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ABSTRACT 

In wireless, satellite, and space communication systems, 

reducing error is critical. High bit error rates of the wireless 

communication system require employing various coding 

methods on the data transferred. Channel coding for error 

detection and correction helps the communication system 

designers to reduce the effects of a noisy transmission channel. 

The purpose of this paper is to study and investigate the 

performance of Reed-Solomon code that is used to encode the 

data stream in digital communication. The performances were 

evaluated by applying to binary phase sift keying modulation 

scheme in symmetric Additive White Gaussian Noise channel. 

Reed-Solomon codes are best for correcting burst errors and find 

wide range of applications in digital communications and data 

storage. 
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1. OVERVIEW ON CODING 
Channel coding for error detection and correction helps the 

communication system designers to reduce the effects of a noisy 

transmission channel. Error control coding theory has been the 

subject of intense study since the 1940s and now being widely 

used in communication systems. As illustrated by Shannon in 

his paper published in 1948 [1], for each physical channel there 

is a parametric quantity called the channel capacity C that is a 

function of the channel input output characteristics. Shannon 

showed that there exist error control codes such that arbitrary 

small error probability of the data to be transmitted over the 

channel can be achieved as long as the data transmission rate is 

less than the capacity of the channel. 

During digital data transmission and storage operations, 

performance criterion is commonly determined by BER which is 

simply: Number of error bits / Number of total bits. Noise in 

transmission medium disturbs the signal and causes data 

corruptions. Relation between signal and noise is described with 

SNR (signal-to-noise ratio). Generally, SNR is explained with 

signal power / noise power and is inversely proportional with 

BER. It means, the less the BER result is the higher the SNR 

and the better communication quality [2].  

Mainly there are two types of Forward Error Correction (FEC) 

coding techniques: linear block coding and convolution 

encoding [3]. Reed-Solomon codes come under the category of 

linear block codes. 

A generic block diagram of digital communication system is 

shown in Fig.1 [5]. The binary digits from the encoder are fed 

into a modulator, which maps them into one of the known digital 

modulation waveforms, say BPSK or BFSK. The channel over 

which the waveforms are transmitted will corrupt the waveforms 

in general by adding symmetric additive white Gaussian noise 

(AWGN). The resulting received noisy signal is demodulated to 

its binary regime and decoded back to the original binary 

information sequence. The decoding decision scheme may be 

one of two possible decoding schemes hard or soft decision 

scheme. In the hard decision decoding, the demodulator 

quantized the incoming signal into two levels, denoted as 0 and 

1. The information sequence bits are then recovered by the 

decoder that will have a certain error correcting capability. On 

the other hand, if the unquantized (analog) demodulator output 

is fed to the decoder we call this decoding scheme soft decision 

decoding. This paper shows the basic concept of RS codes and 

various simulations that are performed to find out the best BER 

performance of the RS codes for different code rates. All the 

simulations are performed using MATLAB Software. 

 

Fig 1: Block diagram of digital communication system with 

channel coding 

2.  LINEAR BLOCK CODES 
For a block of k message bits, (n-k) parity bits or check bits are 

added. This means that the total bits at the output of channel 

encoder are n. Such types of codes are known as (n,k) block 

codes. In the systematic block code, message bits appear at the 

beginning of the code word. As shown in the figure2 the 

message bits appear first and then check bits are transmitted in a 

block. This type of code is known as the systematic code[4]. 

A block code c is constructed by breaking up the message data 

stream into blocks of length k and has the form (mo, m1,…..mk-

1), and mapping these blocks into code words in c. The resulting 

code consists of a set of M code words (co, c1,........cM-1). Each 

code word has a fixed length denoted by n and has a form (co, 

c1,........cn-1). The elements of the code word are selected from an 
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alphabet field of q elements. In the binary code case, the field 

consists of two elements, 0 and 1. On the other hand, when the 

elements of the code word are selected from a field that has q 

alphabet elements, the code is non binary code. As a special case 

when q is a power of 2 (i.e. q = 2m) where m is a positive 

integer, each element in the field can be represented as a set of 

distinct m bits. 

 

Fig 2: Functional block diagram of a block coder 

As indicated above, codes are constructed from fields with a 

finite number of q elements called Galois field and denoted by 

GF (q). In general, finite field GF (q) can be constructed if q is a 

prime or a power of prime number. When q is a prime, the 

GF(q) consist of the elements {0,1, 2,....q -1}with addition and 

multiplication operations are defined as a modulo-q . If q is a 

power of prime (i.e. q = pm where m is any positive integer), it 

is possible to extend the field GF (p) to the field GF (q = pm). 

This is called the extension field of GF (p) and in this case 

multiplication and addition operations are based on modulo- p 

arithmetic. 

 

3.  INTRODUCTION TO RS CODES  
Reed-Solomon codes are block-based error correcting codes 

with a wide range of applications in digital communications and 

storage. It is vulnerable to the random errors but strong to burst 

errors. Hence, it has good performance in fading channel which 

have more burst errors. In coding theory Reed–Solomon (RS) 

codes are cyclic error correcting codes invented by Irving 

S.Reed and Gustave Solomon. They described a systematic way 

of building codes that could detect and correct multiple random 

symbol errors. By adding t check symbols to the data, an RS 

code can detect any combination of up to t erroneous symbols, 

and correct up to [t/2] symbols. As an erasure code, it can 

correct up to t known erasures, or it can detect and correct 

combinations of errors and erasures.  Reed-Solomon codes are 

used to correct errors in many systems including: 

 Storage devices (including tape, Compact Disk, DVD, 

barcodes, etc) 

 Wireless or mobile communications (including 

cellular telephones, microwave     links, etc) 

 Satellite communications 

 Digital television / DVB 

 High-speed modems such as ADSL, xDSL, etc.               

The Reed-Solomon encoder takes a block of digital data and 

adds extra "redundant" bits. Errors occur during transmission or 

storage for a number of reasons (for example noise or 

interference, scratches on a CD, etc). The Reed-Solomon 

decoder processes each block and attempts to correct errors and 

recover the original data. The number and type of errors that can 

be corrected depends on the characteristics of the Reed-Solomon 

code. 

3.1 Historical Background  
On January 2, 1959, Irving Reed and Gus Solomon submitted a 

paper to the Journal of the Society for Industrial and Applied 

Mathematics. In June of 1960 the paper was published: five 

pages under the rather unpretentious title "Polynomial Codes 

over Certain Finite Fields". This paper described a new class of 

error-correcting codes that are now called Reed-Solomon codes. 

In the decades since their discovery, Reed-Solomon codes have 

enjoyed countless applications, from compact disc™ players in 

living rooms all over the planet to spacecraft that are now well 

beyond the orbit of Pluto. Reed-Solomon codes have been an 

integral part of the telecommunications revolution in the last 

half of the twentieth century [10]. 

 

4. ENCODING OF RS CODES 
Reed Solomon codes are a subset of BCH codes and are linear 

block codes. A Reed-Solomon code is specified as RS (n,k) 

with s-bit symbols. This means that the encoder takes k data 

symbols of s bits each and adds parity symbols to make 

an n symbol codeword. There are n-k parity symbols of s bits 

each. A Reed-Solomon decoder can correct up to t symbols that 

contain errors in a codeword, where 2t = n-k. 

Given a symbol size s, the maximum codeword length (n) for a 

Reed-Solomon code is n = 2s – 1. For example, the maximum 

length of a code with 8-bit symbols (s=8) is 255 bytes. Reed-

Solomon codes may be shortened by (conceptually) making a 

number of data symbols zero at the encoder, not transmitting 

them, and then re-inserting them at the decoder. The amount of 

processing "power" required to encode and decode Reed-

Solomon codes is related to the number of parity symbols per 

codeword. A large value of t means that a large number of errors 

can be corrected but requires more computational power than a 

small value of t [6]. 

 

5.  DECODING OF RS CODES 
Reed-Solomon algebraic decoding procedures can correct errors 

and erasures. An erasure occurs when the position of an erred 

symbol is known. A decoder can correct up to t errors or up 

to 2t erasures. Erasure information can often be supplied by the 

demodulator in a digital communication system, i.e. the 

demodulator "flags" received symbols that are likely to contain 

errors [7]. 

When a codeword is decoded, there are three possible outcomes: 

1. If 2s + r < 2t (s errors, r erasures) then the original transmitted 

code word will always be recovered, 

OTHERWISE 

2. The decoder will detect that it cannot recover the original 

code word and indicate this fact. 

OR 

3. The decoder will mis-decode and recover an incorrect code 

word without any indication. 

The probability of each of the three possibilities depends on the 

particular Reed-Solomon code and on the number and 

distribution of errors. 

5.1 Coding Gain 
The advantage of using Reed-Solomon codes is that the 

probability of an error remaining in the decoded data is (usually) 
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much lower than the probability of an error if Reed-Solomon is 

not used. This is often described as coding gain. 

 

6.  ARCHITECTURES FOR ENCODING 

AND DECODING RS CODES 
Reed-Solomon encoding and decoding can be carried out in 

software or in special-purpose hardware. 

6.1 Finite (Galois) Field Arithmetic 
Reed-Solomon codes are based on a specialist area of 

mathematics known as Galois fields or finite fields. A finite 

field has the property that arithmetic operations (+,-, x, / etc.) on 

field elements always have a result in the field. A Reed-

Solomon encoder or decoder needs to carry out these arithmetic 

operations. These operations require special hardware or 

software functions to implement [8,9]. 

6.2 Generator Polynomial 
A Reed-Solomon codeword is generated using a special 

polynomial. All valid codewords are exactly divisible by the 

generator polynomial. The general form of the generator 

polynomial is: 

g(x) = (x-αi)( x-αi+1)….( x-αi+2t) 

and the codeword is constructed using: 

c(x) = g(x).i(x) 

where g(x) is the generator polynomial, i(x) is the information 

block, c(x) is a valid codeword and a is referred to as a primitive 

element of the field. Example: Generator for RS(255,249) 

g(x) = (x-α0) (x-α1) (x-α2) (x-α3) (x-α4) (x-α5) 

g(x) = x6 + g5x5 + g4x4 + g3x3 + g2x2 + g1x1 + g0 
6.3 Encoder architecture 
The 2t parity symbols in a systematic Reed-Solomon codeword 

are given by: 

p(x) = i(x). xn-k mod g(x) 

An architecture for a systematic RS (255,249) encoder each of 

the 6 registers holds a symbol (8 bits). The arithmetic operators 

carry out finite field addition or multiplication on a complete 

symbol. 

6.4 Decoder architecture 
The received codeword r(x) is the original (transmitted) 

codeword c(x) plus errors: 

r(x) = c(x) + e(x) 

A Reed-Solomon decoder attempts to identify the position and 

magnitude of up to t errors (or 2t erasures) and to correct the 

errors or erasures. Decoding is done by adopting the following 

steps: 

Syndrome Calculation 
This is a similar calculation to parity calculation. A Reed-

Solomon codeword has 2t syndromes that depend only on errors 

(not on the transmitted code word). The syndromes can be 

calculated by substituting the 2t roots of the generator 

polynomial g(x) into r(x). 

Finding the Symbol Error Locations 
This involves solving simultaneous equations with t unknowns. 

Several fast algorithms are available to do this. These algorithms 

take advantage of the special matrix structure of Reed-Solomon 

codes and greatly reduce the computational effort required.  

Find an error locator polynomial 
This can be done using the Berlekamp-Massey algorithm or 

Euclid’s algorithm. Euclid’s algorithm tends to be more widely 

used in practice because it is easier to implement: however, the 

Berlekamp-Massey algorithm tends to lead to more efficient 

hardware and software implementations. 

Find the roots of this polynomial 
This is done using the Chien search algorithm. 

Finding the Symbol Error Values 
Again, this involves solving simultaneous equations with t 

unknowns. A widely-used fast algorithm is the Forney 

algorithm. 

 

7. APPLICATIONS OF RS CODES 

a) The Digital Audio Disc 
It can safely be claimed that Reed-Solomon codes are the most 

frequently used digital error control codes in the world. This 

claim rests firmly on the fact that the digital audio disc, or 

compact disc uses Reed-Solomon codes for error correction and 

error concealment.  Special properties of Reed-Solomon codes 

make the sound quality of the compact disc as impressive as it is 

(the signal-to-noise ratio at the output exceeds 90 dB). The 

compact disc system uses a pair of cross-interleaved Reed-

Solomon codes. 

 b) Deep Space Telecommunication Systems 
McEliece and Swanson examined  the use of Reed- Solomon 

codes in several of NASA and ESA's planetary exploration 

missions. However, when convolutional and Reed-Solomon 

codes are used in concatenated systems, enormous coding gains 

are achievable. A convolutional code is used as an "inner code," 

while a Reed-Solomon code is used to correct errors at the 

output of the convolutional (Viterbi) decoder. The Viterbi 

decoder output happens to be bursty, providing a perfect match 

for a Reed-Solomon code. The most famous application of the 

concatenated convolutional/Reed-Solomon system was in the 

Voyager expeditions to Uranus and to Neptune [11]. 

c)  Error Control for Systems with Feedback 
Wicker and Bartz examine various means for using Reed- 

Solomon codes in applications that allow the transmission of 

information from the receiver back to the transmitter. Such 

applications include mobile data transmission systems and high-

reliability military communication systems. Along with their 

powerful error correction capabilities, Reed-Solomon codes can 

also provide a substantial amount of simultaneous error 

detection.  

d) Spread-Spectrum Systems 
Reed-Solomon codes can be used in the design of the hopping 

sequences. If these sequences are carefully selected, the 

interference caused by other users in a multiple access 

environment can be greatly reduced. 

e) Satellite Broadcasting (DVB) 
The demand for satellite transponder bandwidth continues to 

grow, fueled by the desire to deliver television (including new 

channels and High Definition TV) and IP data. Transponder 

availability and bandwidth constraints have limited this growth, 

because transponder capacity is determined by the 
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selected modulation scheme and Forward Error Correction 

(FEC) rate. BPSK coupled with traditional Reed Solomon and 

Viterbi codes have been used for nearly 20 years for the delivery 

of digital satellite TV. 

 

8. SIMULATION RESULTS 
A full system model was implemented in Matlab. Performance 

analysis of RS codes is done for different code rates by taking 

random data stream. Here we have used BPSK (Binary Phase 

Shift Keying) modulation and demodulation for all the 

simulations. The encoded data is then passed through Gaussian 

channel which adds Additive White Gaussian Noise (AWGN) to 

the channel symbols produced by the encoder. In the following 

figures, Eb/No dB denotes the information bit energy to noise 

power density ratio and at the y-axis we plot the bit error rate 

(BER). 

First we run the simulations for RS codes with different code 

rates i.e. 0.96, .878, .80 and .647. These simulations are carried 

out for constant block length or codeword length which is 255. 

From figure3, it can be seen, as we decrease the code rate 

keeping block length constant the BER performance improves. 

We can see that the absolute BER performance is approx. 2dB 

better for 0.647 code rate than 0.96 at BER of 0.0066.  

Next we performed the simulations for RS codes for different 

code rates as well as block lengths. We can see from the figure 

4, as the block length increases the BER performance also 

improves. So here the best result comes out with RS (400,240) 

with m= 9 i.e. number of bits per symbol is 9. 

We can now say that for RS codes the BER performance 

improves with the decreasing code rate and to some how large 

block lengths. The RS code, which is well suited for correction 

of burst errors, shows a poor BER performance for lower SNR 

values, because of the mainly random errors introduced by the 

AWGN 

 
Fig 3: The BER performance comparison of RS codes for 

different code rates and fixed block length of 255 

 

 

Fig 4: The BER performance comparison of RS codes for 

different code rates and block lengths 

 

9. CONCLUSION 
Through this paper we present the deep and clear understanding 

of Reed-Solomon codes making them simpler and easier to 

understand and implement. RS codes are finding increasing use 

in applications where reliable and highly efficient information 

transfer over bandwidth in the presence of data-corrupting noise 

is desired like recently, RS codes have been considered for 

many industrial standards of next generation communication 

systems. The purpose of this paper is to study the Reed-Solomon 

(RS) code, with an aim to simulate the encoding and decoding 

processes. In this paper we performed the simulations of Reed-

Solomon codes for different code rates keeping block length 

constant. It was concluded that the BER performance improves 

as the code rate decreases. The simulations also showed that the 

BER performance also improves for large block lengths and RS 

codes shows a poor BER performance for lower SNR. As the 

SNR value increases the curve becomes steeper. 
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