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ABSTRACT 
Cephalometric analysis is the study of dental and skeletal 

relationship in the head. It depends on cephalometric 

radiography to study relationships between bony and soft tissue 

landmarks and can be used for diagnosis of facial growth 

abnormalities prior to treatment. Skeleton analysis consists of 

facial skeleton analysis, and mandibular and maxillary base 

analysis. In this work, landmarks needed for detecting skeletal 

abnormalities are selected from the digital image; Principal 

Component Analysis (PCA) is applied to the digital image for 

dimension reduction to get the desired feature vectors. The 

normalized feature vectors are trained and tested using an SVM 

classifier to detect the skeletal abnormalities. The performance 

measure such as accuracy, sensitivity and specificity were 

evaluated and the results are found to be satisfactory. 

Keywords 
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Vector machine, Saddle, Gonial, Articular, subspinale, 
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1. INTRODUCTION 
Cephalometric analysis is the study of dental and skeletal 

relationships of the head. It is frequently used by dentists, often 

orthodontists [1] in particular, as a treatment-planning tool. 

Cephalometrics helps in orthodontic diagnosis by enabling the 

study of skeletal, dental and soft tissue structures of the 

craniofacial region. It helps in classification of the skeletal and 

dental abnormalities, establishing facial type, planning treatment 

for an individual, predicting the growth related changes and 

changes associated with surgical treatment. 

Cephalometric analysis has become an important clinical tool in 

diagnosis, treatment planning, evaluation of growth, or treatment 

results and research.  Cephalometric analysis depends on 

cephalometric radiography to study relationships between bony 

and soft tissue landmarks and can be used to diagnose facial 

growth abnormalities prior to treatment. Skeleton Analysis 

consists of facial skeleton analysis, and mandibular and 

maxillary base analysis.   

Cephalometric analysis requires an expert system to be 

developed for computer applications in this field. One can 

provide a computerized analysis that will measure and compare 

the anatomy to assist in the treatment plan. So a preliminary 

research is necessary using cephalometric for making the 

computer detect the skeletal abnormalities. There is lack of 

skilled personnel proficient enough in cephalometric analysis 

and also to assist the doctor. Hence there is a growing need for 

the computer as an aid for cephalometric analysis. Calibrating 

cephalogram is a necessary step in making the computers to 

detect the skeletal abnormalities. 

In this respect, automatic cephalometric analysis is one of the 

main goals, to be reached in orthodontics in the near future. 

Accordingly, several efforts have been made to automate 

assessment of cephalometric analysis.  

For automatic assessment, Principal Component Analysis (PCA) 

is used for dimension reduction. Then dimension reduction data 

are normalized which are taken as the features. The normalized 

parameters are used for classification and an SVM classifier is 

used to classify the skeletal abnormalities. 

1.1 Literature review 
Traditionally the location of landmarks for a cephalometric 

analysis was performed manually using a tracing from X-ray 

film. More recently the film was digitized and semi-automatic 

systems allowed the orthodontics to plot landmarks directly on 

the screen. Cephalometric analysis of lateral radiography of the 

head is an important tool in orthodontics. Manually locating 

specific landmarks is a tedious, time consuming and error prone 

task. In the existing system, an automated system based on the 

use of Active Appearance Models (AAMs) was proposed by 

Sylvia Rueda and Marino Alca'niz [2]. 

Two approaches may be used to perform a cephalometric 

analysis: a manual approach, and a computer-aided approach. 

The manual approach is the oldest and most widely used. It 

consists of placing a sheet of acetate over the cephalometric 

radiograph, tracing salient features, identifying landmarks, and 

measuring distances and angles between landmark locations [3]. 

The projection of the software was based on the correct 

interpretation of the analysis to reach the goals of the Treatment 

plan. The Orthodontic Folder collects easy-to-complete and 

consult schemes of essential data, aided by sophisticated 

graphics that the modern informatic systems can supply. The 

orthodontist can therefore make use of, in a simple and rapid 

way, of the consultation to compare the results achieved. The 

method is commonly called "Orthodontic check-up"[4]. In 

general, automatic identification of landmarks approaches can 

be classified into four categories: (i) image filtering plus 

knowledge-based landmark search [5] (ii) model-based 

approaches [5], [6], (iii) soft-computing approaches [7] and (iv) 

hybrid approaches [8]. 

Data analysis problems, where the data objects have a large 

number of features are becoming more prevalent in areas such as 

multimedia data analysis and bioinformatics. In these situations 
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it is often beneficial to reduce the dimension of the data in order 

to improve the efficiency and accuracy of data analysis. 

Statisticians sometimes talk of problems that are "Big p Small 

n"; these are extreme examples of situations where dimension 

reduction (DR) is necessary because the number of explanatory 

variables p exceeds (sometimes greatly exceeds) the number of 

samples n [9]. 

In theory the number of examples needs to increase 

exponentially with the number of features if inference is to be 

made about the data. In practice this is not the case as real high-

dimension data will only occupy a manifold in the input space, 

so the implicit dimension of the data will be less than the 

number of features p. Nevertheless, traditional algorithms used 

in machine learning and pattern recognition applications are 

often susceptible to the well-known problem of the curse of 

dimensionality [10][11]. 

Principal Component Analysis (PCA) was first introduced by 

Pearson[12] in 1901 and later independently developed by 

Hotelling [13] in 1933, where the name principle component 

first appears. In various fields, it is also known as the singular 

value decomposition (SVD), the Karhunen-Loeve transform, the 

Hotelling transform, and the empirical orthogonal function 

(EOF) method [14]. 

A Support Vector Machine (SVM) performs classification by 

constructing an N-dimensional hyperplane that optimally 

separates the data into two categories. SVM models are closely 

related to neural networks. In fact, a SVM model using a 

sigmoid kernel function is equivalent to a two-layer, perceptron 

neural network. Support Vector Machine (SVM) models are a 

close cousin to classical multilayer perceptron neural networks. 

Using a kernel function, SVM's are an alternative training 

method for polynomial, radial basis function and multi-layer 

perceptron classifiers in which the weights of the network are 

found by solving a quadratic programming problem with linear 

constraints, rather than by solving a non-convex, unconstrained 

minimization problem as in standard neural network 

training[15]. 

1.2 Outline of the work 

Section 2 deals with the cephalometric landmarks used in this 

work. Section 3 explains the need for dimension reduction and 

PCA approach. Section 4 describes the SVM technique. Section 

5 explains the proposed method. Section 6 deals with the 

Experimental results and   Section 7 concludes with conclusion. 

2. CEPHALOMETRIC LANDMARKS 
Cephalometric makes use of certain landmarks or points on the 

skull, which are used for quantitative analysis and measurements 

are shown in Fig 1. These landmarks represent actual anatomic 

structures of the skull and are obtained secondarily from 

anatomic structures in a cephalogram. The landmarks should 

also permit valid quantitative measurements of lines and angles 

projected from them. 

 
 

Fig 1: Cephalometric Landmarks 

The landmarks used in this work are: 

Nasion (N): The most anterior point midway between the frontal 

and nasal bones on   the fronto-nasal suture.  

Sella (S):  The point representing the midpoint of the pituitary 

fossa or sella turcica. It is a constructed point in the mid- sagittal 

plane.  

Articulare (Ar): This point was introduced by Bjork (1947). It 

provides radiological orientation, being the point of intersection 

of the posterior margin of the ascending ramus and the outer 

margin of the cranial base.  

Gonion (Go): A constructed point, the intersection of the lines 

tangent to the posterior margin of the ascending ramus and the 

mandibular base.  

Menton (Me): According to krogman and sassouni, Menton is 

the most caudal point in the outline of the symphysis; it is 

regarded as the lowest point of the mandible and corresponds to 

the anthropological gnathion. 

Point A, subspinale (A): The deepest midline point in the curved 

bony outline from the base to the alveolar process of the maxilla, 

i.e. at the deepest point between the anterior nasal spine and 

prosthion. In anthropology, it is known as subspinale. 

Point B, supramentale (B): Most anterior part of the mandibular 

base. It is the most posterior point in the outer contour of the 

mandibular alveolar process, in the median plane. In 

anthropology, it is known as supramentale, between infradentale 

and pogonion. 

3. DIMENSION REDUCTION 

Developments in data collection and storage techniques have led 

to information overload. Researchers working on diversified 

domains come across a high dimensional datasets which present 

many mathematical challenges to handle due to curse of 

dimensionality [10].  
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Due to the increases in dimensionality of the dataset, its 

performance decreases and if the dimensionality of the input 

space is higher, more feature vectors are needed for training. 

The major problem with these high dimensional data sets is that 

all the measured data are not important for understanding the 

underlying phenomena of interest. Thus, for effective analysis of 

high dimensional data sets dimension reduction is necessary. 

 According to statistical point of view it is desirable that the 

number of examples in the training set should significantly 

exceed the number of features used to describe those examples 

which is shown in Fig 2(a). For this reason data sets as depicted 

in Fig  2(b) can still be analyzed [11]. However, traditional 

algorithm  used in machine learning and pattern recognition 

applications are often susceptible to the well-known problem of 

the curse of dimensionality, which refers to the degradation in 

the performance of a given learning algorithm as the number of 

feature increases. To cope with this, dimension reduction 

techniques are often applied as a data pre-processing step or as 

part of the data analysis to simplify the data model.  

 

 

 

 

 

 

 

 

Fig 2:  Big p small n problems are problems where the 

number of features in a dataset is large compared with the 

number of objects: (a) This is how statisticians would like 

your data to look, (b) This is what we call the big p small n 

problem". 

Dimension reduction technique involves the identification of a 

suitable low-dimensional representation for the original high-

dimensional data set. By working with this reduced 

representation, tasks such as classification or clustering can 

often yield more accurate and readily interpretable results, while 

computational costs may also be significantly reduced.  

The inspiration for dimension reduction can be summarised as 

follows: 

 The identification of a reduced set of features that are 

predictive of outcomes can be very useful from a 

knowledge discovery perspective.  

 For many learning algorithms, the training and/or 

classification time increases directly with the number 

of features. 

 Noisy or irrelevant features can have the same 

influence on classification as predictive features so 

they will impact negatively on accuracy. 

 

3.1 Principal Component Analysis 
Principle Component Analysis (PCA) was first introduced by 

Pearson in 1901[12] and later independently developed by 

Hotelling in 1933, where the name principle component first 

appears. In various fields, it is also known as the singular value 

decomposition (SVD), the Karhunen-Loeve transform, the 

Hotelling transform, and the empirical orthogonal function 

(EOF) method. 

PCA is a well known scheme for dimension reduction. PCA 

finds a set of most representative projection vectors, and the 

most relevant information about original dataset. PCA is a useful 

statistical technique that has found application in many fields 

such as video/audio classification, face recognition, image 

compression etc., It is a simple method of extracting relevant 

information from high dimensional data sets. With minimal 

effort, PCA provides a road map for reducing the complex data 

set to a lower dimensional dataset. 

PCA is a useful statistical procedure that has found importance 

in many fields, and is a well-known technique for finding 

patterns in high dimensional data. It is a way of identifying 

patterns in data, and expressing the data in such a way to 

highlight their similarities and differences. The other main 

advantage of PCA is that once these patterns are found, the data 

can be compressed by reducing the number of dimensions, 

without much loss of information. Thus, PCA „combines‟ the 

essence of attributes by creating an alternative, smaller set of 

variables. 

This section explains the steps to perform principle components 

analysis on a set of data. 

Approach: 

(i) Dataset 

Table 1: PCA approach example data. 

Items X Y 

1 25 21 

2 50 71 

3 24 29 

4 45 64 

5 32 30 

6 27 48 

7 4 17 

8 2 12 

9 12 18 

10 55 59 

 

 

n 

(a) 

n 

P 

(b) 

p 
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49.42456.327

56.32704.305

(ii) Subtract the mean from the data items 

The next step is to subtract the mean from each of the data item. 

This is the average across each dimension. Thus, all the data 

items in each dimension will have its mean subtracted. This new 

dataset will thus have a mean whose value is „zero‟. The mean 

subtracted data of the dataset shown in Table 2. 

Table 2 : PCA mean subtracted data 

Items X Y 

1 -2.6 -15.9 

2 22.4 34.1 

3 -3.6 -7.9 

4 17.4 27.1 

5 4.4 -6.9 

6 -0.6 11.1 

7 -23.6 -19.9 

8 -25.6 -24.9 

9 -15.6 -18.9 

10 27.4 27.4 

  

(iii) Calculate covariance matrix 

Covariance matrix is computed for the data in Table 2. The data 

set is 2-dimensional and hence the covariance matrix will be 

(2x2). For the dataset under consideration, the covariance matrix 

is: 

 

 

 

(iv) Calculate eigenvectors and eigenvalues of the covariance 

matrix: 

Eigenvectors can be calculated only for square matrices. Since 

the covariance matrix is a square matrix, eigenvectors can be 

calculated. The eigenvalues and eigenvectors are: 

eigenvalues = 
7254.6970

08046.31
 

 

eigenvectors = 
7679.06406.0

6406.07679.0
 

 

(v) Sort the eigen values 

In this step, the idea of dimension reduction comes in effect. 

Generally, once the eigen vectors are computed, the eigen values 

are sorted in descending order, which gives the principle 

components in the order of significance. Then, the less 

significant components can be ignored. Because of this, some 

information loss can be found, but, if the eigen values are small, 

the information loss will not be much significant. Thus, the final 

data will have fewer dimensions than the original data set. 

Obviously, if the original dataset is of „n‟ dimensions, this given 

„n‟ eigenvalues and eigenvectors. If only k eigenvalues are 

chosen in the procedure, the final data has only k dimensions, 

where, k ≤ n.  

Considering the eigen values obtained for the example data 

shown in the table 1, they are different values. Of course, the 

eigen vector of the largest eigenvalue, 697.7254 turns out to be 

the first principle component of the dataset under consideration.  

eigenvalues = 
7254.6970

08046.31
 

Thus, for the largest eigen value 697.7254 of the example 

dataset, the principle component (eigenvector) is  

eigenvector =
7679.0

6406.0
 

(vi) Compute the new projected data set 

After choosing the set of principle components (eigenvectors), 

the final data set of reduced dimension is obtained as follows: 

Final data = EigenvectorT x Mean subtracted data  (1) 

Where, EigenvectorT is the matrix with the eigenvectors in the 

columns transposed, Final data is the final data set with data 

items in columns and dimension along rows. 

 

Table 3: PCA projected data with 2 eigenvectors 

Items X Y 

1 -13.8752 -8.1883 

2 40.5342 4.6417 

3 -8.3725 -2.2959 

4 31.9561 3.9974 

 5 -2.4801 -7.7986 

6 8.1395 7.5709 

7 -30.3986 5.3756 

8 -35.5192 3.7087 

9 -24.5062 -0.1271 

10 34.5221 -6.8845 

 

Suppose, if it is decided to keep both the principle components 

(eigenvectors), then the dimension of the Final data will be the 

same as that of the dimension of the original data set. In the 

example data set, which is of two-dimension, if both the 

principle components are kept for obtaining the Final data, then 

this Final data will also be of same two-dimension. The PCA 

projected data set, keeping both the dimensions is shown in the 

table 3. But, if it is decided to leave one component, then the 
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obtained Final data will be of reduced dimension, i.e., one-

dimension. 

Final data actually represent the original data purely in terms of 

the given vectors chosen. The original data set is of two 

dimension, and hence had two axes x and y. And, any two 

dimensional data can be represented in terms of any two axes. If 

these new axes are perpendicular, it will be efficient to 

represent. The eigen vectors are perpendicular to each other. 

And hence, the original data set can be represented in terms of 

the eigen vectors. 

If it is decided to keep both the eigenvectors, then the final 

transformed data is the original data, represented in terms of 

both the eigenvectors. 

 

 

 

4. SUPPORT VECTOR MACHINE (SVM) 
 SVM is a learning machine technique based on statistical 

learning theory. It was developed by Cortes and Vapnik in 

1995[16] and modified by Vapnik in 1999. Fig 3. gives the basic 

principle of a SVM. When used in classification SVM maps the 

input space to higher dimensional feature space and constructs a 

hyperplane, which separates class members from non-members. 

The training set consists of skeletal abnormality data belonging 

to two classes namely normal and abnormal. One class of 

skeletal abnormality is labeled positive and those which are not 

in that class are labeled negative. From this data SVM can learn 

to distinguish between the classes in the training set. They can 

then classify new test data as being normal or abnormal using 

the information already learnt in the training phase. 

 

 

 

 

Fig 3: The principle of SVM 

 

When the data is not linearly separable [17], SVM maps the data 

into a higher dimensional space called a feature space, where a 

maximal separating hyperplane is constructed. Many 

hyperplanes separate the data. However, only one achieves 

maximum separation. Thus a maximum margin hyperplane is 

the hyperplane that has maximal distance from members to non-

members. Two parallel hyperplanes are constructed on each side 

of the hyperplane that separates the data. The points that lie on 

these hyperplanes are called support vectors and are shown in 

Fig 4. The hyperplane found by an SVM in the feature space 

corresponds to a decision boundary in the input space. 

 A classification task usually involves training and testing data 

which consist of some data instances. Each instance in the 

training set contains one target value (class labels) and several 

attributes (features). The goal of SVM is to produce a model 

which predicts target value of data instances in the testing set 

which contains only feature attributes but not the class attribute. 

Mapped into 

Higher dimension 

Lower dimension 

Hyper plane 
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Fig 4: Maximum margin hyperplane. 

 
 Given a training set of instance-label pairs. {(X1, C1), (X2, C2) 

… (Xn, Cn)} where Ci is either 1 or -1, a constant denoting the 

class to which the points Xi belongs. Each Xi is a p-dimensional 

real vector, of normalized [-1, 1] values. The scaling is 

important to guard against variables (attributes) with larger 

variance that might otherwise dominant the classification. This 

is the training data, which denotes the correct classification that 

the SVM will eventually distinguish, by means of the dividing 

(or separating) hyperplane, which takes the form  

      XW – b = 0                                  (2) 

The vector W points perpendicular to the separating hyperplane. 

Adding the offset parameter b helps to increase the margin. In its 

absence, the hyperplane is forced to pass through the origin, 

restricting the solution. 

To achieve maximum margin, support vectors and the parallel 

hyperplanes (to the optimal hyperplane) closest to these support 

vectors in either class has to be found out as shown in Figure 4. 

It can be shown that these parallel hyperplanes can be described 

by the following equations 

      XW – b = 1                                   (3)                                

       XW – b = -1                                (4)                                                

If the training data are linearly separable, these hyperplanes can 

be selected so that there are no points between them and then 

their distance is maximized to the possible extent. By using 

geometry, the distance between the hyperplanes is 2/|W|, which 

implies that |W| has to be minimized. To exclude data points, 

care must be taken to ensure that for all i either  

XW – b ≥ 1                                       (5)                                                 

            or 

 XW – b ≤ -1                                    (6)                                                   

 

This can be written as 

 Ci (XW – b) ≥ 1,  1 ≤ i ≤ n             (7) 

The original optimal hyper plane algorithm proposed by Vapnik 

was a linear classifier. However non-linear classifiers applying 

the kernel trick was suggested to classify linearly inseparable 

problems. The algorithm is formally similar; expect that every 

dot product is replaced by a non-linear kernel function. This 

allows the algorithm to fit the maximum margin hyperplane in 

the transformed feature space. This transformation may be non-

linear and the transformed space high-dimensional, thus though 

the classifier is a hyperplane in the high-dimensional feature 

space it may be non-linear in the original input space. 

5. PROPOSED METHOD        
  The skeletal abnormalities are assessed by using the following 

steps and shown in the Fig.5: 

 In cephalometric digital images, landmark regions 

such as S, N, Ar, Go, Me, A, B                  which is 

explained in Section 2 needed for detecting skeletal 

abnormalities                  are selected for this work. 

 Reduce the dimension of the data using PCA which is 

explained in Section 3.1 to extract the features. 

 Normalize the feature vectors by using the equation 9 

which is explained in the Section 5.1. 

 Data are trained and tested by using the SVM model 

to detect the skeletal abnormalities between normal 

and abnormal. 

 Various performance measure such as Accuracy, 

Specificity, and Sensitivity are calculated which is 

explained in section 5.2. 

   

 

Margin 

Support vectors 

Separating 

Hyper plane 
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  Fig 5: Block diagram of the proposed method 

 

5.1Normalization of Input parameters 
The development of the training network starts with the 

selection of a number of different combinations of input 

variables to evaluate the most reliable neural network model. All 

input and output data are normalized to values between 0 and 1. 

It is assumed that 'x' has only finite real values, and that the 

elements of each row are not all equal. The method is described 

by the following equations for converting any 'Xi' value with 

normalized 'Yi' value.  

Yi = (Ymax-Ymin) * (Xi - Xmin) / (Xmax- Xmin) + 

          Ymin                                                              (8) 

This equation converts any ' Xi' value into corresponding ' Yi' 

value in the range of Ymin to Ymax.  

For SVM model the values are normalized between -1 and +1. If 

Ymin = -1 and Ymax =1 and substituted in equation 8 as, 

Yi = (((Xi - Xmin) / (Xmax- Xmin))*  

             (Ymax- Ymin))-1                                      (9) 

 

5.2 Performance Measure 
Supervised Machine Learning (ML) has several ways of 

evaluating the performance of learning algorithms and the 

classifiers they produce. Measures of the quality of qualification 

are built from a confusion matrix which records correctly and 

incorrectly recognized examples for each class. Table presents a 

confusion matrix for binary classification where TP is true 

positive, FP is false positive, FN is false negative and TN is true 

negative values. 

Table 4 A confusion matrix for binary classification 

Class/recognized As positive As negative 

Positive 

Negative 

TP 

FP 

FN 

TN 

 

5.2.1 Accuracy 

Accuracy assesses the overall effectiveness of the algorithm and 

approximates how effective the algorithm is by showing the 

probability of the true values of the class label. It is given by 

 

                  (10) 

 

5.2.2 Sensitivity/Specificity 

        Two measures that separately estimate a classifier‟s 

performance on different classes are sensitivity and specificity. 

Sensitivity and Specificity approximates the probability of the 

positive/negative label being true (assesses the effectiveness of 

the algorithm on a single class). It is often employed in 

biomedical and medical applications, and in studies which 

involve image and visual data and given by 

                                      (11) 

  

                                    (12) 

 

6. EXPERIMENTAL RESULTS 
Eight features are used to train and test the SVM model to 

classify the skeletal abnormalities between normal and 

abnormal. 

6.1 Data preparation:  
 More than 80 cephalometric images are collected from the 

various Dental colleges in Tamilnadu. From the images the 

required portion (where the landmarks are presented) are 

selected.The digital image is converted into .pgm file format, 

which is shown in Fig 6. Then the landmarks needed for 

detecting skeletal abnormalities are selected from the image, 

which is shown in Fig 7.  The image is resized into 100x100, 

which is shown in Fig 8. The dimension is reduced using 

principal component analysis and the features are extracted. 

Then the features are normalized. The normalized features are 

fed into SVM classifier for training and testing to detect the 

abnormalities in both facial skeleton analysis, and mandibular 

and maxillary base analysis.  

Original 

cephalometric 

digital image 

Required portion is 

Selected and resized 

(100x100)  

Dimension 

reduced using 

PCA and features 

extracted 

Features are 

normalised 

Normalised 

parameters are fed into 

SVM classifier 

 

 

Skeleton 

abnormalities 
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Fig 6:  Cephalometric digital image (Original) 

 

 

 

 
 

 

 

 

 

 

 

Fig 7 : Selected portion of the image   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig  8:  Resized Image 100 x 100 

6.2 Training and testing the SVM  
SVMTORCH a free available C++ based object oriented 

machine learning library was used for training and testing the 

model.  The training data included the eight feature attribute and 

a class attribute of 60 samples while the test data had only eight 

feature attribute of 20 samples excluding the class attribute. 

SVM was created by specifying number of input values, number 

of output values and type of kernel function. SVM model was 

trained by varying the types of kernel function. The radial basis 

function gives the maximum performance.  

6.3 Performance evaluation 
The classifier output for the test data was compared with the 

original class attribute for identifying the true positives, true 

negatives, false positives and false negative values. Table 5 

gives these values. Using these values, the overall effectiveness 

of the algorithm was calculated as 70.00%, the probability of the 

positive label being true was 76.92% and the probability of the 

negative label being true was 56.14%. Table 6 gives the 

performance measure values as discussed in Section 5.2 and 

shown in Fig 9. 

Table 5 Confusion matrix for the SVM model 

Class/recognized As positive As negative 

Positive 

Negative 

10 

3 

3 

4 

   

Table 6 Performance measures 

Measures Values(%) 

Accuracy 

Sensitivity 

Specificity 

70.00 

76.92 

57.14 

 

 
Fig 9: Performance measures of the skeletal abnormality 
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7. CONCLUSION 
In this work, 80 training and 20 testing images was taken. The 

images are partitioned and the required portion is selected. The 

selected portions are resized. Principle component analysis 

(PCA) was used to reduce the dimension of the feature vector 

and the reduced features were normalized. SVM classifier was 

used to detect the skeletal abnormalities and the performance 

measures such as Accuracy, Sensitivity, and Specificity were 

calculated. The overall performance of the classifier was 70%, 

hence 70% of skeletal abnormalities were detected correctly. 
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