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ABSTRACT 

Blind source separation is a well known problem that arises in a 

large number of signal processing applications. In this paper we 

proposed a novel Evolutionary algorithm for Blind source 

separation of Instantaneous mixtures for optimization of 

continuous time domain signals. Among various evolutionary 

optimization principles, a population-based real-parameter 

optimization technique based on differences among population 

members is getting popular in various real-life optimization 

problems. This paper addresses this so-called Differential 

Evolution strategy and shows some sample cases where it can be 

utilized to separate a number of source signals using a particular 

channel.   
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1. INTRODUCTION 
One of the most challenging problem in signal processing is the 

separation of independent sources from observed outputs. In 

many practical situations, one or more desired signals need to be 

recovered from the mixtures. It is an approach to estimate the 

source signals by using only the information of mixed signals 

observed at each input channel [5, 8]. The estimation is 

performed blindly i.e. without possessing information such as its 

location and active time. In several situations it is desirable to 

recover all sources from the recorded mixtures, or at least to 

segregate a particular source. This method can be further utilized 

to extract information about the physical mixing system. 

Generally two types of mixing models are defined instantaneous 

and convolutive models. The instantaneous mixing model as 

shown in Figure1.1 exhibits each mixture as a linear 

combination of source signals. [6, 14].   

In this case, the observed mixtures can be written as 

 

Where A is the mixing matrix and n(n) is additive noise. 

 

Fig 1.1: Block Diagram of Instantaneous BSS model

The additive noise is still a very difficult problem to solve. 

Generally the number of microphones never exceeds the number 

of sources so it will be assumed throughout this paper that the 

additive noise is negligible, i.e. the SNR is high. It will also be 

assumed that the number of sources equals the number of 

microphones, i.e., Ns = Nx [4, 15]. In this instantaneous mixture 

case, the goal of blind source separation is to estimate an 

unmixing matrix B such that: 

 

In other words, blind source separation attempts to find a matrix 

B such that 
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Where ( )s n


  is an estimate of the original source signals 

( )s n . 

EVOLUTIONARY ALGORITHMs (EAs), inspired by the 

natural evolution of species, have been successfully applied to 

solve numerous optimization problems in diverse fields. The 

basic definition of biological evolution says: "Evolution is a 

process that results in heritable changes in a population spread 

over many generations‖. In this paper we have presented 

Differential Evolutionary algorithm for the Blind source 

separation problem. The differential evolution (DE) algorithm, 

proposed by Storm and Price, is a simple yet powerful 

population-based stochastic search technique, which is an 

efficient and effective global optimizer in the continuous search 

domain[9,13]. The diversified application of DE includes many 

fields of engineering such as communication and mechanical 

engineering. In DE, there exists much trial vector generation 

strategies out of which a few may be suitable for solving a 

particular problem. Moreover, three crucial control parameters 

involved in DE, i.e., population size, scaling factor, and 

crossover rate, may significantly influence the optimization 

performance of the DE. Hence, solving a specific optimization 

problem requires time consuming trial and error search so as to 

find out the most appropriate strategy in order to adjust the 

parameter values [1, 12]. However, such a trial-and-error 

searching process requires high computational costs. Moreover, 

as evolution proceeds, the population of DE may move through 

different regions in the search space, wherein the associated 

parameter settings for certain strategies may be more efficient 

than the others. Therefore, it is desirable to adaptively determine 

an appropriate strategy and its associated parameter values at 

different stages of evolution/search process. 

The rest of the paper is organized as follows. Section 2 presents 

the problem statement, Section 3 provides a brief literature 

overview of the DE algorithm, section 4 describes the 

experiments and simulation strategies, results have been 

presented. Finally conclusions and future research directions are 

provided in section 5. 

2. PROBLEM FORMULATION 
Due to the powerful ability of the DE algorithm to optimize data 

values it can be used to solve the BSS problem. The original 

source signal which gets distorted in a channel is denoted by X. 

The channel mixing is denoted by matrix A and the resultant 

signal is denoted by Y [3, 11]. In this method we provide X and 

Y to estimate the mixing matrix called as A_estimated which 

will be used to design the unmixing system to estimate the 

original source signal as  shown in Figure.1.2. 

While designing the system we passed a large number of sample 

patterns through the mixing system to find the distorted patterns 

in order to estimate the mixing matrix [7]. For the sake of 

simulation we have taken the mixing matrix as random. After 

estimating the matrix we found out its inverse which gave us the 

unmixing system as shown in Figure.1.3. 

Now any number of signals which are distorted by the particular 

channel can be processed to find the original source signal [10]. 

 

 

 

Fig.1.2.Block Diagram of mixing matrix optimization 

 

 

 

 Fig.1.3.Block Diagram of unmixing system 

3. DIFFERENTIAL EVOLUTION 
 Differential evolution is an efficient optimization technique 

developed by Storn and Price [9] which is oriented to optimize 

real values. It is a new heuristic and efficient stochastic direct 

search approach like evolutionary algorithm. The beauty of this 

algorithm lies in its simple and compact structure. Like any 

other evolutionary algorithm, DE also starts with a population of 

NP D dimensional parameter vectors. DE is a novel parallel 

direct search method which uses M parameter vectors i=0, 1, 

2….M-as a population for each generation G. M doesn’t change 

during the minimization process. DE is also similar to genetic 

algorithm using the similar operators like crossover, mutation 

and selection. The most important point in DE strategy is that it 

relies on mutation operation [1, 2]. The main operation is based 

on the differences of randomly sampled pairs of solutions in the 

population. It is desirable to adaptively determine an appropriate 

strategy and its associated parameter values at different stages of 

evolution/search process so as to avoid spreading of search 

space. 
The main steps in DE are: 

1. Initialization 

2. Evaluation 

3. Repeat 

i. Mutation 

ii. Recombination 

iii. Evaluation 

iv. Selection 

Until (termination criteria are met) as shown in Figure.1.4. 

 

Fig.1.4. General Evolutionary Algorithm scheme 

3.1 DE Algorithm Description 

DE algorithm aims at evolving a population of NP D-

dimensional parameter vectors, so-called individuals, which 

encode the candidate solutions, i.e. 1

, , ,
,..................,

D

i G i G i G
x xX  

1, ............,i NP towards the global optimum [9]. The initial 

population should better cover the entire search space as much 

Y A-estimate-1 X_estimated 

A 

A-estimate 

X Y 
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as possible by uniformly randomizing individuals within the 

search space constrained by the prescribed minimum and 

maximum parameter bounds 
min

1

min min,..............., DX x x and 

max

1

max max,............... DX x x .For example, the initial value of 

the jth parameter in the ith individual at the generation is 

generated by 

,0 min max min 1, 2..., .......... ..............................0,1 4j j j j

i jrand Dx x x x  

Where rand(0,1) represents a uniformly distributed random 

variable within the range [0,1]. 

3.1.1 Mutation Operation 

After initialization, DE employs the mutation operation to 

produce a mutant vector 
,i GV with respect to each individual 

,i GX so-called target vector, in the current population. For each 

target vector 
,i GX at the generation G, its associated mutant 

vector 1 2

, , , ,, ,............... D

i G i G i G i GV v v v can be generated via 

certain mutation strategy. For example, the five most frequently 

used mutation strategies implemented in the DE codes are listed 

as follows: 

―DE/rand/1‖: 

 

1 2 3
, , , ,

.............. 5.1i i ii G r G r G r G
V X F X X

   
―DE/best/1‖:  

1 2
, , , ,

.............. 5.2i ii G best G r G r G
V X F X X

 

―DE/rand-to-best/1‖:   

1 2
, , , , , ,

.............. 5.3i ii G i G best G i G r G r G
X F FV X X X X 

 

―DE/best/2‖:  

1 2 3 4
, , , , , ,

....................... 5.4i i i ii G best G r G r G r G r G
V X F X X F X X 

 ―DE/rand/2‖:  

1 2 3 4 5
, , , , , ,

........................ 5.5i i i i ii G r G r G r G r G r G
V X F X X F X X 

 

The indices 
1 2 3 4 5, , , ,i i i i ir r r r r are mutually exclusive integers 

randomly generated within the range 1, NP which are also 

different from the index i. These indices are randomly generated 

once for each mutant vector. The scaling factor F is a positive 

control parameter for scaling the difference vector. 
,best GX is the 

best individual vector with the best fitness value in the 

population at generation G. 

 

 

3.1.2 Crossover Operation 

After the mutation phase, crossover operation is applied to each 

pair of the target vector 
,i GX and its corresponding mutant 

vector 
,i GV to generate a trial vector:  

1

, , ,,........., .D

i G i G i GU u u In the basic version, DE 

employs the binomial (uniform) crossover defined as follows: 

,

,

,

, 0,1 ,
(6)

, 1,2,

j

i G j randj

i G
j

i G

v if rand CR or j j
u

x otherwise j D




 

The crossover rate CR is a user-specified constant within the 

range [0, 1), which controls the fraction of parameter values 

copied from the mutant vector. 
randj is a randomly chosen 

integer in the range[1,D].The binomial crossover operator copies 

the thj  parameter of the mutant vector 
,i GV to the corresponding 

element in the trial vector 
,i GU if 0,1jrand CR or 

randj j . Otherwise, it is copied from the corresponding target 

vector 
,i GX .There exists another exponential crossover operator, 

in which the parameters of trial vector 
,i GU are inherited from 

the corresponding mutant vector 
,i GV starting from a randomly 

chosen parameter index till the first time 0,1rand CR
j

. 

The remaining parameters of the trial vector 
,i GU are copied 

from the corresponding target vector 
,i GX .The condition 

randj j is introduced to ensure that the trial vector 
,i GU will 

differ from its corresponding target vector 
,i GX by at least one 

parameter. DE’s exponential crossover operator is functionally 

equivalent to the circular two-point crossover operator [9]. 

3.1.3 Selection 

Finally the offspring produced after the mutation and crossover 

operations is evaluated. Then the performance of the trial vector 

and its parent is compared and the better one is selected. If the 

parent is still better, it is retained in the population. They use 

either tournament selection or a deterministic selection scheme 

to determine which newly generated individuals are to enter the 

next population. Both selection processes require additional cost 

in sorting of the population at each generation. Also the 

population size is the most important factor [9]. DE usually 

employees a fixed population size throughout the search 

process. In order to achieve high computational speed, the 

population size should be as small as possible. The above 3 steps 

are repeated generation after generation until some specific 

termination criteria are satisfied as shown in Figure.1.5. 
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3.1.4 Step-Wise Algorithm 

Step 1:  Set the generation number G=0 and randomly initialize 

a population of NP individuals 

1, , ,............G G NP GP X X with  

1

, , ,............ , 1....................D

i G i G i GX X X i NPuniformly 

distributed in the range 
min max, ,X X  

Where 
1

min min min,.......................... DX x x and  

1

max max max,........................... DX x x  

Step 2:      WHILE stopping criterion is not satisfied. 

 DO 

Step 2.1: Mutation step 

/* Generate a mutated vector 

1

, , ,,........., D

i G i G i GV v v for each target vector 

, /i GX  

FOR  i = 1 to NP 

Generate a mutated vector 

1 2

, , , ,, ,............... D

i G i G i G i GV v v v

corresponding to the target vector 
,i GX

via one of the strategies. 

END FOR 

Step 2.2: Crossover step 

/*Generate a trial vector 

1

, , ,,........., D

i G i G i GU u u for each target 

vector 
, /i GX  

Binomial Crossover 

FOR   i = 1 to NP 

0,1
rand

j rand D  

FOR   j = 1 to D 

,

,

,

, 0,1 ,

, 1,2,

j

i G j randj

i G
j

i G

v if rand CR or j j
u

x otherwise j D

  END FOR 

END FOR 

Exponential Crossover 

FOR i = 1 to NP 

0,1 , 0j rand D L  

, ,i G i GU X  

DO 

, ,

j j

i G i Gu v  

1
D

j j  

1L L  

WHILE 0,1 &rand CR L D  

END FOR 

Step 2.3: Selection Step 

/* Selection */ 

FOR i = 1 to NP 

Evaluate the trial vector 
,i GU  

IF 
, , ,i G i Gf U f X THEN 

, 1 , , 1 ,,i G i G i G i GX U f X f U

IF 
, ,i G best Gf U f X ,   THEN 

, , , ,,best G i G best G i GX U f X f U  

END IF 

END IF 

END FOR 

Step 2.4: Increment the generation count 

1G G  

Step 3:   END WHILE 
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Fig.1.5 .Flow chart of a DE algorithm 

4. SIMULATION AND RESULTS 
Algorithm Parameters 

The parameters used for optimization in the DE algorithm are 

Strategy = 5 

1 2 3 5
4

, 1 2 ,, , , ,i i i i
ir

i G Gr G r G r G r G
X F FV X X X X 

 

V = Mutant Vector 

X = target Vector 

Scaling factor ( F1 ) = 0.5 

Scaling factor ( F1 )  = 0.3 

Crossover Rate ( CR ) = 0.8 

Population ( NP ) = 20 

Generations ( G ) = 1000 

Computational Experiments 

4.1 Simulation using 11 Sources 

11 Sine waves having frequency ranging from 10 Hz and above 

with 10Hz frequency difference and sampling time 0.01 sec are 

taken as source signal and passed through a mixing channel 

denoted by mixing matrix A as shown in Figure.1.6. 

Fig.1.6. Mixing Matrix A

 

 

Fig 1.7. Error convergence curve of 1000 

generations 

 

Optimization Results 

Train Error = 1.9448110450385 

Test Error = 0.0277830149291215 

Error in training = 0.027783014929 per pattern trained 

Error in testing = 0.000926100498 per pattern tested 

50th pattern of all input sources signals, distorted sources signals  

output estimated signals and error convergence curve were 

displayed for comparison as shown in Figure.1.7-Figure.1.10. 

0.814724 0.970593 0.849129 0.046171 0.186873 0.498364 0.547216 0.251084 0.547216 0.251084 0.380446 0.337123 0.450542 

0.905792 0.957167 0.933993 0.097132 0.489764 0.959744 0.138624 0.616045 0.138624 0.616045 0.567822 0.162182 0.083821 

0.126987 0.485376 0.678735 0.823458 0.445586 0.340386 0.149294 0.473289 0.149294 0.473289 0.075854 0.794285 0.228977 

0.913376 0.80028 0.75774 0.694829 0.646313 0.585268 0.257508 0.35166 0.257508 0.35166 0.05395 0.311215 0.913337 

0.632359 0.141886 0.743132 0.317099 0.709365 0.223812 0.840717 0.830829 0.840717 0.830829 0.530798 0.528533 0.152378 

0.09754 0.421761 0.392227 0.950222 0.754687 0.751267 0.254282 0.585264 0.254282 0.585264 0.779167 0.165649 0.825817 

0.278498 0.915736 0.655478 0.034446 0.276025 0.255095 0.814285 0.549724 0.814285 0.549724 0.934011 0.601982 0.538342 

0.546882 0.792207 0.171187 0.438744 0.679703 0.505957 0.243525 0.917194 0.243525 0.917194 0.129906 0.262971 0.996135 

0.957507 0.959492 0.706046 0.381558 0.655098 0.699077 0.929264 0.285839 0.929264 0.285839 0.568824 0.654079 0.078176 

0.964889 0.655741 0.031833 0.765517 0.162612 0.890903 0.349984 0.7572 0.349984 0.7572 0.469391 0.689215 0.442678 

0.157613 0.035712 0.276923 0.7952 0.118998 0.959291 0.196595 0.753729 0.196595 0.753729 0.011902 0.748152 0.106653 
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Fig.1.8.Original Source Signal 

 

 

 

Fig 1.9.Distorted Signal 

 

 

Fig 1.10.Estimated Signal 

4.2 Simulation using 20 Sources 

20 Sine waves having frequency ranging from 10 Hz and above 

with 10Hz frequency difference and sampling time 0.01 sec are 

taken as source signal and passed through a mixing channel 

denoted by mixing matrix A as shown in Figure.1.11. 
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Fig.1.11.Mixing Matrix A

 

 

 

Fig.1.12.Error convergence curve of 1000 

generations 

 

Optimization Results 

Train Error = 338.436040547461 

Test Error = 4.83480057924944 

Error in training = 4.834800579249 per pattern trained 

Error in testing = 0.161160019308 per pattern tested 

  Signal System 



International Journal of Computer Applications (0975 – 8887) 

Volume 30– No.7, September 2011 

54 

50th pattern of all input sources signals, distorted sources signals 

output estimated signals and error convergence curve were 

displayed for comparison as shown in Figure1.12-Figure.1.15. 

 

 

Fig.1.13.Original Source Signal 

 

 
 

Fig.1.14.Distorted Signal 

 

 

 

Fig.1.15.Estimated Signal 

 

5. CONCLUSION 
 

In this paper we have studied an effective evolutionary 

algorithm termed DE used for solving the blind source 

separation problem. DE is a very simple and straightforward 

strategy. Three crucial control parameters involved in DE, i.e., 

population size, scaling factor, and crossover rate, may 

significantly influence the optimization performance of the DE. 

DE is a stochastic direct search method and thus has the 

advantage of easy implementation to the experimental 

miniaturization. The method remains efficient on linear 

instantaneous mixtures. Initial experiment shows the 

performance of DE in terms of number of sources to be 

separated. It also shows an excellent performance in separating a 

large number of data sets.  

 

6. FUTURE WORK 

 

An interesting opportunity for future research would be the 

extension of this method to the real world environment where 

convolutive mixtures are involved. Noise strongly limits the 

separation performance, encouraging us to use the denoising 

processing. We further intend to carry out comparison of DE 

performance with other evolutionary algorithms. Performance of 

DE in combination with other optimization algorithms for quick 

problem solving applications while maintaining its simplicity 

remains an area of interest for us. 
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