
International Journal of Computer Applications (0975 – 8887)

Volume 30– No.4, September 2011

8

DAGC: Identification and Filtration of Automorphic

Graphs in Graph Databases

Aye Nwe Thaing

 University of Computer Studies,
Yangon, Myanmar

Kyaw May Oo
University of Computer Studies,

Yangon, Myanmar

ABSTRACT

Graphs are the ubiquitous models for constructing both natural

and human-made structures. Many practical problems can be

represented by graphs. They can be used to model many

applications such as physical, biological and social systems.

With the emergence of these applications, developments of

graph databases are very useful to store graph data. Due to the

existence of noise (e.g., duplicated graphs) in the graph

database, we investigate the problem of storing the same graphs

in the single graph database. Therefore, detecting and

eliminating of automorphic graphs in a graph database become

an important research area. In this paper, we propose a novel

DAGC algorithm to identify and removal of automorphic graph

storing into the graph database using AdE index structure. AdE

index structure incorporates graph structural information of each

graph in the database. The computational time complexity is

significantly reduced compared to canonical labeling approach

used in most graph matching algorithms and F-GAF algorithm.

This paper demonstrates the effectiveness and efficiency of the

proposed method through experiments on various types of

graphs.

Keywords

Graph Database, Graph Automorphism, Graph Mining,

Canonical Adjacency Matrix, Chemical Compound

1. INTRODUCTION
Graphs are used to represent networks of communication, social

network, data organization, and the flow of computation etc.

Graph theory is also used to study molecules in chemistry and

physics. In chemistry a graph can be used for building the model

of a molecule, where vertices correspond to atoms and edges

bonds. In statistical physics, graphs characterize connections

between interacting parts of a system.

Graph isomorphism is a problem to determine whether given

two graphs G1 and G2 are isomorphic, to find a mapping from a

set of vertices to another set. Automorphism is a special case of

graph isomorphism where the two graphs are identical, which

means to find a mapping from a graph to itself. Subgrpah

isomorphism is to find an isomorphism between G1 and a

subgraph of G2. In other words, it is to determine if a graph is

included in the other larger graph.

There are several different ways to solve graph isomorphism.

Graph isomorphism can be solved starting from a single vertex

in one graph; try to find a mapping to one of the vertices in the

other graph that is consistent with the labeling [1]. Then, the

vertices are added one by one until either finding a complete

mapping or ending up with exhausting the search space using

the same process. This approach can solve both graph and

subgraph isomorphism problem.

To identify automorphism between graphs, a graph can be

represented in many different ways, depending on the order of

its edges or vertices. To get total order of graphs, canonical

labeling can be used. A canonical label is a unique code of a

given graph. Canonical codes should be always the same no

matter how graphs are represented, as long as those graphs have

the same topological structure and the same labeling of edges

and vertices. The database contains the duplicated graphs if their

canonical codes are identical [1,10].

In this paper,an efficient DuplicatedAutomorphicGraphCleaning

(DAGC) algorithm is proposed that uses AdE structure for

identifying and filtering automorphic graphs efficiently. AdE

structure can also eliminate automorphic graphs getting stored

into the graph database.

The rest of the paper is organized as follows. Section II

represents the formal definitions and notations used for the

proposed work. Section III discusses about the related work of

graph isomorphism. Section IV discusses about the proposed

work. Section V explains DAGC algorithm. Section VI talks

about identifying duplicated automorphic graphs. Section VII

presents the analysis and illustration of three techniques. Section

VIII presents the experimental results. Section IX discusses

about the conclusion.

2. PRELIMINARIES CONCEPTS
This section describes the formal graph definitions and notation

used for this work.

Definition 1: Labeled Graph
A labeled graph G is defined as a 4-tuple,),,,,(lLLEV EV

where V is the set of vertices, VVE is the set of edges,

VL and
EL are the set of labels of vertices and edges and l is a

labeling function assigning a label to a vertex
VLVl : or an

edge
ELEl : .

Definition 2: Graph Isomorphism
Let),,,,(lLLEVG EV

 and),,,,(lLLEVG EV
 be two

graphs. A subgraph isomorphism from G to G is an injective

function
VLVf : such that (1) Vu ,))(()(uflul ,

and (2) Evu),(,))(),((),(vfuflvul .

Definition 3: Graph Automorphism
Automorphism is a special case of graph isomorphism where

21 GG , which means to find a mapping from a graph to itself.

Most simplicity, an automorphism of a graph is an isomorphism

from the graph to itself.

International Journal of Computer Applications (0975 – 8887)

Volume 30– No.4, September 2011

9

3. RELAED WORK
The power of using graphs to model complex datasets has been

recognized by various researchers in chemical domain [3,4],

computer vision [5,6], and machine learning [8,10]. There have

been developed algorithms that discover all frequently occurring

subgraphs in a large graph databases is particularly challenging

and computationally intensive, as graph and subgraph

isomorphism plays a key role throughout the computations.

Isomorphism between graphs becomes active research area.

Most frequent subgraphs mining and graph isomorphism

problems employ canonical code of a graph to test whether two

graphs are isomorphic or not. A canonical form is to construct a

code word that uniquely identifies a graph up to automorphism.

The code word describes the connection structure of the graph.

The resulting code words are sorted lexicographically. Then, the

maximal (minimal) canonical code is chosen from all possible

codes for a given graph[7,10].

The search space of canonical labeling can be reduced with

vertex invariants. Vertex invariant is a well-known technique in

which we can partition the vertices by their degrees and labels.

Then, we try all the possible permutations of vertices inside each

partition. Vertex invariants do not asymptotically change the

computational complexity of canonical labeling. For example, if

a given graph is regular, we cannot create fine partitions and

vertex invariants do not reduce the search space [9].

A repository of processed subgraphs is the most straightforward

way of avoiding redundant search. Every encountered frequent

subgraph is stored in a data structure, which allows us to check

quickly whether a given subgraph is contained in it or not.

Whenever a new subgraph is created, this data structure is

accessed and if it contains the subgraph, we know that it has

already been processed and thus can be discarded. Only

subgraphs that are not contained in the repository are extended

and, inserted into the repository [4].

An efficient Fast-Graph Automorphic Filter (F-GAF) algorithm

is proposed that used grid-code representation of graphs [2].

Given a graph database, this algorithm checks the automorphism

of graphs without generating huge number of permutation

matrices used in canonical labeling.

4. PROPOSED WORK
In this section, we discuss about an efficient Duplicated

Automorphic Graph Cleaning (DAGC) algorithm that uses (i)

the edge dictionary which contains the distinct edges of graphs

stored in the graph database and (ii) adjacent edge (AdE)

structure to identify and filter automorphic graphs efficiently.

Our proposed approach bases on edge-based representation.

The proposed algorithm consists of four steps: (1) in the

preprocessing step, grouping the same label vertices from the

input graph and generating the corresponding edge list, (2)

inserting the distinct edge into the edge dictionary if the edge

does not exist in it, (3) computing the AdE structure for each

graph and (4) matching AdE structures of existing database

graphs with that structure of new graph to identify whether the

new one already exists or not. The notations used in the DGAC

algorithm are listed in Table 1. The architecture of our proposed

system is shown in figure 1.

Fig 1: Architecture of the system

4.1 Preprocessing
In this phase, the input graph is preprocessed to collect

information such as number of vertices N, number of edges E.

To group vertices, vertices with the same label are grouped and

counts the total number of same vertex labels. The vertices in

the graph are considered as the same label if the label of a vertex

is the same as that of another vertex in the graph. Each edge in

the graph is collected to get the edge list of the given graph

where each edge is represented as 3-tuples (u,le,v) where vis

source vertex label, e is edge label and u is destination vertex

label.

Table 1. Notations used in DAGC algorithm

Notation Definition

GDB Graph Database

N←|V| Number of vertices in G

E←|E| Number of edges in G

SG(G) Same label vertices group in G

G Input graph

E(G) Edge list in G

Input Graph G

Preprocessing

Group same label vertices

Generate edge list

Edge Dictionary

AdE Structure

Match AdE with new graph

AdE

Storage engine

GDB AdE Storage

G
D

B
=

G
D

B
+

G
 (

if
f

A
d

E(
G

)
d

o
e

s
n

o
t

al
re

ad
y

e
xi

st
 in

 G
D

B
)

AdE Engine

(iff AdE(G) is not

already exist)

International Journal of Computer Applications (0975 – 8887)

Volume 30– No.4, September 2011

10

AdE(G) Adjacent edge structure of G

De(G) Distinct edge in G

AdEstore AdE structure stores in the AdE storage

eadj Adjacent edge of an edge e

EDict Edge Dictionary

4.2 Edge Dictionary
The edge dictionary contains two parts: edge identifier (ID) and

edge in the graph (Edge) which is the unique edge containing in

the database. In the dictionary, an edge e is defined as 3-tuple

(u,le,v) where u and v are the labels of the vertices and le is the

label of the edge itself. Each edge appears only once in the edge

dictionary, no matter how many times it appears in the graphs.

When a graph introduces in the graph database, the distinct

edges are taken from the graph. And then it needs to check

whether these edges already exist in the edge dictionary. If this

contains these edges, we look up the corresponding identifier of

that edge and use the identifier for further processing. If the edge

is not in the dictionary already, the edge is then inserted into the

dictionary and the corresponding ID of the edge dictionary

increases serially. Moreover, most graphs in the chemical

compound database have most similar edges and vertices and

our proposed work mostly focuses on this chemical compound

dataset.

4.3 Adjacent Edge Structure(AdE)
The AdE structure contains nearest neighbor information for

each edge appeared in the graph. This AdE structure can be

computed using the edge information from the preprocessing

step and unique identifier of the edge from the edge dictionary.

For all edges in the graph, the adjacent edges of each edge are

computed where the identifiers of the adjacent edges are the

unique edge identifiers defined in the dictionary. Moreover, the

adjacent edge information for the graphs is transformed into

AdE (Adjacent Edge) structure for further string comparisons

efficiently.

4.4 Matching AdE Structure
AdE structure of the input graph is matched with that of other

graph in the database to check whether the two graphs are

automorphic or not. If the two graphs have the same AdE

representation then the algorithm concludes that the graphs are

automorphic and terminates without adding AdE structure and

the graph itself into the storage engine. If any of these

parametric quantities of AdE are different, the algorithm

immediately reasons out that the graphs are different and put in

AdE of the graph to the AdE storage structure and the graph into

the database and terminates the process.

5. DUPLICATED AUTOMORPHIC GRAPH

CLEANING (DAGC) ALGORITHM
The DAGC algorithm works according to the above four steps

described in section 4. Firstly, DAGC compares the total

number of vertices (N) in one graph with those in the other

graph. Secondly, if N is same, same label vertices group (SGs)

of these graphs are compared. Finally, AdEs of those graphs are

also compared only if these graphs have same labels of vertices.

This reduces the time consuming comparisons. Moreover, the

proposed algorithm dramatically shortens the computational

times complexity needed for identifying automorphic graphs

when compared to F-GAF (Fast-Graph Automorphic Filter)

algorithm and canonical labeling. Figure 2 and 3 show the

DAGC algorithm for automorphic graph checking and the

algorithm for generating adjacent edge structure.

Algorithm DuplicatedAutomorphicGraphCleaning (DAGC)

Input: GDB←{G1,G2, ...,Gi-1},E(Gi)←input graph, EDict,

 AdEstore←{AdE(G1),AdE(G2),...,AdE(Gi-1)}

Output: GDB←{G1,G2,...,Gi-1,Gi},AdEstore←AdE(G1),AdE(G2)

,...,AdE(Gi-2),AdE(Gi-1),AdE(Gi)}if AdE(Gi)∉AdEstore

GDB:= Ø

ID:=0

If ∄De(Gi) ∈ EDict then

EDict.ID:= EDict.ID+1

EDict.Edge:=EDict.Edge+De(Gi)

End if

AdE(Gi) ←GenerateAdEStructure(E(Gi),EDict))

If Gi is the first graph entering into GDB then

 AdEstore:=AdEstore+AdE(Gi)

 GDB := GDB + Gi

Return

End if

For each graph Gj

If (N(Gj) = N(Gi)) then

If (SG(Gj) = SG(Gi)) then

If ((AdE(Gj) = AdE(Gi)) then

 Result “ Gj ≡ Gi” and Reject Gi

 Else

 AdEstore:=AdEstore + AdE(Gi)

 GDB:= GDB+ Gi

End if

 End if

End if

Return

Fig 2: DAGC Algorithm

Algorithm GenerateAdEStructure(E(Gi),EDict)

∀ De(Gi) ∈ Gi

Find all eadj for De(Gi)

Substitute each eadj with corresponding EDict.ID

AdE(Gi):= all eadj for each De(Gi)

Return AdE(Gi)

Fig 3: GenerateAdEStructure algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 30– No.4, September 2011

11

6. IDENTIFYING DUPLICATED

AUTOMORPHIC GRAPH
Identifying symmetries is an important application of graph

isomorphism. The collection of information about symmetries in

the graph becomes identical to itself. If we can identify the

graphs in GDB are duplicates, they can be discarded to avoid

redundant work.

When a new graph GN introduces to GDB, we need to recognize

this new graph to eliminate redundant storing into the database.

This process can also reduce needless loss of performance for

further query processing. To identify automorphic graph, our

proposed algorithm needs to check the nearest neighbor edges

information of each De of GN. To restrict the search space for

adjacent edges information, the edge dictionary is used to

discover the unique edge identifier of each De contain in GN. If

the edge dictionary does not contain all De, it is certain that the

input GN does not already exist in GDB. When all edges in GN

were previously defined in the dictionary, these edges are fixed

with the identifiers of edges using the edge dictionary.

After assigning the edges with ID, we use these IDs to find

adjacent edges information for each De in GN. Instead of using

the edges themselves, the identifiers of these edges can narrow

down the storage space and efficient comparison for advance

processing. Then we find all eadj of each De and group together

to become AdE(GN). To avoid the time consuming comparisons,

we first compare N(GN) and SG(GN) with those of the graphs

stored in GDB. If the parameters of GN are same with those of at

least one of the graphs, we need to compare AdE(GN) with AdEs

collected in AdEstore. If these structures contain the same value,

we conclude that the input GN and one of the graphs in GDB are

identical and remove GN from GDB.

7. ANALYSIS AND ILLUSTRATION OF

PROPOSED TECHNIQUE
The illustration and analysis of the computational time

complexity of our proposed DAGC algorithm is depicted as

follow. We apply chemical compound database in our proposed

system. Figure 3 illustrates the chemical compound graph of

shikimic acid and step-by-step procedure to obtain the AdE

structure of Gshikimic. To check whether Gshikimic already exists in

GDB, the worst case number of comparisons taken by the

proposed technique is also described.

According to the preprocessing step, the same label vertices can

be grouped as follow. Atoms such as O, H and C are defined as

nodes in the graph and bonds such as single (s) and double (d)

represented edges.

SG (Gshikimic) = { H = 4, O = 5, C = 7}

The edge dictionary can be obtained using the edge list

information from the preprocessing step. The dictionary of

Gshikimic is shown in table 2. Assume that initially the edge

dictionary contains no edge and Gshikimic is the first graph

entering into the GDB.

The AdE structure contains adjacent edges information for each

edge appeared in the graph. To obtain AdE structure of a graph,

AdE engine obtains edge information from the preprocessing

stage and the edge dictionary. Table 3 shows the nearest

neighbor edges for each edge in the Gshikimic.

Fig 4: A chemical compound graph of shikimic acid

(Gshikimic)

Table 2. EDict of graph Gshikimic

ID Edge

1 <H, s, O>

2 <O, d, C>

3 <O, s, C>

4 <C, s, C>

5 <C, d, C>

Table 3. Adjacent edge information of Gshikimic

ID Adjacent Edge

1
1 12 15 16

<3>, <3>, <3>,<3>

2
2

<3,4>

3
 3 9 13 14

<1,2,4>, <1,4,4>, <1,4,4>, <1,4,4>

4
 4 6 7 8 10 11

<2,3,4,5>,<4,4,5>,<3,4,4>,<3,4,5>,<3,3,4,4>,<3,3,4,4>

5
5

<4,4,4>

Then the adjacent edge information of Gshikimic can be

represented in term of AdE structure.

AdE(Gshikimic)={1{{3},{3},{3},{3}},2{3,4},3{{1,2,4},{1,4,4},{

1,4,4},{1,4,4}},4{{2,3,4,5},{4,4,5},{3,4,4},{3,

4,5},{3,3,4,4},{3,3,4,4}},5{4,4,4}}

2 3

4

6 7

8 9

10

11 12 13

O

14

H

15 O

16 H

O O

C

C C

C

C

s

s

2

d

3

4 s

5

d

6

s

7 s 8

11

s 9

s

12

10

14 s

16 s

13

s

15

s

H

C

O H

C
s

s

5

s

1

1

H

International Journal of Computer Applications (0975 – 8887)

Volume 30– No.4, September 2011

12

The analysis of the computational time of DAGC algorithm is

described as follows. To find the AdE structure for each graph,

the algorithm takes E comparisons to generate distinct edge list

of each graph. The same numbers of E comparisons are required

to check the dictionary where the edges in the incoming graph

are already in it. Then, E comparisons are needed to get the

adjacent edge information of edges in the graph. Therefore, the

total number of comparisons needed for constructing the AdE

structure is(E+E+E) =3E.

Assume there are k graphs already in the GDB. We need to

check whether the new input graph k+1 is automorphic to any of

the k graphs. In the preprocessing step, the computational time

to compare the number of vertices in the graph is 1. It requires N

comparisons to group the same label vertices for a graph. The

number of comparisons needed to compare the same group

vertices is also N. At the worst case, comparison between AdE

structures is E(E-1). Therefore, the maximum number of

comparisons needs to check out k graphs would be

k(1+N+N+E2-E). Therefore, at the worst case, the total number

of comparisons for DAGC algorithm would be 3E+k(1+2N+E2-

E).

The detail analysis of computational time of our propose DAGC

algorithm for chemical compound graph Gshikimic is described as

follow. There are 16 vertices and 16 edges in Gshikimic . To

generate the distinct edge list for this graph, we need to take 16

comparisons. To check whether the edges in the graph already

exist in the edge dictionary, the number of comparison needed is

16. To compute the adjacent edge information for each edge, 16

comparisons are needed. Therefore, the total number of

comparisons for AdE structure is (16+16+16)=48.

To check whether Gshikimic exists in GDB or not, we need to

compare the AdE structure of Gshikimic with other AdE structures

of AdE storage. To reduce the computational time complexity,

we first check the total number of vertices in Gshikimic. The time

complexity to check vertices count is 1. The number of

comparisons to group same label vertices is 16 (no. of vertices in

Gshikimic). To test the same group vertices, the number of

comparisons required is 16. If the vertices of Gshikimic match with

one of the graphs in GDB, the AdE structure of Gshikimic is

needed to compare with those structures of the graphs in GDB.

The number of comparisons necessitates to comparing AdE

structure is 240(E2-E). If the database contains 100 graphs, the

total time complexity of DAGC algorithm is

48+100(1+16+16+240) =27,348.

8. EXPERIMENTAL RESULTS
A study on three techniques to test various types of graphs such

as sparse, dense and complete graphs was conducted. Table 4

describes the total time complexity of three techniques:

Canonical Code, Fast-Graph Automorphic Filter (F-GAF)

algorithm, and DAGC algorithm. In canonical code, we need to

compute the factorial of total number of vertices (V!) for a graph

because it is vertex-based representation. Then maximum or

minimum canonical code must be selected from the number of

V! canonical codes. Assume the length of each canonical code is

l. Therefore, if the number of graphs in GDB is k, we need to

compare)!(lVk times for each graph to check whether the

input graph is automorphic or not. For F-GAF algorithm, the

grid code representation of each graph requires 4E comparisons

and it is based on edge-based representation. Then the worst

case number of comparisons for F-AGF

))5(32(4 2 NNEkE .

Table 5 and 6 shows the analysis of computational time

complexity of three techniques. Our proposed work significantly

reduces the number of comparisons needed for identifying

automorphic graphs than canonical code representation. Our

proposed DAGC algorithm can mostly reduce at least 15 times

computational time complexity for sparse graph when compared

to F-GAF algorithm. It also reduces the number of comparisons

more commonly than F-GAF for dense graphs and complete

graphs. As a result, the study shows that our method performs

proficiently well compared to canonical code representation.

Moreover, our method reduces the computational time

complexity more efficiently than F-GAF algorithm. DAGC

algorithm outperforms other two techniques when the graphs in

GDB are chemical compound datasets because the graphs in

chemical compound database are sparse and dense graphs.

Table 4. Time complexity to check graph automorphism of

three techniques

Techniques Total Time Complexity

 Canonical Code)!(lVk

F-GAF))5(32(4 2 NNEkE

DAGC)21(3 2 EENkE

Table 5. Comparisons between three techniques for (50)

graphs

No. of graphs in GDB=50

Sparse graphs

No. of

vertices

No. of

Edges

Techniques

Canonical Code F-GAF DAGC

8 9 20,160,000 81,086 4,477

9 11 181,440,000 102,594 6,483

10 12 1,995,840,000 126,448 7,686

Dense graphs

8 20 20,160,000 82,780 19,910

9 28 181,440,000 105,212 38,834

10 35 1,995,840,000 129,990 60,655

Complete graphs

8 28 20,160,000 84,012 38,734

9 36 181,440,000 106,144 64,058

10 45 1,995,840,000 131,530 100,185

International Journal of Computer Applications (0975 – 8887)

Volume 30– No.4, September 2011

13

Table 6. Comparisons between three techniques for (100)

graphs

No. of graphs in GDB=100

Sparse graphs

No. of

vertices

No. of

Edges

Techniques

Canonical Code F-GAF DAGC

8 9 40,320,000 162,136 8,927

9 11 362,880,000 205,144 12,933

10 12 3,991,680,000 252,848 15,336

Dense graphs

8 20 40,320,000 154,680 39,760

9 28 362,880,000 210,412 77,584

10 35 3,991,680,000 259,840 121,205

Complete graphs

8 28 40,320,000 167,912 77,384

9 36 362,880,000 212,744 128,008

10 45 3,991,680,000 262,880 200,235

9. CONCLUSION
In this paper, we propose an efficient algorithm to identify and

removal of automorphic graph storing into the graph database

using the edge dictionary for overall graph database and

adjacent edge structure (AdE) for each graph. The edge

dictionary is efficiently used to narrow down the search space of

adjacent edge information. The proposed approach eliminates

the duplicated graphs storing in DB using the AdE structure.

The AdE structure is described in term of string and therefore it

is more efficient for further query processing. The

computational time complexity is significantly reduced

compared to canonical code and F-GAF algorithm. This

approach requires more space for constructing the edge

dictionary when the graphs in the graph database contain mostly

distinct edges. However, the storage space can be reduced when

the edges in graphs are most similar such as graphs in chemical

compound database.

10. ACKNOWLEDGMENTS
I would like to thank Dr. Ni Lar Thein, Rector of the University

of Computer Studies, Yangon, for giving me the opportunity to

attend the doctoral degree course in the University of Computer

Studies, Yangon. I would like to express my gratitude to my

supervisor Dr. Kyaw May Oo, Associate Professor of the

University of Computer Studies, Yangon, for allowing me to

develop this research and for her valuable advice during period

of my study. I also pay respect her for giving enough

consideration to my ideas and views. I am extremely fortunate to

work under her supervision for my research. I also dedicate this

research to my respectful parents for their kindness to fulfill my

ambitions.

11. REFERENCES
[1] M. Kuramochi and G. Karypis. Frequent Subgraph

Discovery. Proc. 1st IEEE Int. Conf. on Data Mining

(ICDM 2001), San Jose, CA), 313–320. IEEE Press,

Piscataway, NJ, USA 2001

[2] R Vijayalakshmi, R Nadarajan, P Nirmala, and M Thilaga.

A Novel Approach for Detection and Elimination of

Automorphic Graphs in Graph Databases. Int. J. Open

Problems Compt. Math., Vol. 3, No. 1, March 2010

[3] R. N. Chittimoori, L. B. Holder, and D. J. Cook. Applying

the SUBDUE substructure discovery system tothe chemical

toxicity domain. In Proc. of the 12th International Florida

AI Research Society Conference, pages 90–94, 1999

[4] L. Dehaspe, H. Toivonen, and R. D. King. Finding frequent

substructures in chemical compounds. In R. Agrawal, P.

Stolorz, and G. Piatetsky-Shapiro, editors, Proc. of the 4th

International Conference on Knowledge Discovery and

Data Mining, pages 30–36. AAAI Press, 1998.

[5] H. K¨alvi¨ainen and E. Oja. Comparisons of attributed

graph matching algorithms for computer vision. In Proc. of

STEP-90, Finnish Artificial Intelligence Symposium, pages

354– 368, Oulu, Finland, June 1990.

[6] D. A. L. Piriyakumar and P. Levi. An efficient A* based

algorithm for optimal graph matching appliedto computer

vision. In GRWSIA-98, Munich, 1998.

[7] D. W. Williams, J. Huan, W. Wang. “Graph Database

Indexing Using Structured Graph Decomposition”, 2007.

[8] R. Agrawal and R. Srikant. Mining sequential patterns. In

P. S. Yu and A. L. P. Chen, editors, Proc. Of the 11th Int.

Conf. on Data Engineering (ICDE), pages 3–14. IEEE

Press, 1995.

[9] S. Fortin. The graph isomorphism problem. Technical

Report TR96-20, Department of Computing Science,

University of Alberta, 1996.

[10] J. Huan, W. Wang, and J. Prins, “Comparing Graph

Representations of Protein Structure for Mining Family-

Specific Residue-Based Packing Motifs”, Journal of

Computational Biology (JCB), Vol.12, No.6,

pp.6576671,2005.

12. AUTHORS PROFILE

Aye Nwe Thaing received her B.C.Sc in computer science

from Government Computer College, Sittwe, Myanmar in

2003, her B.C.Sc(Hons:) and Master degrees from University

of Computer Studies, Yangon, Myanmar in 2004 and 2007.

Currently, she is a Ph.D candidate at University of Computer
Studies, Yangon, Myanmar. Her research interests include

graph database technology, efficient query processing of graph

database and database management system.

