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ABSTRACT 

The fast Hartley transform and algorithm for DHT was 

introduced by Bracewell. The split radix decimation-in-

frequency algorithm that requires less number of operation 

counts as compared to the radix-2 and radix-4 algorithms was 

developed by Sorenson et al. In this paper, an analog 

architecture for a split radix decimation-in-time algorithm is 

proposed. It utilizes three different structures in the signal flow 

diagram. It exhibits a recursive pattern and is modular. The 

validity of the analog architecture is tested by simulating it with 

the help of the Orcad PSpice. 
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1. INTRODUCTION 
Over the years, Discrete Hartley transform (DHT) has 

established as a potential tool for signal processing applications 

[1]-[3]. DHT is attractive mainly due to its real-valued kernel 

and the forward and inverse transforms are identical [4]. The 

seed for Hartley transform (HT) was sown by Hartley [5] in 

1942. Bracewell [6] introduced a discretized version of HT and 

demonstrated that decimation-in-time (DIT) DHT resembles 

DFT. Several algorithms for its fast computation and opinions 

regarding them are reported. Meckelburg and Lipka presented 

decimation-in-frequency (DIF) FHT algorithm [7] claiming it to 

be faster than the one in [6]. Prado [8] presented an in-place 

version of FHT along with its operational complexity. The 

signal flow diagram originally proposed in [6] is restructured for 

clarity, and by applying the transposition theorem a DIF 

algorithm is obtained by Kwong and Shiu [9] having the same 

operational complexity. Hou [10] concluded that FHT 

algorithm, in essence, is a generalization of Cooley-Tukey FFT 

algorithm, but requires only real, as compared to complex, 

arithmetic operations in any standard FFT. Malvar [11] presents 

a new factorization of DHT which involves discrete cosine 

transform. His algorithms minimize the multiplications at the 

expense of an increased number of additions. Hao [12] examines 

both the pre- and post-permutation algorithms in [6] and [7] and 

suggests improvements to make them faster by use of fast 

rotation to reduce the multiplications and by incorporation of in-

place or distributed permutation. Rathore [13] reports that, for 

both DIT in [6] and DIF in [7], the operational complexity 

involved is the same. He further utilizes the matrix approach, 

derives some properties of DHT [14], obtains the relations for 

computational complexity and presents DHT-based DFT and 

DFT-based DHT algorithms. The algorithms mentioned above 

are radix-2 algorithms.  

Bracewell [15] further explored HT, its relation with FT, 

theorems, properties, matrix formulation, fast algorithms and 

suggested the radix-4 FHT algorithm which performs DHT in a 

time proportional to NN
4

log  where PN 4=  and is 

computationally faster than radix-2 FHT. Sorenson et al. [16] 

further developed the decimation-in-frequency split-radix FHT 

algorithm using the index mapping approach, implemented the 

algorithm and verified the operational counts to be less than both 

radix-2 and radix-4 algorithms. 

 Various analog architectures have been reported in the literature 

to compute DHT. Culhane et al. [17] presented an analog circuit 

which utilizes a linear programming neural net to compute DHT. 

Raut et al. [18] presented basic switched capacitor building 

blocks in systolic array architecture to implement DFT. A two 

dimensional DCT structure proposed by Kawahito et al. [19] has 

been designed with fully differential switched-capacitor circuits. 

Digitally controlled analog circuits have been proposed by Chen 

et al. [20] which utilize the principle of charge scaling for 

computing DCT and DFT. Mal and Dhar [21] proposed an 

analog sampled data architecture for DHT. Analog circuits 

based on the current feedback operational amplifier (CFA) 

technique are suitable for high frequency applications [22]-[25]. 

It combines high bandwidth and very fast large signal response. 

It can be used in place of traditional operational amplifiers (OA) 

and its current feedback architecture results in much better 

performance. It provides a closed-loop bandwidth determined 

primarily by the feedback resistor and almost independent of the 

closed-loop gain unlike OA-based circuits, which are limited by 

a constant gain-bandwidth product. It is free from the slew rate 

limitations inherent in traditional OAs. It can be used in ways 

similar to a conventional OA while providing performance 

advantages in wideband applications. 

In this paper, a decimation-in-time split-radix FHT algorithm 

based on three different butterfly structures is proposed. The 

designs of basic analog circuits based on CFAs and an 

architecture for the split-radix FHT algorithm are also proposed.  

2. PROPOSED ALGORITHM 
An N-point DHT XH of a sequence x(n) is defined as  
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where cas (.) = cos (.) + sin (.). 

The split-radix DIF FHT for PN 2= is derived by Sorenson et 

al. as 
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In this paper, a split-radix DIT FHT is proposed. It utilizes three 

basic butterfly structures as shown in Figures 1(a) –(c) in a 

recursive manner. Structure-D1 is a 2-point structure consisting 

of a summing structure (SS) which performs 2 additions. 

Structure-D2 is an 4-point structure which utilizes 2 D1-

structures and a COMBINE block consisting of an SS which 

performs 4 additions. Hence, structure-D2 performs 8 additions. 

Structure-D3 is an 8-point structure which utilizes one D2-

structure, 2 D1-structures, a multiplication structure (MS) which 

performs 2 additions and 2 multiplications and a COMBINE 

block consisting of an SS which performs 8 additions. Hence, 

structure-D3 performs 22 additions and 2 multiplications. The 

multiplications by the sine (S) and cosine (C) coefficients and 

their related additions are performed by MS. The proposed 

algorithm for an N-point DHT is viewed as a combination of the 

above structures connected in a recursive manner. The flow of 

the algorithm is depicted in Figure 2. DP is obtained by utilizing 

‘D(P-1)’, 2 ‘D(P-2)’, MS and COMBINE structures. The input 

sequence is permuted to rearrange the data in a radix-2 

permutation and applied as input x. The outputs of the 2 D(P-2) 

structures are applied as input to the multiplying structure. The 

outputs of MS and D(P-1) structures are applied as input 

COMBINE block. The output sequence X is obtained at the 

output of the COMBINE block.  

The radix-2 algorithm utilizes 2 previous level structures along 

with the MS and COMBINE structures to obtain the transform 

[26]. The split-radix utilizes 1 previous level and 2 ‘one before 

previous’ level structures in the radix-2 and radix-4 

decompositions respectively in a recursive manner along with 

the MS and COMBINE structures. This approach leads to a 

reduction in the operational counts over the radix-2 and radix-4 

algorithms. The operational counts for structures D1 and D2 can 

directly be obtained from Figures. 1 (a) and (b). The MS 

performs (N – 6) additions and multiplications. The COMBINE 

structure is a summing structure and performs N additions. The 

operational counts may thus be calculated in a recursive manner. 

For D1, P = 1, NA = 2 and NM = 0 and for D2, P = 2, NA = 8 and 

NM = 0. For structure-D3, P = 3, 
228)68()22(8)6(2

)2()1(
=+−+×+=+−++= −− NNNNN PAPAA  

and 2)68(00)6(2
)2()1(

=−++=−++= −− NNNN PMPMM . In this 

manner, from the SFD recursive formulae for P > 3 are obtained 

as 622
)2()1(

−++= −− NNNN PAPAA  (3) 

 62
)2()1(

−++= −− NNNN PMPMM  (4) 

It is found that both NA and NM for the proposed DIT split radix 

algorithm are the same as those reported for the DIF split-radix 

algorithm in [16] as expected. These operational counts are less 

than those obtained for the radix-2 and radix-4 algorithms. The 

proposed algorithm with N = 16 is illustrated by the SFD as 

shown in Figure 3.  
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Fig 1: Structures (a) D1, (b) D2 and (c) D3 
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Fig 2: Flow of the algorithm 

The input sequence is permuted to rearrange the data in a radix-

2 permutation. It is then applied as input to the D3 and 2 D2 

structures. The outputs of the 2 D2 structures are applied as 

inputs to the multiplying structure. The outputs of D3 and 

multiplying structure are applied as inputs to the COMBINE 

block. The transformed output X is obtained at the output of the 

COMBINE block. 
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Fig 3: SFD for proposed algorithm with N = 16, P = 4 

 

3. DESIGN OF CFA BASED ANALOG 
CIRCUITS 
An analog circuit for a summing structure and multiplying 

structure that caters to the radix-2 decomposition is shown in 

Figure 4. 

The outputs are given by  
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Fig 4: Basic analog circuit for summing and multiplying 

structure in radix-2 decomposition  

Thus, it is suitable for the summing structure. 
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Thus, it is suitable for the multiplying structures. 

Another analog circuit for a summing structure that caters to the 

radix-4 decomposition is shown in Figure 5.  
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Fig 5: Basic analog circuit for summing structure in radix-4 

decomposition  

The output is given by  
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Thus, the circuit acts as a weighted summer and subtractor 

suitable for the summing structure The combination of inputs 

and values of resistors for obtaining the various outputs required 

in the different structures with RA1 = R are as follows. 

For obtaining the output VO =[VA1 + VA2 + VA3 + VA4]/2, the 

inputs are applied to VA1, VA2, VA3 and VA4. The values of RA2 = 
RA3 = RA4 = R, RX = ∞ and RS = RS1║RS2 = RF.  

For obtaining the output VO =[VA1 + VA2 – (VS1 + VS2)]/2, the 

inputs are applied to VA1, VA2, VS1 and VS2. The values of RA2 = 
R, RA3 = RA4 = ∞, RX = 0.5R, and RS1 = RS2 = 2RF. 

4. ANALOG ARCHITECTURE AND ITS 
SIMULATION 
The basic analog circuit in Figure 4 forms the structure-D1. The 

basic analog circuits are appropriately combined to form 

structure-D2 in radix-2 and radix-4 decompositions as shown in 

Figures. 6(a) and (b) respectively. Figure 7 depicts structure-D3 

in radix-2 decomposition and Figure 8 in a combined radix-2 

and radix-4 decomposition. These structures can be directly 

mapped into the SFD and provide an analog architecture for 

easy implementation of the algorithm. These structures are 

interconnected to obtain split-radix DHT for N = 16. The 

architectures for both the forward and inverse transformations 

are identical. They have been tested by simulating them with the 

help of Orcad PSpice. The original input sequence denoted as 

V(XN) is applied to the forward transformation and its output 

V(YN) is given as input to the inverse transformation. The 

original sequence is retrieved at the output of the inverse 

transformation as V(ZN). These sequences are shown in Figures. 

9, 10 and 11 respectively. 

5. RESULTS 
Program for the proposed algorithm is executed in C to compute 

XH. It has been tested by applying different types of sequence 

patterns such as step, ramp, impulse and sinusoidal and observed 

to give the desired output sequences. These output sequences are 

applied as input to the same program to obtain the inverse 

transformation and is observed to yield the original sequence 

pattern, thus verifying both the forward and inverse 

transformations.  

The simulation of the analog architecture using the proposed 

split-radix algorithm for N = 16 has been performed. The 

theoretically calculated values and the outputs obtained by 

simulation for the forward and inverse transformations are 

tabulated in Table 1.  

Table 1. Comparison of Theoretical Values and Simulation 

Results  

n 

Input 

 x(n)       

(mV)  

Forward transformation 

output XH (mV) 

Inverse 

transform-

ation 

output 

x(n) (mV) 

Theoretical 

Values  

Simulation 

Results 

0 0 0 0 0 

1 383 2000 2000 384 

2 707 0 0 709 

3 924 0 0 928 

4 1000 0 0 1000 

5 924 0 0 928 

6 707 0 0 709 

7 383 0 0 384 

8 0 0 0 001 

9 -383 0 0 -381 

10 -707 0 0 -705 

11 -924 0 0 -924 

12 -1000 0 0 -1000 

13 -924 0 0 -924 

14 -707 0 0 -705 

15 -383 -2000 -2000 -381 
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(a)                                                                                  (b) 

Fig 6: Circuits for structure-D2 in radix-2 and radix-4 decompositions  
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Fig 7: Circuit for structure-D3 in radix-2 decomposition  
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Fig 8: Circuit for structure-D3 in combined radix-2 and radix-4 decomposition 

 

Fig 9: Input sequence  



International Journal of Computer Applications (0975 – 8887) 
Volume 30– No.4, September 2011 

30 

 

Fig 10: Ouput sequence after forward transformation  

 

Fig 11: Retrived sequence after forward and inverse transformations  

 

6. CONCLUSIONS 
The proposed DIT split-radix algorithm has a recursive structure 

generates the next higher order transforms from the lower order 

ones. It requires less number of operational counts as compared 

to the radix-2 and radix-4 algorithms. It can be directly mapped 

into the SFD and provides a regular structure for easy 

implementation using the proposed analog circuits. The analog 

architecture utilizing these circuits is modular and can be scaled 

for large values of N unlike the neural net approach in [17]. It 

processes the data simultaneously at each stage and speeds up 

the transformation as compared to those which employ a 

multiply and accumulate approach as in [21]. Both the forward 

and inverse transformations have been validated by performing 

the simulation on Orcad PSpice and the results are in good 

agreement with those obtained theoretically. 
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