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ABSTRACT 

Clustering of spatial data in the presence of obstacles, facilitator 

and constraints has the very strong practical value, and becomes 

to an important research issue. Most of the existing spatial 

clustering algorithm in presence of obstacles and constraints 

can’t cluster with irregular obstacles. In this paper a 3DCCOM 

Polygon Reduction Algorithm is proposed. The advantage of 

this clustering algorithm is to reduce polygon edges, memory 

would be very less than the matrix approach contains reduction 

line .We are here going to use Set of reduction lines than matrix 

approach. Further with help of Polygon Reduction Algorithm, A 

novel 3DCCOM (3 Dimensional Clustering with Constraints 

and Obstacle Modeling) algorithm is proposed. 3DCCOM takes 

into account the problem of clustering in the presence of 

physical obstacles while modeling the obstacles by Reentrant 

Polygon Reduction Algorithm. The 3DCCOM algorithm 

processes arbitrary shape obstacle and finds arbitrary shape 

clusters efficiently. Meanwhile, the 3DCCOM algorithm used to 

reduce the complexity of clustering in presence of obstacles, 

facilators and constraints and the operation efficiency of 

algorithm is improved. The results of experiment show that 

3DCCOM algorithm can process spatial clustering in presence 

of obstacles, facilitator and constraints and has higher clustering 

quality and better performance. 

Keywords 
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1. INTRODUCTION 
Clustering is one of the most useful tasks in data mining process 

which can partition objects of a data set into distinct groups such 

that two objects from one cluster are similar to each other, 

whereas two objects from distinct clusters are not [1]. Spatial 

clustering, aiming to identify clusters, or densely populated 

regions in a large spatial dataset, serves as an important task of 

spatial data mining. At present, the research of spatial clustering 

is very active. The main acceptable methods of this domain 

include algorithm based on spatial dataset partition, algorithm 

based on hierarchical, algorithm based on density, algorithm 

based on grid, etc. The precondition of these algorithms is that 

the direct accessibility is defined between spatial data samples. 

Most of these traditional clustering algorithms ignore the 

presence of obstacles, facilators and constrains. Euclid distance 

is used to measure the material comparability measurement 

between data samples and clusters. But the spatial data samples 

are always obstructed by obstacles such as hills, rivers, lakes, 

enclosed roads which destroy the connectivity of spatial data 

space in actual application whereas underpass, bridges etc. are 

the facilitators in actual space. The presence of obstacles results 

in the meaningless and impractical spatial cluster result which 

shows in Fig.1. The problem of spatial clustering in presence of 

obstacles, Facilators and constrains is highly interested recently.  

 

 

                          
 

(a)   (b)  

    

 

                    
 

 (c)     (d) 

 

Figure 1 (a) Original Dataset with obstacles water body and 

highway etc., (b) Dataset without obstacles, (c) Cluster with 

considering obstacles, (d) cluster when ignoring obstacles 

 

At present, the typical clustering algorithms of spatial data 

sample in presence of obstacle include COD-CLARANS, 

AUTOCLUST+, DBCLUC and DBRS+. Each method has its 

own advantage and disadvantage. COD-CLARANS [2] is the 

earliest clustering algorithm with obstacles which is proposed by 

Tung. It based on partitioning approach and defines obstacle-

distance firstly, and computed the distance with global obstacle-

culminations visual graphic algorithm. The operation cost of this 

clustering algorithm is higher. AUTOCLUST+ [3] is a Voronoi 

Water body 
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Highway 
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graphic and Delaunay triangulation-based spatial clustering 

algorithm with obstacles which is proposed based on 

AUTOCLUST [4]. It ensures the accuracy of clustering result to 

certain extent by without any parameter. However, the cost of 

constructing Delaunay graphic and triangulation is higher and it 

lacks of flexibility of polygon obstacles treatment. DBCLUC [5] 

uses obstacle-line method to make the invariant spatial space to 

reduce processing time. But the parameters of this algorithm are 

complex and the algorithm can’t process with reentrant polygon 

obstacles [15] effectively. DBRS+ [6] which is based on DBRS 

[7] defines minimum boundary region to reduce the affection of 

obstacle of spatial space. The cluster result is sensible with value 

of parameters of algorithm, and the cost of graphic pre-treatment 

of obstacles is too high. Therefore, Polygon Reduction 

clustering algorithm in presence of obstacles, facilitator and 

constrains which is abbreviated as PRC further extended as a 

novel 3DCCOM (3 Dimensional Clustering with Constraints 

and Obstacle Modeling). 3DCCOM takes into account the 

problem of clustering in the presence of physical obstacles while 

modeling the obstacles by Reentrant Polygon Reduction. As the 

same time, this algorithm adopts hierarchical idea to cluster 

spatial data space in presence of obstacles [15]. It divides the 

whole data space into lots of region without obstacle by raster 

extension line of obstacle polygon boundary. The Reentrant 

Polygon Reduction clustering is used to cluster in these regions 

without obstacle first, with obstacle and facilitator second.  

2. BACKGROUND CONCEPTS 

2.1 Spatial clustering in presence of obstacles 

and constrains 
The definition of clustering in the presence of obstacles and 

constrains is proposed in paper [2]: 

 

Definition 2.1.1 clustering with obstacle:  (1) Dataset P = {p1, 

p2... pn} includes n data points; (2) the disjoined obstacles set O 

= {O1, O2…Om} in 2-dimensional data space R. Each obstacle 

Oi is described as a simple polygon. The distance between two 

points in the space is Euclid distance d (pk, pj) when the 

obstacles are ignored. When the obstacles are taken account of, 

the distance between pk and pj recording as d (pk, pj) is the 

shorted path which can’t be cut by any obstacle. The spatial 

clustering in presence of obstacle is the processing which 

divides the whole data space into k clusters CL1, CL2,.. .. .. ,CLk  

to make every data point most closed to its cluster centre. That is 

equivalent to make the value of E minimum in formula (1) Ci is 

the cluster centre of CLi. 
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2.2 Polygon-description of obstacles and 

preprocessing 

To estimate the affection of obstacle in the clustering process of 

spatial data samples, the suitable description of obstacle is 

needed first. The obstacles, facilitator and constrains in reality 

are in different shape and character. Water body and highway 

shows as stripe polygon while hill, bridge, underpass may be 

curve in shape, lake and park shows as plane polygon in 2- 

dimensional space. To facilitate the storage and management of 

obstacle in computer program, the vector spatial data structure 

[8] is used to describe each obstacle polygon. Obstacles-

polygons set is Y = {Y1, Y2... ……, Yn}, a series of ordered 

space points from the polygon Yk= {Yk1, Yk2.....,Yks} where (1 ≤ 

k ≤ n). The coordinate of space point is 

)1(),( 2
21 smRYYY T

kmkmkm   

2.3 Obstacle Modeling 
Almost all physical obstacles like rivers, hills, and highways etc. 

can be modelled using simple polygons [12]. All the polygons 

can be divided into two types: simple polygons and crossing 

polygons. A simple polygon is the polygon in which every edge 

in the polygon is not intersected with any other edge in the 

polygon and a crossing polygon is the polygon in which at least 

one edge is intersected with any other edge in the polygon. We 

take into account simple polygons because almost all obstacles 

can be represented using only simple polygons. Simple polygons 

can be further divided into two types: convex and concave as 

shown in figure 2(a) (b). A polygon is a convex polygon if all 

vertices of the polygon make the same directional turn whether 

clockwise or anticlockwise. Suppose a polygon P does not 

follow the claim. It then is obvious that P is not a convex. All 

other polygons, which don’t satisfy this condition, are said to be 

concave. In order to test a turning direction for 3 consecutive 

vertices, the sign of the triangle area of 3 points is examined via 

a determinant. As a result, the sign of the determinant evaluates 

the turning direction either a clockwise or a counterclockwise.  

Note that we assume that all points in a polygon are enumerated 

in an order either clockwise or a counterclockwise. Hence, we 

can easily identify a type of a polygon as well as a type of each 

vertex from the polygon in a linear time O (n), where n is the 

number of points in a polygon. 

 

1.  

 

     (a) Convex polygon        (b) Concave/ Reentrant polygon 

Figure 2(a) in convex polygon all interior angles are less than 

180 degree; (b) in concave polygon at least one interior angle 

is greater than 180 degree. 

3. PROPOSED REENTRANT POLYGON 

REDUCTION ALGORITHM 
In any clustering algorithms, when obstacles are considered, the 

visibility of data objects with each other is checked via the line 

segments or edges of the obstacle. The number of line segments 

to check is the number of edges of the polygons, which is large 

in number for a large data space. The number of lines to check 

can be reduced to actual one by our proposed polygon-edge 

reduction algorithm but memory would be much less then the 

matrix approach contains reduction lines. We are here to going 

to use set of reduction lines. Let us call the reduced number of 

lines as reduction lines. The algorithm assumes the following 

definition of a polygon. 

 

P 
 

All interior 

angles are less 

than 180o 

At least one 

interior angle 

is > 180o 
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Definition: Polygon  

A simple polygon is denoted by an undirected graph P (V, E) 

where V is a set of k vertices:   V = {v1, v2…, vk} and E is a set 

of k edges: E = {e1, e2…ek} where ei is a line segment joining vi 

and vi+1, 1ik. i+1=1 if i+1>k. First all the convex vertices of 

the polygon are extracted because only convex vertices are 

considered to find the visibility between two data objects. 

Assume that a polygon P (V, E) of n convex vertices is stored in 

the form of adjacency matrix A of order n×n where A [I,J]=1 if 

edge (I,J) exists between vertices I and J i.e.(I,J)  E. 

A [I, J] =0 if (I, J) not  E. 

 

The algorithm returns the output ordered set O.  

VJIJIO  ,:),{( , pair (I, J) is a reduction line} 

It first identifies the convex vertices in the polygon by turning 

direction approach and by checking the triangle area of three 

consecutive points via its determinant. After finding all the n 

convex vertices, a matrix A of order n×n stores the link 

information about polygon. The entries in the upper half of 

matrix A are checked so as to avoid the repetition because the 

polygon is undirected graph. 

Proposed Reentrant Polygon Reduction Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All reduction lines should be interior to polygon P and each 

convex vertex should’ve at least one reduction line from it. The 

number of reduction lines must be at least equal to the number 

of convex vertices to allow the correct visibility between the 

data points. 

 

 

EXAMPLE showing polygon reduction 

Take the example convex polygon shown in figure 3(a) that has 

six convex vertices and six edges. Corresponding to these six 

convex vertices, the input matrix A becomes as shown in figure 

3(b). As a result of the application of the polygon_reduction 

algorithm, the output ordered set O is shown in figure 3(d). The 

output-reduced polygon is constructed according to output 

ordered set O and is shown in figure 3(c), which contains five 

instead of six reduced lines. 

        

       1               2 

   

  

6         3 

 

 

 

       5              4   

    (a) Input Polygon  (b) Input matrix A  

      1  2                                                     

 

  

6        3 Set(O)={ (1,2) (1,3) (1,4) (1,5) (1,6) } 

   

 

       5  4 

 

   (c) Output Matrix       (d) Output ordered set O 

 

Figure 3(a) Input Polygon, (b) Input Matrix A having 

replicated data, (c) Output Matrix, (d) Output ordered set O 

with no replicated data 

This is the case where significant improvement is not achieved 

but in the case of concave polygons, a remarkable improvement 

can be obtained as is shown in figure 4(a), (b) where ten lines 

are being reduced to only three reduction lines. On an average, 

the number of reduction lines obtained by the polygon reduction 

algorithm is approximately half the number of edges of the 

polygon.  

 

  (a)    (b) 

Figure 4(a) a concave polygon, (b) resulting reduction lines 

So, in a large dataset, where the number of obstacles can be 

large in number and hence the number of edges to test is also 

large in number, the polygon_reduction algorithm can be 

applied to reduce the number of lines to test during the 

clustering procedure.  

 1 2 3 4 5 6 

1 0 1 0 0 0 1 

2 1 0 1 0 0 0 

3 0 1 0 1 0 0 

4 0 0 1 0 1 0 

5 0 0 0 1 0 1 

6 1 0 0 0 1 0 

Algorithm: Reentrant_polygon_reduction (P) 

//P is given polygon with V vertices and E edges 

Output: A set of obstruction lines (I, J) in ordered set O. 
  Identify the convex and concave vertices. Let convex vertices be n; 

  Store the link information of convex vertices in A taking them in 

order; 
Flag=0; k=0; 

FOR (I=1; I<=n; I++) { 

     FOR  (M=0; M<=k; M++) {    // k is always<=n 
        IF(I= = B[M])  

        {     // B is matrix for storing row numbers 

              Flag:=1; 
         } 

 FOR (J=I; J<=n; J++) 

 { 
  IF( ( A[I,J]= =1) OR ( (A[I,J]= =0) AND ( (I,J) is interior 

to P) ))  

 {      
          Push(O,I,J);// Insert (I,J) into ordered set O 

                   B[k]:=J;   k++; 

      } 
      IF(Flag = = 1) 

 { 

                      A[I,J]:=0; 
             } 

         }    

        Flag:=0; 
     } 

  }           

Return O i.e. Reduction lines L;   //END polygon_reduction;  
 



International Journal of Computer Applications (0975 – 8887) 

Volume 30– No.7, September 2011 

9 

3.1 Performance Evaluation 
Complexity of polygon_reduction is much less than O (k.n2), 

kn is any positive integer. The reduction algorithm can be used 

either as a preprocessing step for the clustering algorithm where 

its complexity is not considered as a part of the complexity of 

main clustering algorithm, or can be considered as a part of 

clustering algorithm where its complexity amounts to the 

complexity of main clustering algorithm. Although the 

complexity of the reduction algorithm costs a little bit, but still 

benefits are more than pitfalls. The visibility of the 

corresponding pair of points can be tested easily and at a faster 

rate, reducing the overall running time of the clustering 

procedure. Let N be the number of points of a polygon P, and m 

and n are the number of concave points and the number of 

convex points respectively with N= n +m.  The convexity test 

for P requires O (N). The polygon reduction algorithm requires a 

weighted graph to replace a non admissible obstruction line 

segment with a set of admissible line segments. The complexity 

in the replacement is in worst-case O (N log N). Polygon 

reduction algorithm for P requires O (N log N + k.n) in the 

worst case. The complexity of the polygon reduction is on 

average in the order of  O (n2), n N. 

4. EXTENDED 3DCCOM ALGORITHM 
The algorithm 3DCCOM (3 Dimensional Clustering with 

Constraints and Obstacle Modeling) pronounced as 3DCCOM 

takes into account the problem of clustering in the presence of 

physical obstacles while modeling the obstacles by polygon 

reduction algorithm. 

4.1 3DCCOM Algorithm   
The algorithm is based on the concept of density based 

clustering and hence on the algorithms DBSCAN [13], 

DBCLuC (Density Based Clustering with Constraints) [14] and 

DBCCOM. Some other definitions related to the algorithm 

3DCCOM, besides those in density based clustering, are further 

added to have a clear idea about the algorithm 3DCCOM. The 

input parameters Eps and Minpts are the same as that in 

DBSCAN [13] algorithm. 

Definition 4.1.1 Obstacle 
An obstacle can be thought of a simple polygon P (V, E) where 

V= {v1, v2…vk} is the set of vertices and E= {e1, e2…ek} is 

the set of edges of the polygon where ei is the edge between 

nodes vi and vi+1. 1ik. i+1=1 if i+1>k. 

So, an obstacle is a simple polygon represented as an undirected 

graph. 

 

Definition 4.1.2 Visibility 
 If polygon reduction is not used: Let D= {d1, d2…dn} 

is the dataset of n points. Visibility is a relation 

between two data points. Two points di and dj; i  j 

are visible to each other if the line segment joining di 

and dj is not intersected with any polygon edge el; 1 

l k. 

 If polygon reduction is used: Let L= {l1, l2…lm} be a 

set of m reduction lines produced by a polygon 

reduction algorithm. Two points di and dj; i  j are 

visible to each other if the line segment joining di and 

dj is not intersected with any reduction line li; 1 i 

m. 

 

Definition 4.1.3 Visible Space 
Given a set D of n data points D = {d1, d2…dn}. A visible space 

is a set S of k data points S = {s1, s2…sk} such that si, sj  S, si 

and sj are visible to each other, while sk is not visible to sk’s in 

S’, where S’ is a visible space such that S’S=; S, S’D; ij; i, 

j  [1..n]. 

In the presence of obstacles, it becomes necessary to check the 

visibility of two points. So, the new definition of cluster 

becomes: 

 

Definition 4.1.4 Cluster 
A cluster C with respect to Eps and Minpts is a non-empty 

subset of D satisfying following conditions: 

 

1. Maximality:  p,q  D, if p  C and q is density 

reachable from p wrt Eps and Minpts, then q  C. 

2. Connectivity:  p,q  C, p and q are density connected 

to each other wrt Eps and Minpts. 

3. Visibility:  ci, cj  C, there exists a chain of zero or 

more point’s c1, c2…ck, kn such both ci and cj are 

visible to each other either directly or indirectly 

through the pair wise chain of k points. For every ciC 

there exists at least one point cjC, such that ci, cj are 

visible to each other. 

 

Figure 5(a), (b) illustrates the concept of cluster condition 3 

when considering obstacles. 

 
(a)                 (b) 

(a) Direct visibility between two points, (b) Indirect visibility 

between two points 

Figure 5 Visibility between points of a cluster 

The number of visible spaces in a convex polygon is same as the 

number of convex points since each line segments from the 

convex vertex blocks the visibility of its neighbor visible spaces. 

In contrast a concave point does not create two visible spaces 

but uses a visible space created by its nearest convex point. 

There should be at least one reduction line from a convex vertex 

in the resulting reduced polygon so that the concept of visible 

spaces is not compromised. Also each of the produced reduction 

line should be inside the polygon or it may coincide with any 

edge of the polygon only then it is admissible reduction line. 

The main clustering algorithm 3DCCOM is described below 

where polygon_reduction is taken into consideration. 
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The clustering procedure in 3DCCOM is quite similar to 

DBSCAN. A database D is a set of data points to be clustered in 

the algorithm. First all the reduction lines from the set of 

obstacles are extracted by an iterative call to Reentrant 

polygon_reduction (). After that clustering procedure is initiated. 

The Expand-Cluster is described next and it may seem similar to 

the function in the DBSCAN. However, the distinction is that 

obstacles are considered in RetrieveNeighbours (Point, Eps, L) 
illustrated in last.  

 

 

 

 

 

 

 

 

 

 

 

Given a query point, neighbors of the query point are retrieved 

using SR tree. In 3DCCOM, we adopt the range neighbor query 

approach instead of the nearest neighbor query approach from 

SR-tree, since it is extremely difficult for the latter to expand a 

set of clusters if a density of data objects is high. Its average run 

time of a neighbor query is O (log N) where N is the number of 

data objects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The visibility between two data objects in the presence of 

obstacles is computed using a line segment whose endpoints are 

the two data objects in question. If this line is intersected with 

any reduction line, then the two data points are not grouped 

together, since they are not visible to each other. Those accepted 

neighbors defined as the SEED that are retrieved by 

RetrieveNeighbours continue to expand a cluster from elements 

of the SEED, if the number of elements in the SEED is not less 

than MinPts. A data object is labeled by a proper cluster id, if 

retrieved neighbors are satisfied with the parameter MinPts 

discriminating outliers.  The “RESULT” in Algorithm below is a 

set of data objects that are neighbors of a given query object.  

 

 

 

 

 

 

 

The RESULT elements are constructed by removing data 

objects that are not visible to the sample point because of the 

blockage of obstacles. This algorithm retrieves neighbors of a 

given query point using SR tree. 

5. RESULTS AND ANALYSIS OF 

EXPERIMENT 
Fundamentally, 3DCCOM is a density based clustering 

algorithm. DBCLUC is the mostly acceptance density-based 

clustering algorithm in presence of obstacle. To demonstrate the 

advantage of 3DCCOM, it will compare with DBCLUC in this 

experiment. To facilitate the comparison of two algorithms, the 

data set which is generated by the improved DatGen [11] is used 

and compares it with new dataset. For simplicity, the synthetic 

spatial data set is 3-dimesional spatial data. The data set and 

obstacles are showed as Fig.6. The best results of two algorithms 

with a broad range of parameter settings are selected. Clustering 

result of this spatial data space is showed by Fig.7 when the 

obstacles are ignored. The different cluster of data space is 

described by different color. 

 

Figure 6. Spatial dataset with obstacles 

3DCCOM (Database D, Obstacles O) 

Output: A set of Clusters. 
//Start clustering 

 L:=; // L is the set of reduction lines 

   FOR (obstacle  O) do 
            Lines:=Reentrant_Polygon_reduction(obstacle); 

            L:=L  lines; 

   END FOR; 
  ClusterId:=nextId(noise); 

  FOR (pt  D) do 

         IF (pt.ClusterId= unclassified) THEN 
                IF ExpandCluster(D,pt,ClusterId,Eps,Minpts,L) THEN 

                            ClusterId:= nextId(ClusterId); 

                END IF; 
         END IF; 

END FOR; 

RETURN cluster Ids; //END 3DCCOM; 

ExpandCluster(D,pt,ClusterId,Eps,Minpts,L) 

Input: Database, a data point Point, ClusterId, Eps, MinPts, and 
reduction lines L 

Output: True or False 

 SEED := RetrieveNeighbours (Point, Eps, L); 
 IF (SEED.SIZE< MinPts) THEN 

          Classify Point as NOISE; 

          Return False; 
 END IF; 

 Change clustered of all elements in SEED into ClusterId; 

 Delete Point from SEED; 
 WHILE (SEED.SIZE>0) do 

          Current-Point: = SEED. First (); 

          RESULT: = RetrieveNeighbours (Current Point, Eps, L); 
          IF (RESULT.SIZE>=MinPts) THEN 

                  FOR (element  RESULT) do 

                            IF (element is UNCLASSFIED) THEN 

                                    Put it into SEED; 

                                    Set its cluster id to ClusterId; 

                            END IF; 
                            IF (element is NOISE) THEN 

                                   Set its cluster id to ClusterId; 

                           END IF; 
                  END FOR; 

          END IF; 

          Delete Current-Point from SEED; 
   END WHILE; 

Return True; 

 

RetrieveNeighbours (Point, Eps, L) 

Input: a data object Point, Eps, and reduction lines L 

Output: A set of data points 

   RESULT: = GetNeighbour (Point, Eps); 

   FOR (element  RESULT) do 

         IF Check-Visibility-with (Point, element, L)=FALSE THEN 

                  RESULT. Delete (element); 
         END IF; 

   END FOR; 

 Return RESULT; 
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Figure 7. Clusters without obstacles and constraints 

 

 

 

Figure 8. Clusters with obstacles and constraints 

The connectivity of spatial data space is destroyed by existing 

obstacles when they are considered. Cluster results of two 

cluster algorithm in presence of obstacles and constrains 

DBCLUC and 3DCCOM are showed by Fig.7, Fig. 8 and Fig.9. 

Through comparison and analysis of cluster results of two 

algorithms, the conclusion is that 3DCCOM can get better 

cluster result in presence of cluster than DBCLUC. DBCLUC 

can cluster spatial data space with obstacles, but the process of 

obstacles in arbitrary shape is ideal insufficiently. There are 

many scattered meaningless cluster in the final cluster result of 

 

 

 

Figure 9. Cluster results of 3DCCOM 

DBCLUC. 3DCCOM algorithm proposed in this paper inherits 

advantage of polygon reduction and density cluster algorithm 

and it can operate obstacle polygons and find clusters in 

arbitrary shape to avoid scattered meaningless cluster in final 

result. So the cluster result of 3DCCOM is more accurate and 

more practical. At the same time, the execution space-time cost 

of 3DCCOM is very less than DBCLUC because of the adoption 

of reentrant polygon reduction strategy. Clustering process in 

presence operates upon cluster representative points of first 

order cluster instead of the whole data space in 3DCCOM. 

Comparison with other cluster algorithm in presence of 

obstacles, facilitator and constrains, 3DCCOM is more 

applicable to operate on large scale spatial dataset. 

 

There are a number of areas into which the proposed work can 

be extended or improved. The work shows how to consider 

obstacles in the clustering process and how to model the 

physical obstacles using the reduction algorithm, but no 

indexing scheme is used for obstacles. In the absence of any 

indexing scheme, all produced reduction lines are checked for 

visibility of a data point. By using an indexing scheme, only 

lines in the neighborhood of a particular data point can be 

checked instead of all the lines. With such a scheme, the 

complexity can be reduced to O (N log N) which would be a 

significant improvement over the proposed algorithm. 
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