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ABSTRACT 
Ant Colony Optimization (ACO) algorithms belong to class of 

metaheuristic algorithms, where a search is made for optimized 

solution rather than exact solution, based on the knowledge of 

the problem domain. ACO algorithms are iterative in nature. As 

the iteration proceeds, solution converges to the optimized 

solution. In this paper, we propose new updation mechanism 

based on clustering techniques, an unsupervised learning 

mechanism aimed at exploring the nearby solutions region. We 

also report in detail the impact on performance due to 

integration of cluster and ACO. 
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1. INTRODUCTION 
One of the basic research objectives in the field of nature 

inspired algorithms is the derivation of a methodology and 

associated tools for modeling and measuring the dynamic 

behavior of the underlying process. Among many such 

evolutionary algorithms, Ant Colony Optimization (ACO) is a 

recently developed population based algorithm which has been 

applied to many NP-hard combinatorial optimization problems 

[1]. The foraging behavior of ants has fascinated many 

researchers, which has lead to the development of Ant 

algorithms. In search of food, ants leave their nest and move 

towards food source in a random direction. On their way 

towards the food source, they leave behind a chemical substance 

called pheromone trials. This pheromone trial will guide the 

subsequent ants to make a move towards the food source. Ants 

will also use this pheromone trial to trace back their nests. The 

shortest path on which ants traveled from nest to food source 

and back to nest will have more pheromone concentration 

compared to the other paths, thus making it more favorable path. 

Eventually all the ants follow this shortest path. Thus they find a 

shortest path from nest to food source. The above mentioned 

feature has resulted in evolution of Ant algorithms. A close 

observation reveals that foraging behavior can be used to attack 

the combinatorial problems. This new computing paradigm has 

a feature of positive feedback, distributed computation and use 

of constructive greedy heuristic approach. The positive 

feedback, a sort of reinforcement speaks about the quality of 

solution found during the search and is expressed in terms of 

amount of deposition, distributive computation avoids the 

premature convergence as group of ants are involved, which will 

exploit the search space effectively and greedy heuristic helps to 

find the acceptable solution. Many variants of Ant Algorithms 

have been proposed in the literature and each algorithm 

improvises the earlier versions [2-6]. These algorithms try to 

strike the balance between exploration and exploitation. An Ant 

which explores the search space around the optimally best 

solution may not reach globally best solution. Similarly, 

exploiting the search space will get the globally best solution, 

but needs more time to converge. Therefore it is necessary to 

strike the balance between exploration and exploitation for 

better performance in terms of quality of solution found and 

time to converge. These Ant algorithms have been successfully 

applied to benchmark problems like, Traveling Salesman 

Problem (TSP), the Job-Shop Scheduling (JSP), the Vehicle 

Routing Problem (VRP), Graph Coloring Problem (GRP) and 

Quadratic Assignment Problem (QAP). The ACO algorithms 

have been extended to continuous search domain. Based on the 

literature survey, research work related to ACO can be classified 

into following categories: Devising new strategies for 

pheromone updation [8, 11], Reward-Penalty approaches [13], 

Dynamic parameter adjustment [9-10], Hybridization of ant 

algorithms [14], Proofs for convergence [7,12,16,17] and 

applying the ant algorithms to multidisciplinary fields.  

 

2. CLUSTERING 
Data clustering [20] is one of the most important human 

activities that involve discovering groups and identifying 

interesting distribution and patterns in the underlying data. 

Clustering problem is about partitioning the data into 

groups/classes of objects in such a way that the objects within 

the group are very similar and the objects across the group are 

quiet different. Clustering is an unsupervised approach, where 

no labeled data will be available. The ultimate goal of the 

clustering is to assign the unlabelled data to labeled classes. The 

labels to the classes are categorical in nature and are purely data 

driven; that is, they are obtained from data. It is possible that 

sometime even class labels may not be defined, but still cluster 

process should identify the natural closeness among the data and 

should group them. In general, data belong to only one cluster. 

However, it is possible for the data to belong more than one 

clusters and its association with particular cluster is determined 

by the degree of membership. We will discuss some of the 

important clustering algorithms available in the literature and 

these algorithms will be used to come up with cluster integrated 

ACO algorithm. 
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2.1 k-Median algorithm 
The k-Median algorithm is a variant of k-Mean algorithm [15]. 

This algorithm creates k partitions of the data points and median 

represents the centroid of each partition. The algorithm typically 

employs the absolute-error criterion that minimizes the sum of 

the absolute distance of each data point with respect to centroid 

of the cluster. The working of k-Median algorithm is as follows: 

 

Input: The number of clusters k and the n data sets. 

Output: A set of k clusters that minimizes the squared-error 

criterion. 

Method: 

1. Arbitrarily choose k data as the initial cluster centers. 

2. (Re)assign each of the data to the nearest cluster Cw , i.e., 

xj є Cw , if || xj − mw || < ||xj − mi || 

for j = 1, 2, ...N , i = w, and i = 1,2,...k. 

3. Recalculate the cluster center (mean) for the current partition. 

4. Repeat the steps 2 and 3 until there is no change for each 

cluster. 

 

2.2 DBSCAN 
 DBSCAN (Density Based Spatial Clustering of Applications 

with Noise) is a density based clustering algorithm proposed by 

Martin et al [21]. The density based approaches treat the 

“Clusters” as a set of points, such that each point can be reached 

from every other point within the group and “noise” as a set of 

unreachable points. The algorithm can be better understood with 

the following definitions: 

 

Definition 1 (є-neighborhood of a point). The є -neighborhood 

of a point x is defined as  

Nє(x) = {y є D: d(x, y) ≤ є} 

where D is the set of data points, d(., .) is a certain distance 

function and є specifies the radius of the circle. The є-

neighborhood of a point should contain minimum number of 

points say Min_pts, then the point is called core point otherwise 

it is a border point. The core points are present inside the cluster 

and border points form the boundary of the cluster. 

 

Definition 2 (Directly density-reachable). A point x is said to 

be directly density-reachable from a point y (with respect to є 
and Min_pts) if  

1. x є Nє(y) 

2. Nє(y) ≥ Min pts, where Nє(y) denotes the number of points 

(core point condition). 

If two core points x and y belongs to the same cluster then x can 

be directly density-reachable from y and vice versa. However, if 

x is a core point and y is a border point then y is directly density-

reachable from x but other way around is not possible. 

 

Definition 3 (Density-reachable). A point x is said to be 

density-reachable from point y if there is a sequence of points x 

= x1, x2, …  xi = y such that xl is directly density-reachable from 

xl+1 for l = 1, 2, ... i-1. 

The density-reachability is an extension of directly density 

reachable. The definition suggests that all the core points in a 

cluster C can be visited as a sequence of points. 

 

Definition 4 (Density-connected). Two points x and y are said 

to be density-connected w.r.t є and Min_pts if there exists a 

point z such that both x and y are density reachable from z w.r.t є 

and Min_pts.  

The border points of cluster C may not be density reachable to 

each other; however there must exist a set of core point in C that 

is density reachable to border points. The definition 4 specifies 

the condition for establishing the relation between the border 

points of the clusters C. 

 

Definition 5 (Cluster). Let D be the dataset. A Cluster C w.r.t є 

and Min_pts is a nonempty subset of D satisfying the following 

conditions: 

1. ∀x,y є D, if x є C and y is density-reachable from x w.r.t є 

and Min_pts then y є C. 

2.  ∀x,y є C, x and y are density connected w.r.t є and Min_pts. 

 

The DBSCAN defines the cluster as set of density-connected 

points and noise as a set of points that does not belong to any of 

the clusters. DBSCAN starts with an arbitrary point x and finds 

all the point that are density-reachable from x w.r.t є and 

Min_pts. If x is a core point, then a cluster w.r.t є and Min_pts is 

formed. If x happens to be the border point, then no points are 

density-reachable and DBSCAN visits the next unclassified 

point. 

 

The DBSCAN algorithm works as follows: 

Input: Set of data points D, є and the minimum number of 

points Min_pts. 

Output: A Set of m clusters. 

Method: 

1. Mark all the points as unclassified. 

2. Do the following until all the points in D are marked as 

classified. 

2a. Select an unclassified point P in D and mark it as 

classified. 

2b. Set N = neighbor (P, є) % Identify the neighborhood 

set of points. 

2c. If sizeof(N) < MinPts 

2c1. mark P as Noise. 

else 

2c`1. Create a cluster C and add the point P to it. 

2c`2. Do the following for all the points in N. 

2c`21. Select the point P` in N and mark it as 

classified. 

2c`22. Set N` = neighbor(P`, є) 

2c`3. If sizeof (N`) ≥ MinPts 

2c`31. N = N combined with N`. 

2c`4. Add the point P` to cluster C. 

 

It should be noted that DBSCAN needs two parameters є and 

Min_pts to work but identifying the values for parameters is not 

easy. A simple heuristics called k-dist graph is developed to find 

the values for parameters. The DBSCAN algorithm needs to 

compute the distance between point and the k nearest point. 

These distances are sorted and then k-graph is plotted. The first 

“valley” in the graph is identified and the corresponding point is 

used to set the є. The value of Min pts is set to k = 4, since k-

dist graph won’t vary much for higher values. 
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3. INTEGRATION OF CLUSTERS IN ACO 
The experimental simulation reveals that there exist a correlation 

between the quality of solution found and the distance from 

good or optimal solutions. In literature, several measures to 

access the quality of solution can be found and one such 

measure is fitness-distance correlation (FDC) function [19]. The 

FDC computes the correlation coefficient which determines the 

goodness of the obtained solutions with respect to global best 

solution. The correlation coefficient will have high positive 

value, if the obtained solution is near to the global best solution. 

Infact, for the problems like TSP [6], large number of local 

optimum solutions is concentrated in a small region near the 

global best solution. Inorder to exploit the regions near the best 

solution, we propose a cluster based updation strategy which 

reinforces the toured paths in an unconventional manner. The 

cluster based updation strategy has the following characteristics: 

 

• It groups the nearby tour performances and each tour 

performances within the group is reinforced with the same 

amount of pheromone trial, thereby supports the exploitation of 

(best) solutions. 

• It reinforces all the paths, thereby supports the exploration. 

 

Ideally, best tour in the group will be selected and its 

performance will be taken as a reference for updating the rest of 

the paths present in the group. The following subsections will 

discuss the incorporation of clustering mechanism in ACO 

algorithm. 

 The general outline of the cluster integrated ACO is as follows: 

  

Input: A dataset D, number of cities n, number of ants m, 

number of cluster k and parameter τ , η, ρ. 

Output: The best tour length sbs. 

Method: Initialize the Pheromone trial, parameters and set sbs to 

null. 

while termination condition not met do 

χiter ← null 

for j = 1, · · · , n do 

s ← ConstructSolution 

s ← LocalSearch Optional 

if(f (s) < f (sbs ))) or (sbs = NULL) then sbs ← s 

χiter ← χiter ∪ {s} 

end for 

Identify the clusters in χiter 

Apply the Pheromone Updates for each cluster by choosing the 

best solution in the corresponding group. 

 end while 

3.1 k-Median ACO (kMed-ACO) 
The k-Median algorithm creates k partitions of the tour 

performances. The updation strategy involves reinforcing all the 

tour paths in the cluster with the same amount of pheromone 

trial as that of best tour path in the cluster. 

 

3.2 Density Based Clustered ACO (DBC-

ACO) 
 The problem with the k-Median algorithms is that the shape of 

the cluster will be influenced by exceptional/outlier data points. 

The outliers are the set of points that may not logically belong to 

any of the clusters, but due to logical nearness they are forced to 

be part of one of the clusters. The reason for assigning the 

outlier to one such cluster is due to fixed number of clusters that 

are specified as a part of parameter settings. The evolved 

clusters may not look natural in presence of outliers. Inorder to 

access the impact of natural looking clusters, we incorporated 

the DBSCAN algorithm in ACO algorithms. The number of 

clusters that evolve purely depends on the distribution of data. 

The basic DBSCAN algorithm was modified to suit the single 

dimension data space. The modified DBSCAN algorithm has a 

single parameter similar to є and it is derived from the 

distribution of data. The computation of є is as follows: 

 

 Sort the tour performances in ascending order. 

 Compute the sum of the difference between the tour 

performances. 

 Calculate the average of the sum of difference. 

 

The computed average, now onwards called as є mean 

difference is used as distance measure for clustering process. 

The clustering process proceeds as follows: 

 

1. Sort the tour performances TL1, TL2 …TLm. 

2. Create a new cluster C. 

3. Select a new data point TLi in the increasing order, assign it 

to newly created cluster C and mark it as assigned. 

4. Check whether next data point TLi+1 is located within the 

mean difference distance or not i.e., || TLi − TLi+1 || ≤ є. 

5. If it is reachable, assign it to the cluster, mark it as assigned 

and repeat from step 2 until all the points are marked as 

assigned. 

6. If it is not reachable, repeat from step 3. 

 

It should be noted that algorithm treats the outliers as a cluster 

that contains only single point. 

 

4. EXPERIMENTAL STUDY 

4.1 Parameter Settings 
Since clustering mechanism have been incorporated in the ACO 

algorithms, additional parameters pertaining to cluster need to 

be specified as a part of parameter settings. The k-Median ACO 

need k number of clusters as a parameter for clustering process. 

We made extensive simulations by varying the parameters α, β 

from 1 to 5, ρ from 0.7 to 1.0 with the increment of 0.03 and 

number of ants m were varied in range from {10,n/2,n}, where n 

is the number of ants in the system. The parameter k was varied 

in the range of 20-80% of the number of ants and the total 

number of iterations was set to 1,00,000. 

 

4.2 Result Analysis for Primary Updation 
 The Table 1 shows the comparative results of cluster integrated 

ACO for primary updation. The maximum deviation observed in 

k-Median is 0.46% for bays29 dataset. The DBSCAN algorithm 

provides better optimal solution compared to k-Median, but it 

constructs large number of clusters for updation purpose. 

Inorder to access the behavior of algorithm, graphs are plotted 

for varying number of ants, clusters and pheromone at different 

intensity level. In subsequent section, we will present the 

graphical analysis of the behavior of all the cluster integrated 

ACO algorithms.  
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Table 1. Comparative Results for Cluster integrated ACO 

algorithms for primary updation.  

Dataset Algorithm Best (Std Dev)  
Average (Std 

Dev) 

bays29 
kMed-ACO 2029.4 (0.46%) 2035.3 (0.75%) 

DBC-ACO 2025.4 (0.26%) 2028.2 (0.4%) 

att48 
kMed-ACO 10665.1 (0.34%) 10688.6 (0.57%) 

DBC-ACO 10651.6 (0.22%) 10673.4 (0.42%) 

eil51 
kMed-ACO 427.8 (0.42%)  430.5 (1.05%) 

DBC-ACO 427.1 (0.25%)  429.5 (0.82%) 

st70 
kMed-ACO 678.2 (0.47%)  681.8 (1.00%) 

DBC-ACO 677.4 (0.35%)  680.5 (0.81%) 

eil76 
kMed-ACO 540.3 (0.42%)  547.4 (1.74%) 

DBC-ACO 539.4 (0.26%)  543.6 (1.04%) 

kroa100 
kMed-ACO 21332.4 (0.23%)  21359.4 (0.36%) 

DBC-ACO 21313.5 (0.14%)  21340.4 (0.27%) 

kroa200 
kMed-ACO 29466.4 (0.33%)  29503.2 (0.46%) 

DBC-ACO 29408.1 (0.13%)  29443.5 (0.26%) 

lin318 
kMed-ACO 42221.2 (0.45%)  42278.2 (0.59%) 

DBC-ACO 42146.7 (0.28%)  42091.8 (0.14%) 

 
4.3 Result Analysis for Secondary Updation 
We extended the proposed approach by incorporating additional 

reinforcement mechanism. The additional reinforcement is done 

after primary updation. The additional/ secondary updation is 

adopted to provide the diversification for the search process. The 

primary updation mechanism updates the pheromone trial 

proportional to the quality of solution found. The secondary 

updation mechanism uses cluster based updation strategy to 

reinforce the traveled paths. The Table 2 shows the comparative 

results for the cluster integrated ACO for secondary updation. 

On comparing Table 2 with Table 1, it can be observed that 

secondary updation strategy improvises most of the obtained 

solution. The extended approach provides best solution for att48, 

eil76, kroa100 and kroa200 dataset for DBC-ACO algorithm. 

 

Table 2. Comparative Results for Cluster integrated ACO 

algorithms for secondary updation.  

Datasets Algorithm Best (Std Dev)  
Average (Std 

Dev) 

bays29 
kMed-ACO 2024.6 (0.22%)  2029.1 (0.45%) 

DBC-ACO 2022.3 (0.11%)  2026.7 (0.33%) 

att48 
kMed-ACO 10654.3 (0.24%)  10671.2 (0.40%) 

DBC-ACO 10630.5 (0.02%)  10644.3 (0.15%) 

eil51 
kMed-ACO 427.1 (0.25%)  431.4 (1.26%) 

DBC-ACO 428.7 (0.63%)  432.7 (1.57%) 

st70 
kMed-ACO 677.3 (0.34%)  682.5 (1.11%) 

DBC-ACO 675.7 (0.1%)  678.9 (0.57%) 

eil76 
kMed-ACO 539.4 (0.26%)  544.1 (1.13%) 

DBC-ACO 538.4 (0.07%)  541.2 (0.59%) 

kroa100 
kMed-ACO 21302.1 (0.09%)  21339.5 (0.27%) 

DBC-ACO 21291.6 (0.04%)  21318.3 (0.17%) 

kroa200 
kMed-ACO 29423.6 (0.18%)  29478.6 (0.37%) 

DBC-ACO 29378.5 (0.03%)  29406.4 (0.13%) 

lin318 
kMed-ACO 42115.6 (0.2%)  42171.6 (0.33%) 

DBC-ACO 42076.1 (0.11%)  42131.9 (0.24%) 

 

4.4 Performance Analysis of Algorithms 
In this section, we will discuss the impact of various parameters 

affecting the performance of the algorithm. A comparative graph 

are drawn by varying number of ants, number of clusters and 

pheromone trials of different strength for each variant of the 

algorithm in order to access the performance. The execution 

profile graph is plotted to access the nature of convergence of 

algorithm. 

 

4.4.1 k-Median ACO 
The eil76 dataset was selected to assess the behavior of 

the algorithm. The Figure 1 shows the comparative results 

of primary updation for kMed-ACO. The Fig 1a shows 

that algorithm exhibits comparatively less variation in 

obtained solutions for varying number of ants and obtains 

better results for smaller number of ants. The kMed-ACO 

provides optimal result, when the number of clusters is 

50% of the number of ants as seen in Fig 1b. Similarly, it 

exhibits least variation in the best solution for the varying 

pheromone trial strength and with the increase in 

pheromone persistent factor, quality of solution 

improvises. The Figure 2 shows the comparative results 

of secondary updation for kMed-ACO. The kMed-ACO 

marginally improvises the solution across the varying 

number of ants and the cluster and provides good solution 

for higher pheromone trial. 
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(a) Variation in number of ants 

(b) Variation in number of clusters 

(c) Variation in pheromone trial 

Figure 1: Comparative graph of kMed-ACO for 

primary updation. 

 

 

 

(a) Variation in number of ants 

(b) Variation in number of clusters 

 

 

 

 

 

 

 

 

(c) Variation in pheromone trial 

Figure 2: Comparative graph of kMed-ACO for 

secondary updation. 
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4.4.2 Density Based ACO 
The st70 dataset was selected to assess the behavior of the 

algorithm. The Figure 3 shows the comparative results of 

primary updation for DBC-ACO. The Fig 3a shows that DBC-

ACO exhibits least variation in obtained solutions compared to 

other strategies for varying number of ants and obtains best 

solution, when there are around 60 numbers of ants. The є mean 

variance of varying size from 0.75 to 1.25 was considered for 

experimentation purpose. It can be observed from Fig 3b that 

better results were obtained for smaller size. The Fig 3c shows 

that quality of solution will improve by retaining most of the 

past experiences. The Figure 4 shows the comparative results of 

secondary updation for DBC-ACO strategy. The Fig 4a shows 

that better quality of solution will be obtained for large number 

of ants. The Fig 4b and 4c shows that algorithm is not so 

sensitive to varying є mean variance and pheromone trial. 

 

 

 

(a) Variation in number of ants 

 

(b) Variation in є mean 

 

 

(c) Variation in pheromone trial 

Figure 3: Comparative graph of DBC-ACO for primary 

updation. 

(a) Variation in number of ants 

 
 

 

 

 

 

 

 

 

(b) Variation in є mean 

c) Variation in pheromone trial 
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Figure 4: Comparative graph of DBC-ACO for secondary 

updation. 

5. CONCLUSION 
 In this paper, we have presented some novel approaches to 

update the pheromone trial. The updation strategies have been 

incorporated with cluster mechanism that reinforces the 

logically nearer paths with same amount of pheromone trial. The 

paper discussed about the incorporation of k-median and 

DBSCAN strategy and the impact of incorporation on the 

performance of ACO algorithm. The performance analysis is 

done with respect to primary updation and secondary updation. 

For the first time, such a technique has been developed by us 

that can be used for any randomized search heuristics. 
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