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ABSTRACT 

Graphs are the ubiquitous models for constructing both natural 

and human-made structures. Many practical problems can be 

represented by graphs. They can be used to model many 

applications such as physical, biological and social systems. 

With the emergence of these applications, developments of 

graph databases are very useful to store graph data. Due to the 

existence of noise (e.g., duplicated graphs) in the graph 

database, we investigate the problem of storing the same graphs 

in the single graph database. Therefore, detecting and 

eliminating of automorphic graphs in a graph database become 

an important research area. In this paper, we propose a novel 

DAGC algorithm to identify and removal of automorphic graph 

storing into the graph database using AdE index structure. AdE 

index structure incorporates graph structural information of each 

graph in the database. The computational time complexity is 

significantly reduced compared to canonical labeling approach 

used in most graph matching algorithms and F-GAF algorithm. 

This paper demonstrates the effectiveness and efficiency of the 

proposed method through experiments on various types of 

graphs. 
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1. INTRODUCTION 
Graphs are used to represent networks of communication, social 

network, data organization, and the flow of computation etc. 

Graph theory is also used to study molecules in chemistry and 

physics. In chemistry a graph can be used for building the model 

of a molecule, where vertices correspond to atoms and edges 

bonds. In statistical physics, graphs characterize connections 

between interacting parts of a system. 

Graph isomorphism is a problem to determine whether given 

two graphs G1 and G2 are isomorphic, to find a mapping from a 

set of vertices to another set. Automorphism is a special case of 

graph  isomorphism where the two graphs are identical, which 

means to find a mapping from a graph to itself. Subgrpah 

isomorphism is to find an isomorphism between G1 and a 

subgraph of G2. In other words, it is to determine if a graph is 

included in the other larger graph. 

There are several different ways to solve graph isomorphism. 

Graph isomorphism can be solved starting from a single vertex 

in one graph; try to find a mapping to one of the vertices in the 

other graph that is consistent with the labeling [1]. Then, the 

vertices are added one by one until either finding a complete 

mapping or ending up with exhausting the search space using 

the same process. This approach can solve both graph and 

subgraph isomorphism problem. 

To identify automorphism between graphs, a graph can be 

represented in many different ways, depending on the order of 

its edges or vertices. To get total order of graphs, canonical 

labeling can be used. A canonical label is a unique code of a 

given graph. Canonical codes should be always the same no 

matter how graphs are represented, as long as those graphs have 

the same topological structure and the same labeling of edges 

and vertices. The database contains the duplicated graphs if their 

canonical codes are identical [1,10]. 

In this paper,an efficient DuplicatedAutomorphicGraphCleaning 

(DAGC) algorithm is proposed that uses AdE structure for 

identifying and filtering automorphic graphs efficiently. AdE 

structure can also eliminate automorphic graphs getting stored 

into the graph database. 

The rest of the paper is organized as follows. Section II 

represents the formal definitions and notations used for the 

proposed work. Section III discusses about the related work of 

graph isomorphism. Section IV discusses about the proposed 

work. Section V explains DAGC algorithm. Section VI talks 

about identifying duplicated automorphic graphs. Section VII 

presents the analysis and illustration of three techniques. Section 

VIII presents the experimental results. Section IX discusses 

about the conclusion. 

2.  PRELIMINARIES CONCEPTS 
This section describes the formal graph definitions and notation 

used for this work. 

Definition 1: Labeled Graph 
A labeled graph G  is defined as a 4-tuple, ),,,,( lLLEV EV

 

where V  is the set of vertices, VVE  is the set of edges, 

VL and 
EL are the set of labels of vertices and edges and l  is a 

labeling function assigning a label to a vertex
VLVl :  or an 

edge
ELEl : . 

Definition 2: Graph Isomorphism 
Let ),,,,( lLLEVG EV

 and ),,,,( lLLEVG EV
 be two 

graphs. A subgraph isomorphism from G  to G  is an injective 

function   
VLVf :   such that (1) Vu , ))(()( uflul , 

and (2) Evu ),(  , ))(),((),( vfuflvul . 

Definition 3: Graph Automorphism 
Automorphism is a special case of graph isomorphism where 

21 GG , which means to find a mapping from a graph to itself. 

Most simplicity, an automorphism of a graph is an isomorphism 

from the graph to itself. 



International Journal of Computer Applications (0975 – 8887) 

Volume 30– No.4, September 2011 

9 

3. RELAED WORK 
The power of using graphs to model complex datasets has been 

recognized by various researchers in chemical domain [3,4], 

computer vision [5,6], and machine learning [8,10]. There have 

been developed algorithms that discover all frequently occurring 

subgraphs in a large graph databases is particularly challenging 

and computationally intensive, as graph and subgraph 

isomorphism plays a key role throughout the computations. 

Isomorphism between graphs becomes active research area. 

Most frequent subgraphs mining and graph isomorphism 

problems employ canonical code of a graph to test whether two 

graphs are isomorphic or not.  A canonical form is to construct a 

code word that uniquely identifies a graph up to automorphism. 

The code word describes the connection structure of the graph. 

The resulting code words are sorted lexicographically. Then, the 

maximal (minimal) canonical code is chosen from all possible 

codes for a given graph[7,10]. 

The search space of canonical labeling can be reduced with 

vertex invariants. Vertex invariant is a well-known technique in 

which we can partition the vertices by their degrees and labels. 

Then, we try all the possible permutations of vertices inside each 

partition. Vertex invariants do not asymptotically change the 

computational complexity of canonical labeling. For example, if 

a given graph is regular, we cannot create fine partitions and 

vertex invariants do not reduce the search space [9]. 

A repository of processed subgraphs is the most straightforward 

way of avoiding redundant search. Every encountered frequent 

subgraph is stored in a data structure, which allows us to check 

quickly whether a given subgraph is contained in it or not. 

Whenever a new subgraph is created, this data structure is 

accessed and if it contains the subgraph, we know that it has 

already been processed and thus can be discarded. Only 

subgraphs that are not contained in the repository are extended 

and, inserted into the repository [4]. 

An efficient Fast-Graph Automorphic Filter (F-GAF) algorithm 

is proposed that used grid-code representation of graphs [2]. 

Given a graph database, this algorithm checks the automorphism 

of graphs without generating huge number of permutation 

matrices used in canonical labeling. 

4. PROPOSED WORK 
In this section, we discuss about an efficient Duplicated 

Automorphic Graph Cleaning (DAGC) algorithm that uses (i) 

the edge dictionary which contains the distinct edges of graphs 

stored in the graph database and (ii) adjacent edge (AdE) 

structure to identify and filter automorphic graphs efficiently. 

Our proposed approach bases on edge-based representation. 

The proposed algorithm consists of four steps: (1) in the 

preprocessing step, grouping the same label vertices from the 

input graph and generating the corresponding edge list, (2) 

inserting the distinct edge into the edge dictionary if the edge 

does not exist in it, (3) computing the AdE structure for each 

graph and (4) matching AdE structures of existing database 

graphs with that structure of new graph to identify whether the 

new one already exists or not. The notations used in the DGAC 

algorithm are listed in Table 1. The architecture of our proposed 

system is shown in figure 1.  

 

Fig 1: Architecture of the system 

4.1 Preprocessing 
In this phase, the input graph is preprocessed to collect 

information such as number of vertices N, number of edges E. 

To group vertices, vertices with the same label are grouped and 

counts the total number of same vertex labels. The vertices in 

the graph are considered as the same label if the label of a vertex 

is the same as that of another vertex in the graph. Each edge in 

the graph is collected to get the edge list of the given graph 

where each edge is represented as 3-tuples (u,le,v) where vis 

source vertex label, e is edge label and u is destination vertex 

label. 

Table 1. Notations used in DAGC algorithm  

Notation Definition 

GDB Graph Database 

N←|V| Number of vertices in G 

E←|E| Number of edges in G 

SG(G) Same label vertices group in G 

G Input graph 

E(G) Edge list in G 
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AdE(G) Adjacent edge structure of G 

De(G) Distinct edge in G 

AdEstore AdE structure stores in the AdE storage 

eadj Adjacent edge of an edge e 

EDict Edge Dictionary 

4.2 Edge Dictionary 
The edge dictionary contains two parts: edge identifier (ID) and 

edge in the graph (Edge) which is the unique edge containing in 

the database. In the dictionary, an edge e is defined as 3-tuple 

(u,le,v)  where u and v are the labels of the vertices and le is the 

label of the edge itself. Each edge appears only once in the edge 

dictionary, no matter how many times it appears in the graphs.  

When a graph introduces in the graph database, the distinct 

edges are taken from the graph. And then it needs to check 

whether these edges already exist in the edge dictionary. If this 

contains these edges, we look up the corresponding identifier of 

that edge and use the identifier for further processing. If the edge 

is not in the dictionary already, the edge is then inserted into the 

dictionary and the corresponding ID of the edge dictionary 

increases serially.   Moreover, most graphs in the chemical 

compound database have most similar edges and vertices and 

our proposed work mostly focuses on this chemical compound 

dataset. 

4.3 Adjacent Edge Structure(AdE) 
The AdE structure contains nearest neighbor   information for 

each edge appeared in the graph. This AdE structure can be 

computed using the edge information from the preprocessing 

step and unique identifier of the edge from the edge dictionary. 

For all edges in the graph, the adjacent edges of each edge are 

computed where the identifiers of the adjacent edges are the 

unique edge identifiers defined in the dictionary. Moreover, the 

adjacent edge information for the graphs is transformed into 

AdE (Adjacent Edge) structure for further string comparisons 

efficiently. 

4.4 Matching AdE Structure 
AdE structure of the input graph is matched with that of other 

graph in the database to check whether the two graphs are 

automorphic or not. If the two graphs have the same AdE 

representation then the algorithm concludes that the graphs are 

automorphic and terminates without adding AdE structure and 

the graph itself into the storage engine. If any of these 

parametric quantities of AdE are different, the algorithm 

immediately reasons out that the graphs are different and put in 

AdE of the graph to the AdE storage structure and the graph into 

the database and terminates the process. 

5. DUPLICATED AUTOMORPHIC GRAPH 

CLEANING (DAGC) ALGORITHM 
The DAGC algorithm works according to the above four steps 

described in section 4. Firstly, DAGC compares the total 

number of vertices (N) in one graph with those in the other 

graph. Secondly, if N is same, same label vertices group (SGs) 

of these graphs are compared. Finally, AdEs of those graphs are 

also compared only if these graphs have same labels of vertices. 

This reduces the time consuming comparisons. Moreover, the 

proposed algorithm dramatically shortens the computational 

times complexity needed for identifying automorphic graphs 

when compared to F-GAF (Fast-Graph Automorphic Filter) 

algorithm and canonical labeling. Figure 2 and 3 show the 

DAGC algorithm for automorphic graph checking and the 

algorithm for generating adjacent edge structure. 

Algorithm DuplicatedAutomorphicGraphCleaning  (DAGC) 

 

Input:      GDB←{G1,G2, ...,Gi-1},E(Gi)←input graph, EDict, 

                AdEstore←{AdE(G1),AdE(G2),...,AdE(Gi-1)}  

Output: GDB←{G1,G2,...,Gi-1,Gi},AdEstore←AdE(G1),AdE(G2) 

,...,AdE(Gi-2),AdE(Gi-1),AdE(Gi)}if AdE(Gi)∉AdEstore 

GDB:= Ø 

ID:=0 

If ∄De(Gi) ∈ EDict then 

EDict.ID:= EDict.ID+1 

EDict.Edge:=EDict.Edge+De(Gi) 

End if 

AdE(Gi) ←GenerateAdEStructure(E(Gi),EDict)) 

If Gi is the first graph entering into GDB then

 AdEstore:=AdEstore+AdE(Gi) 

  GDB := GDB + Gi 

Return 

End if 

For each graph Gj 

If (N(Gj) = N(Gi)) then 

If (SG(Gj) = SG(Gi)) then  

If ((AdE(Gj) = AdE(Gi)) then  

 Result “ Gj ≡ Gi” and Reject Gi 

 Else 

 AdEstore:=AdEstore + AdE(Gi) 

 GDB:= GDB+ Gi 

End if 

       End if 

End if 

Return 

Fig 2:  DAGC Algorithm 

 

Algorithm GenerateAdEStructure(E(Gi),EDict) 

∀ De(Gi) ∈ Gi 

Find all eadj for De(Gi) 

Substitute each eadj with corresponding EDict.ID 

AdE(Gi):= all eadj for each De(Gi) 

Return AdE(Gi) 

Fig 3: GenerateAdEStructure algorithm 
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6. IDENTIFYING DUPLICATED 

AUTOMORPHIC GRAPH 
Identifying symmetries is an important application of graph 

isomorphism. The collection of information about symmetries in 

the graph becomes identical to itself. If we can identify the 

graphs in GDB are duplicates, they can be discarded to avoid 

redundant work. 

When a new graph GN introduces to GDB, we need to recognize 

this new graph to eliminate redundant storing into the database. 

This process can also reduce needless loss of performance for 

further query processing. To identify automorphic graph, our 

proposed algorithm needs to check the nearest neighbor edges 

information of each De of GN. To restrict the search space for 

adjacent edges information, the edge dictionary is used to 

discover the unique edge identifier of each De contain in GN. If 

the edge dictionary does not contain all De, it is certain that the 

input GN does not already exist in GDB. When all edges in GN 

were previously defined in the dictionary, these edges are fixed 

with the identifiers of edges using the edge dictionary.  

After assigning the edges with ID, we use these IDs to find 

adjacent edges information for each De in GN. Instead of using 

the edges themselves, the identifiers of these edges can narrow 

down the storage space and efficient comparison for advance 

processing. Then we find all eadj of each De and group together 

to become AdE(GN). To avoid the time consuming comparisons, 

we first compare N(GN) and SG(GN) with those of the graphs 

stored in GDB. If the parameters of GN are same with those of at 

least one of the graphs, we need to compare AdE(GN) with AdEs 

collected in AdEstore. If these structures contain the same value, 

we conclude that the input GN and one of the graphs in GDB are 

identical and remove GN from GDB.  

7. ANALYSIS AND ILLUSTRATION OF 

PROPOSED TECHNIQUE 
The illustration and analysis of the computational time 

complexity of our proposed DAGC algorithm is depicted as 

follow. We apply chemical compound database in our proposed 

system. Figure 3 illustrates the chemical compound graph of 

shikimic acid and step-by-step procedure to obtain the AdE 

structure of Gshikimic. To check whether Gshikimic already exists in 

GDB, the worst case number of comparisons taken by the 

proposed technique is also described. 

According to the preprocessing step, the same label vertices can 

be grouped as follow. Atoms such as O, H and C are defined as 

nodes in the graph and bonds such as single (s) and double (d) 

represented edges. 

SG (Gshikimic) = { H = 4, O = 5, C = 7} 

The edge dictionary can be obtained using the edge list 

information from the preprocessing step. The dictionary of 

Gshikimic is shown in table 2. Assume that initially the edge 

dictionary contains no edge and Gshikimic is the first graph 

entering into the GDB. 

The AdE structure contains adjacent edges information for each 

edge appeared in the graph. To obtain AdE structure of a graph, 

AdE engine obtains edge information from the preprocessing 

stage and the edge dictionary. Table 3 shows the nearest 

neighbor edges for each edge in the Gshikimic. 

Fig 4:  A chemical compound graph of shikimic acid 

(Gshikimic) 

Table 2.  EDict of graph Gshikimic 

ID Edge 

1 <H, s, O> 

2 <O, d, C> 

3 <O, s, C> 

4 <C, s, C> 

5 <C, d, C> 

 

Table 3. Adjacent edge information of Gshikimic 

ID Adjacent Edge 

1 
1     12    15    16 

<3>, <3>, <3>,<3> 

2 
2 

<3,4> 

3 
                    3             9            13          14 

<1,2,4>, <1,4,4>, <1,4,4>, <1,4,4> 

4 
    4             6           7           8            10             11 

<2,3,4,5>,<4,4,5>,<3,4,4>,<3,4,5>,<3,3,4,4>,<3,3,4,4> 

5 
5 

<4,4,4> 

 

Then the adjacent edge information of Gshikimic can be 

represented in term of AdE structure.  

AdE(Gshikimic)={1{{3},{3},{3},{3}},2{3,4},3{{1,2,4},{1,4,4},{

1,4,4},{1,4,4}},4{{2,3,4,5},{4,4,5},{3,4,4},{3,

4,5},{3,3,4,4},{3,3,4,4}},5{4,4,4}} 

2 3 
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The analysis of the computational time of DAGC algorithm is 

described as follows. To find the AdE structure for each graph, 

the algorithm takes E comparisons to generate distinct edge list 

of each graph. The same numbers of E comparisons are required 

to check the dictionary where the edges in the incoming graph 

are already in it. Then, E comparisons are needed to get the 

adjacent edge information of edges in the graph. Therefore, the 

total number of comparisons needed for constructing the AdE 

structure is(E+E+E) =3E. 

Assume there are k graphs already in the GDB. We need to 

check whether the new input graph k+1 is automorphic to any of 

the k graphs. In the preprocessing step, the computational time 

to compare the number of vertices in the graph is 1. It requires N 

comparisons to group the same label vertices for a graph. The 

number of comparisons needed to compare the same group 

vertices is also N. At the worst case, comparison between AdE 

structures is E(E-1). Therefore, the maximum number of 

comparisons needs to check out k graphs would be 

k(1+N+N+E2-E). Therefore, at the worst case, the total number 

of comparisons for DAGC algorithm would be 3E+k(1+2N+E2-

E). 

The detail analysis of computational time of our propose DAGC 

algorithm for chemical compound graph Gshikimic is described as 

follow. There are 16 vertices and 16 edges in   Gshikimic . To 

generate the distinct edge list for this graph, we need to take 16 

comparisons. To check whether the edges in the graph already 

exist in the edge dictionary, the number of comparison needed is 

16. To compute the adjacent edge information for each edge, 16 

comparisons are needed. Therefore, the total number of 

comparisons for AdE structure is (16+16+16)=48. 

To check whether Gshikimic exists in GDB or not, we need to 

compare the AdE structure of Gshikimic with other AdE structures 

of AdE storage. To reduce the computational time complexity, 

we first check the total number of vertices in Gshikimic. The time 

complexity to check vertices count is 1. The number of 

comparisons to group same label vertices is 16 (no. of vertices in 

Gshikimic). To test the same group vertices, the number of 

comparisons required is 16. If the vertices of Gshikimic match with 

one of the graphs in GDB, the AdE structure of Gshikimic is 

needed to compare with those structures of the graphs in GDB. 

The number of comparisons necessitates to comparing AdE 

structure is 240(E2-E). If the database contains 100 graphs, the 

total time complexity of DAGC algorithm is 

48+100(1+16+16+240) =27,348. 

8. EXPERIMENTAL RESULTS 
A study on three techniques to test various types of graphs such 

as sparse, dense and complete graphs was conducted. Table 4 

describes the total time complexity of three techniques: 

Canonical Code, Fast-Graph Automorphic Filter (F-GAF) 

algorithm, and DAGC algorithm. In canonical code, we need to 

compute the factorial of total number of vertices (V!) for a graph 

because it is vertex-based representation. Then maximum or 

minimum canonical code must be selected from the number of 

V! canonical codes. Assume the length of each canonical code is 

l. Therefore, if the number of graphs in GDB is k, we need to 

compare )!( lVk times for each graph to check whether the 

input graph is automorphic or not. For F-GAF algorithm, the 

grid code representation of each graph requires 4E comparisons 

and it is based on edge-based representation. Then the worst 

case number of comparisons for F-AGF 

))5(32(4 2 NNEkE . 

Table 5 and 6 shows the analysis of computational time 

complexity of three techniques. Our proposed work significantly 

reduces the number of comparisons needed for identifying 

automorphic graphs than canonical code representation. Our 

proposed DAGC algorithm can mostly reduce at least 15 times 

computational time complexity for sparse graph when compared 

to F-GAF algorithm. It also reduces the number of comparisons 

more commonly than F-GAF for dense graphs and complete 

graphs. As a result, the study shows that our method performs 

proficiently well compared to canonical code representation. 

Moreover, our method reduces the computational time 

complexity more efficiently than F-GAF algorithm. DAGC 

algorithm outperforms other two techniques when the graphs in 

GDB are chemical compound datasets because the graphs in 

chemical compound database are sparse and dense graphs. 

Table 4. Time complexity to check graph automorphism of 

three techniques 

Techniques Total Time Complexity 

 Canonical Code )!( lVk  

F-GAF ))5(32(4 2 NNEkE  

DAGC )21(3 2 EENkE  

 

Table 5. Comparisons between three techniques for (50) 

graphs 

No. of graphs in GDB=50 

Sparse graphs  

No. of 

vertices 

No. of 

Edges  

Techniques 

Canonical Code F-GAF DAGC 

8 9 20,160,000 81,086 4,477 

9 11 181,440,000 102,594 6,483 

10 12 1,995,840,000 126,448 7,686 

Dense graphs 

8 20 20,160,000 82,780 19,910 

9 28 181,440,000 105,212 38,834 

10 35 1,995,840,000 129,990 60,655 

Complete graphs 

8 28 20,160,000 84,012 38,734 

9 36 181,440,000 106,144 64,058 

10 45 1,995,840,000 131,530 100,185 



International Journal of Computer Applications (0975 – 8887) 

Volume 30– No.4, September 2011 

13 

Table 6. Comparisons between three techniques for (100) 

graphs 

No. of graphs in GDB=100 

Sparse graphs  

No. of 

vertices 

No. of 

Edges  

Techniques 

Canonical Code F-GAF DAGC 

8 9 40,320,000 162,136 8,927 

9 11 362,880,000 205,144 12,933 

10 12 3,991,680,000 252,848 15,336 

Dense graphs 

8 20 40,320,000 154,680 39,760 

9 28 362,880,000 210,412 77,584 

10 35 3,991,680,000 259,840 121,205 

Complete graphs 

8 28 40,320,000 167,912 77,384 

9 36 362,880,000 212,744 128,008 

10 45 3,991,680,000 262,880 200,235 

9. CONCLUSION 
In this paper, we propose an efficient algorithm to identify and 

removal of automorphic graph storing into the graph database 

using the edge dictionary for overall graph database and 

adjacent edge structure (AdE) for each graph. The edge 

dictionary is efficiently used to narrow down the search space of 

adjacent edge information. The proposed approach eliminates 

the duplicated graphs storing in DB using the AdE structure. 

The AdE structure is described in term of string and therefore it 

is more efficient for further query processing. The 

computational time complexity is significantly reduced 

compared to canonical code and F-GAF algorithm. This 

approach requires more space for constructing the edge 

dictionary when the graphs in the graph database contain mostly 

distinct edges. However, the storage space can be reduced when 

the edges in graphs are most similar such as graphs in chemical 

compound database.  
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