primitive generates logic based on the gate behavior which

eventually gets mapped to the target technology [1].Based on

this the single stuck-at fault is modeled. The assumption is also

that at most one fault occurs at a time in the circuit.

The proposed fault model is an improvement over the model

given by Karunaratne et al. [6].Stuck-at faults in the signal bit

values was not considered and accounted. Also the process of

locating the RTL faults and mapping them to the corresponding

Gate-Level faults was not implemented.

The analysis flow for the modeling approach is of two ways as

shown in Figure 2. One way targets on the gate-level fault

coverage while the other is on the RTL fault coverage. In the

RTL path, the RTL design description is obtained based on the

specification. Since the fault model is at the RTL, the fault is

induced at the input and at the output. This is done by using a

buffer for each bit in all of the variables in the RTL code. These

buffers are inserted in the fault free circuit and should not

disturb the functionality of the circuit. As a result, a modified

faulty RTL circuit is obtained. To enable fault simulation the

process of generating faulty circuits by inducing faults into the

fault-free circuit is done. For each of the faults a new circuit is

created.

Testbench is developed and the simulation is first run on a good

circuit and then on each of the faulty circuits using the

commercial simulator. The outputs obtained in each case of the

faulty circuits are compared with the output of the good circuit

to determine which faults are detected. That is the new faulty

circuit and the fault free circuit is simulated and the outputs so

obtained are compared. The fault list is tabulated. The ratio of

the numbers of RTL faults detected to the total number of RTL

faults gives the RTL fault coverage. At the gate-level, for each

RTL description, gate level netlists are obtained for 65

nanometer target technology using logic synthesis tool and fault

coverage obtained by Tetramax tool. The fault list of both the

RTL as well as Gate-level faults is compared. The effectiveness

of our fault model is determined by comparing RTL fault

coverage with the fault coverage obtained at the gate level.

3. FAULT MODEL AND SIMULATION
Test generation plays an important role in the area of digital

design. Test generation is a process of finding input test patterns

for detecting possible faults in the circuit. It is difficult to

generate test for real defects due to the diversity of VLSI

defects. For generating and evaluating a set of test patterns, fault

models are needed. Widely a good fault model should almost

give a true nature of the behavior of defects and it should also

computationally work well in terms of fault simulation and test

pattern generation. It is necessary to propose a fault model, that

is a fault model for how faults occur and their impact on circuits

and to do with the business of good and bad parts, many fault

models have been proposed [4], but unfortunately, no single

fault model accurately reflects the behaviour of all possible

defects that can occur. As a result, a combination of different

fault models at many instances are used in the generation and

evaluation of test vectors and testing approaches developed for

VLSI devices [2]. Developing a test for faults at higher level of

abstraction and then determining the percentage of faults at the

lower levels being covered is a good strategy. Fault models at

higher levels result in significant savings in test cost and test

time required for deriving tests.

The most common model used for logical fault is the single

stuck-at fault (SSF). In this a fault in a logic gate gives a

favorable outcome in one of its inputs or the output being fixed

to either a logic 0(stuck-at-0) or a logic 1(stuck-at-1).

For our approach divider is taken as an example.

module divider #(parameter n = 7)(

output reg [n:0] remainder,

output reg [0:n] quotient,

input [n:0] dividend, divisor);

reg [2*n+1:0] accumulator;

integer i;

always @ (dividend or divisor)

begin

 accumulator =

{{(n+1){1'b0}},dividend};

 if(divisor == {(n+1){1'b0}})

 begin

International Journal of Computer Applications (0975 – 8887)

Volume 30– No.7, September 2011

3

 quotient =

{n+1{1'bX}};

 remainder =

{n+1{1'bX}};

 end

 else if(dividend ==

{n+1{1'b0}})

begin

 quotient =

{n+1{1'b0}};

 remainder = divisor;

 end

 else

 begin

 for (i=0; i<(n+1) ; i = i

+1)

 begin

 if (accumulator[2*n+1:n] <

{1'b0,divisor}) quotient[i] = 1'b0;

 else

 begin

 quotient[i] = 1'b1;

 accumulator[2*n+1:n] =

accumulator[2*n+1:n] - {1'b0,divisor};

 end

 accumulator[2*n+1:0] =

{accumulator[2*n:0],1'b0};

 end

 remainder =

accumulator[2*n+1:n+1];

 end

end

endmodule

The above RTL design description is a fault freemodule. Faulty

module is created such that the functionality will remain same as

the fault free module. This is done by inserting the buffer for

each of the ports. The faulty module appears as shown below.

module divider #(parameter n = 7)(

output [n:0] remainder,

output [0:n] quotient,

input [n:0] dividend, divisor);

reg [2*n+1:0] accumulator;

reg[0:n] quotient_fault;

reg[n:0] remainder_fault;

integer i;

wire [n:0] dividend_fault,divisor_fault;

buf D7(divisor_fault[7],divisor[7]);

buf D6(divisor_fault[6],divisor[6]);

buf D5(divisor_fault[5],divisor[5]);

buf D4(divisor_fault[4],divisor[4]);

buf D3(divisor_fault[3],divisor[3]);

buf D2(divisor_fault[2],divisor[2]);

buf D1(divisor_fault[1],divisor[1]);

buf D0(divisor_fault[0],divisor[0]);

buf DR7(dividend_fault[7],dividend[7]);

buf DR6(dividend_fault[6],dividend[6]);

buf DR5(dividend_fault[5],dividend[5]);

buf DR4(dividend_fault[4],dividend[4]);

buf DR3(dividend_fault[3],dividend[3]);

buf DR2(dividend_fault[2],dividend[2]);

buf DR1(dividend_fault[1],dividend[1]);

buf DR0(dividend_fault[0],dividend[0]);

buf Q0(quotient[0],quotient_fault[0]);

buf Q1(quotient[1],quotient_fault[1]);

buf Q2(quotient[2],quotient_fault[2]);

buf Q3(quotient[3],quotient_fault[3]);

buf Q4(quotient[4],quotient_fault[4]);

buf Q5(quotient[5],quotient_fault[5]);

buf Q6(quotient[6],quotient_fault[6]);

buf Q7(quotient[7],quotient_fault[7]);

buf R0(remainder[0],remainder_fault[0]);

buf R1(remainder[1],remainder_fault[1]);

buf R2(remainder[2],remainder_fault[2]);

buf R3(remainder[3],remainder_fault[3]);

buf R4(remainder[4],remainder_fault[4]);

buf R5(remainder[5],remainder_fault[5]);

buf R6(remainder[6],remainder_fault[6]);

always @ (dividend_fault or divisor_fault)

begin

 accumulator =

{{(n+1){1'b0}},dividend_fault};

 if(divisor_fault ==

{(n+1){1'b0}})

 begin

 quotient_fault =

{n+1{1'bX}};

 remainder_fault =

{n+1{1'bX}};

 end

 else if(dividend_fault ==

{n+1{1'b0}})

 begin

 quotient_fault =

{n+1{1'b0}};

 remainder_fault =

divisor_fault;

 end

 else

 begin

 for (i=0; i<(n+1) ; i = i

+1)

 begin

 if (accumulator [2*n+1:n] <

{1'b0,divisor_fault}) quotient_fault[i] =

1'b0;

 else

 begin

 quotient_fault [i] =

1'b1;

 accumulator[2*n+1:n] =

accumulator[2*n+1:n] -

{1'b0,divisor_fault};

 end

 accumulator [2*n+1:0] =

{accumulator[2*n:0],1'b0};

 end

 remainder_fault =

accumulator[2*n+1:n+1];

 end

end

endmodule

International Journal of Computer Applications (0975 – 8887)

Volume 30– No.7, September 2011

4

To these faulty and fault free modules fault simulation is

performed with the reduced number of test patterns for each of

the faults. The outputs obtained in each case of the faulty

circuits are compared with the output of the good circuit to

determine which faults are detected, finally to obtain the fault

coverage. A single pattern can detect many faults or a single

fault. Many patterns can detect many faults or a single fault. The

challenge in testing is to obtain a minimal number of test

patterns which guarantees high fault coverage of a circuit with

known set of faults. The simulated waveform for the output

signal remainder stuck at „1‟ is as shown in Figure. 1.

4. RESULTS
At the writing of this paper, we have tested our approach on

combinational logic circuits and sequential circuits. The results

obtained by applying our approaches to the RTL design

descriptions and their corresponding Gate-level descriptions

have been tabulated in table 1. At the gate-level, the gate-level

netlist is created for each of the circuit used. Fault coverage is

obtained for the scan inserted gate-level netlists. From the

results it can be observed that the RTL Fault Coverage obtained

by the proposed fault modeling methodology has a close match

to the Gate-Level Fault Coverage for the tested digital circuits.

5. CONCLUSION
With the progress of semiconductor technology testing of VLSI

circuits becomes more and more difficult and at the same time

cost is also increasing. Therefore it is important to achieve high

fault efficiency with low cost. With this approach RTL designer

can have an estimation of the achieved fault coverage before

doing synthesis and also it is possible for the designer to locate

faults at a higher level of abstraction. At present our approach is

applied to combinational logic circuits and few sequential logic

circuits. Further we would like to extend the approach to

complex sequential circuits such that there is a close match to

the gate level fault coverage and hence reducing the impact on

time to market.

Table 1. RTL versus Gate-Level Fault Coverage

Name of the circuit RTL Fault

Coverage

Gate-Level Fault

Coverage

JK flip-flop 100% 100%

D flip-flop 100% 100%

Updown counter 100% 100%

Johnson counter 100% 100%

Multiplier repeated

addition

100% 100%

Multiplier Booths 100% 100%

Universal Shifter 100% 100%

PISO 100% 100%

Divider using shift left

algorithm

100% 100%

Division repeated

subtraction

100% 100%

Figure 1: Simulated waveform for the output signal

remainder stuck at ‘1’

International Journal of Computer Applications (0975 – 8887)

Volume 30– No.7, September 2011

5

 Figure 2: Design flow with the proposed method

6. REFERENCES
[1] J.Bhaskar., 2004, “Verilog HDL Synthesis, A Practical

Primer”, BSPublications.

[2] F.Corno, G.Cumani,M.Souxa Reorda,G.Squillero,2000,”An

RT-level Fault Model with High Gate Level Correlation

“Proceedings of the IEEE International High_Level Design

Validation Test Workshop.

[3] Deniziak S,Sapiecha K,” Developing a High-Level Fault

Simulation Standard “, Computer ,May 2001,pp 89-90.

[4] Ronald J Hayne and Barry W.Johnson, 1999”Behavioral

Fault Modeling in a VHDL Synthesis Environment”, IEEE

VLSI Test Symposium.

[5] Weiwei Mao, Ravi K Gulati, 1996,”Improving Gate Level

Fault Coverage by RTL Fault Grading”, IEEE Proceedings

of the International Test Conference.

[6] Devadas, A.Ghosh, K.Keuter, 1996,”An Observability-

Based Code Coverage Metric for Functional

Simulation”Proceedings of IEEE/ACM International

Conference on Computer Aided Design.

[7] Karunaratne, Sagahyroon, Prodhuturi, 2005,”RTL Fault

Modeling”IEEE Circuits and Systems August.

[8]Jose M.Fernandes,Marcelino B.Santos,Arlindo

L.Oliveira,Joao C.Teixeira,2006,”IEEE International High

Level Design and Test Workshop.

[9] Chen C.H,Noh T.H,1998,”VHDL behavioral ATPG and

fault simulation of digital systems”,IEEE transactions

Aerospace and Electronic Systems,April,pp 430-447.

[10] P.Goel, 1980,”Test Generation Cost Analysis and

Projections,” Design Automation Conference.

[11] Himanshu Bhatnagar, 2000” Advanced ASIC Chip

Synthesis “Kluwer Academic Publishers.

[12] P.K.Lala, 1997,”Digital Circuit Testing and Testability,

“Academic Press.

Unmodified RTL

Modified RTL Synthesis

Scan Insertion

ATPG

Gate Level

Netlist

Scan Inserted

Netlist

Test

Patterns

Fault Simulation

Pattern generation

RTL Fault

Coverage

Gate-level Fault

Coverage

