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ABSTRACT 

This paper deals with fuzzy goal programming approach to bi-

level multi-objective programming problem with fuzzy 

parameters. In the proposed approach, the tolerance membership 

functions for the fuzzily described objective functions are 

defined by determining individual optimal solution of the 

objective functions of each of the decision makers. Since the 

objectives are potentially conflicting in general, possible 

relaxations of both level decisions are considered by providing 

preference bounds on the decision variables for avoiding 

decision deadlock. Then fuzzy goal programming technique is 

used for achieving highest degree of each of the membership 

goals by minimizing negative deviational variables. An 

algorithm is presented with termination criteria. An illustrative 

numerical example is provided to demonstrate the efficiency of 

the proposed approach.   

General Terms 

Bi-level multi-objective programming. 

Keywords 

Bi-level programming, Deviational variables, Fuzzy goal 

programming, Fuzzy parameters, Tolerance membership 

functions.  

1. INTRODUCTION 
Bi-level multi-objective programming problem (BLMOPP), an 

apparatus for modeling decentralized decisions, consists of the 

objectives of the first level decision maker (FLDM) at its first 

level and that of the objectives of the second level decision 

maker (SLDM) at the second level. The execution of decision is 

sequential, from first level to second level; each decision maker 

(DM) independently controls only a set of decision variables and 

is interested in optimizing his/her net benefits over a common 

feasible region. Although each DM independently tries to 

optimize his/her own objective function, the decision may be 

affected by the actions and reactions of the SLDM due to the 

dissatisfaction with the decision.  

During the last three decades, bi-level programming problem 

(BLPP) [1, 2] as well as multi-level programming problem 

(MLPP) [3, 4, 5] in general for hierarchical decentralized 

planning problems have been deeply studied and many 

methodologies have been developed to solve them. Sinha [6] 

studied multi-level programming technique based on fuzzy 

mathematical programming. Pramanik and Roy [7] proposed a 

solution methodology based on fuzzy goal programming (FGP) 

for solving MLPP. Sakawa et al. [8] developed interactive fuzzy 

programming for MLPP with fuzzy parameters in 2000. Shi and 

Xia [9] studied two-person bi-level multi-objective decision 

making and an interactive algorithm to solve non-linear bi-level 

multi-objective decision-making problem. Abo-Sinha [10] 

discussed multi-objective optimization for solving non-linear 

multi-objective bi-level programming problem in fuzzy 

environment. Abo-Sinha and Baky [11] presented balance space 

approach for nonlinear multi-objective bi-level programming 

problem. Baky [12] studied FGP algorithm for solving 

decentralized bi-level multi-objective programming problems.  

Zhang et al. [13] presented an algorithm to fuzzy linear multi-

objective bi-level programming problems by using  -cut 

method. Gao et al. [14] studied fuzzy linear BLMOPP based on 

 -cut and goal programming. Pramanik and Roy [15] studied 

FGP approach to multi-objective transportation problem with 

fuzzy parameters. Pramanik and Roy [16] also discussed priority 

based FGP approach to multi-objective transportation problem 

with fuzzy parameters. Recently, Pramanik [17] modified FGP 

model due to Pramanik and Roy [15, 16] and applied it to BLPP 

with fuzzy parameters.    

In this paper, we extend the concept of BLPP due to Pramanik 

[17] for BLMOPP. In the model formulation of the problem, we 

first formulate membership functions by determining individual 

best and worst solution of the objective functions for both the 

DMs for a prescribe value of . Since the objectives of FLDM 

and SLDM are conflicting in nature, cooperation between both 

level DMs is necessary to reach a compromise optimal solution. 

We assume that the SLDM first provides his/her decision by 

providing fixed preference upper and lower bounds on the 

decision variables under his/her control. Considering the fixed 

preference bounds of SLDM, the FLDM also presents his/her 

preference bounds on the decision variables under his/her 

control to avoid decision-deadlock [18]. Then, FGP approach 

[17] is used to solve the problem by minimizing negative 

deviational variables. 

The rest of the paper is organized as follows. Section 2 provides 

some basic definitions. Section 3 presents the formulation of 

BLMOPP. Section 4 discusses fuzzy programming model of 

BLMOPP having fuzzy parameters. In subsection 4.1, 

characterization of membership functions of BLMOPP with 

fuzzy parameter is presented. Subsection 4.2 provides FGP 

model of BLMOPP. Section 5 presents FGP algorithm to 

BLMOPP. In section 6, we solve an illustrative numerical 

example. Finally, section 7 provides the concluding remarks.     
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2. PRELIMINARIES  
Some basic definitions:  

Definition 2.1 A fuzzy set F
~

in X is characterized by F
~

= { x, 

F
~ (x)  x X }, where 

F
~ (x): X   [0, 1] is called the 

membership function of X and 
F
~ (x) is the degree of 

membership to which x F
~

. 

Definition 2.2 Union of two fuzzy sets 1F
~

and 2F
~

with respective 

membership functions 
1F

~ (x), 
2F

~ (x) is characterized by a 

fuzzy set 3F
~

 whose membership function is defined by 

21 F
~

F
~


 (x) =
3F

~ (x) = max [
1F

~ (x), 
2F

~ (x)], x X .  

Definition 2.3 Intersection of two fuzzy sets 1F
~

 and 2F
~

with 

respective membership functions 
1F

~ (x), 
2F

~ (x) is defined by 

a fuzzy set 3F
~

whose membership function is defined 

by
21 F

~
F
~


 (x) =
3F

~ (x) = min [
1F

~ (x), 
2F

~ (x)], x X . 

Definition 2.4  The  -cut of a fuzzy set F
~

of X  is a non-fuzzy 

set denoted by F
~ and defined by a subset of all elements x 

X so that their membership functions exceed or equal to a real 

number   [0, 1], i.e. F
~ =   x],1,0[,(x) :x

F
~ . 

3. FORMULATION OF BLMOPP 
Consider a BLMOPP of minimization-type objective functions 

at each level. Suppose that DMi denotes the DM at the i-th level 

(i = 1, 2) who controls the decision vector iX = (X 1i , X 2i , …, 

X
iiN ) iN

R∈ (i = 1, 2) where,  X  = 1X  2X  and N = N1+N2. 

i

~

Z ( 1X , 2X )= i

~

Z  ( X ): 









21 NN
RR

iM
R (i = 1, 2) are the 

vector of objective functions of the DMi (i = 1, 2). 

Mathematically, the problem can be formulated as: 

(First  level) 

)X(ZMin

~

1
X1

= 
1X

Min ( )X(Z...,),X(Z),X(Z
1M1

~

12

~

11

~

)                    (1) 

 (Second level)                                            

 

)X(ZMin 2

~

X2

= 
2X

Min ( )X(Z...,),X(Z),X(Z
2M2

~

22

~

21

~

)                  (2) 

subject to 

 
~

22

~

11

~

B,,XAXA                                                          (3)                                                                                                 

1X   0 , 2X   0 .                                                                    (4) 

1X  = {X11, X12, …, X
1N1 }T : decision vector under the control 

of FLDM  

2X  = {X21, X22, …, 
2N2X }T : decision vector under the control 

of  SLDM. 

ij

~

Z  X = 2

ij

2

~

1

ij

1

~

XCXC  , (i = 1, 2), (j = 1, 2, …, Mi)               (5)                                                                   

= 
11 N1

ij

N1

~

12

ij

12

~

11

ij

11

~

XC...XCXC  22

ij

22

~

21

ij

21

~

XCXC

22 N2

ij

N2

~

XC...  , (i = 1, 2), (j = 1, 2, …, Mi)                           (6)                 

Here, 1

~

A  is M  N1 and 2

~

A  is M  N2 matrix,

~

B is the M 

component column vector. 

ij

k

~

C =












 ij

kN

~ij

2k

~ij

1k

~

k
C,...,C,C  (k = 1, 2) 

are constants.  XZ1

~

,  XZ2

~

 are linear and bounded with fuzzy 

coefficients. For simplicity, let us denote the system constraints 

(3) and (4) as S ( ). 

4. FORMULATION OF FUZZY 

PROGRAMMING MODEL OF BLMOPP 

HAVING FUZZY PARAMETERS 
The optimal solution of FLDM and SLDM when determined in 

isolation would be considered as the aspiration level of each of 

the respective fuzzy objective goal. Then, for a prescribed value 

of ,  minimization-type objective function,  ij

~

(i = 1, 2), (j 

= 1, 2, …, Mi) can be replaced by the lower bound of its  -cut 

i.e.  
L

~

ij 
















= 2
L

ij

2

~

1
L

ij

1

~

X)C(X)C(   (i = 1, 2), (j = 1, 2, …, 

Mi)                                                                                            (7)                                                                     

 Similarly, for a prescribed value of  , maximization-type 

objective function, )X(Zij

~

(i =1, 2), (j = 1, 2, …, Mi) can be 

replaced by the upper bound of its  -cut i.e.  

 
U

~

ij 
















= 2
U

ij

2

~

1
U

ij

1

~

X)C(X)C(   (i = 1, 2), (j = 1, 2, …, 

Mi)                                                                                             (8)                                                                                                                                                                             

For the inequality constraints 

i

~

j

N

1j
ij

~

BXA 


(i = 1, 2, …, m1)                                                 (9)  

and
~

ij

N

1j
ij

~

BXA 


(i = m1+1, …, m2)                                      (10)

                                                                                            

can be rewritten by the following constraints as: 
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L

i

~

j

U

N

1j
ij

~

BXA 

































(i = 1, 2, …, m1)                               (11)                                                                                                                                                                       

and

U

i

~

j

L

N

1j
ij

~

BXA 

































(i = m1+1, …, m2)                      (12)                                                                                                          

For the fuzzy equality constraints 

i

~

j

N

1j
ij

~

BXA 


 (i = m2+1, …, M)                                           (13)                                                                                                                                  

can be replaced by two equivalent constraints 

U

i

~

j

L

N

1j
ij

~

BXA 

































 (i = m2+1, …, M)                  (14)                  

and

L

i

~

j

U

N

1j
ij

~

BXA 

































 (i = m2+1, …, M)                      (15)                                                                                                                                   

For proof of equivalency of (13) with (14) and (15), see Lee and 

Li [19]. 

Therefore, for a prescribed value of  , the problem reduces to 

the following problem: L
~

1 ))X((Min 
1





= 





















L
1M

~
L

12

~
L

11

~

))X(Z(,...,))X(Z(,))X(Z(Min 
1

1

               

(16)

                                                       

L
~

2 ))X((Min 
2





= 





















L
2M

~
L

22

~
L

21

~

))X(Z(,...,))X(Z(,))X(Z(Min 
2

2

             (17)

                                                                                                

subject to 

L
~

ij

U

N

1j

~

ij BXA 

































(i = 1, 2, …, m1, m2+1, …, M)         (18)                                                                               

U
~

ij

L

N

1j

~

ij BXA 

































(i = m1+1, …, m2, m2+1, …, M)      (19)                                                                                                

0≥X j (j = 1, 2).                                                                     (20)                                                                                                                           

For a prescribed value of  , the fuzzy BLMOPP reduces to 

deterministic BLMOPP which can be solved by using modified 

FGP model presented by Pramanik [17].                                    

4.1 Characterization of membership 

functions of BLMOPP with fuzzy parameters 

Let, LB
j1 )Z( (j = 1, 2, .., M1) and LB

j2 )Z( (j = 1, 2, …, M2) be 

the individual optimal decision of the FLDM and SLDM 

respectively when calculated in isolation. 

 Here, 

LB
j1 )Z( = L

j1

~

SX

)X(Z(Min


 = )X)C(X)C((Min 2
L

j1

2

~

1
L

j1

1

~

SX





        

(j = 1, 2, .., M1)                                                                        (21)                                                                                                                                      

and LB
j2 )Z( = L

j2

~

SX

)X(Z(Min


 = )X)C(X)C((Min 2
L

j2

2

~

1
L

j2

1

~

SX







(j = 1, 2, …, M2)                                                                      (22)                                                      

If the individual optimal solutions of the objective functions of 

DMs are same, then compromise optimal solution is 

automatically reached. However, this situation rarely occurs due 

to the conflicting nature of the objectives. Then the fuzzy 

objective goals of the FLDM and SLDM appear as: 

L
j1

~

))X(Z(

~
 LB

j1 )Z( , (j = 1, 2, …, M1)                              (23) 

L
j2

~

))X(Z(

~
 LB

j2 )Z( (j = 1, 2, …, M2)                  (24)

           

To formulate membership functions for the minimization type 

objective functions we define: 

UW
j1 )Z( = U

j1

~

SX

)X(Z(Max


 = )X)C(X)C((Max 2
U

j1

2

~

1
U

j1

1

~

SX





 ,   

(j = 1, 2, .., M1)                                                                        (25)                                                 

UW
j2 )Z( =

U
j2

~

SX

)X(Z(Max



= )X)C(X)C((Max 2

U

j2

2

~

1
U

j2

1

~

SX





   

(j =1, 2, …, M2)                                 (26)                                                                              

Here, LB
j1 )Z( , UW

j1 )Z( (j  = 1, 2, …, M1) are best and worst 

solutions respectively for FLDM.  

Similarly, LB
j2 )Z( and UW

j2 )Z( (j = 1, 2, .., M2) are best and 

worst solutions respectively for SLDM.      

Then, the resulting membership functions for FLDM can be 

formulated as: 

  ))((( L
1jj1

    
    
   

      

     















































LB
1j

L

1j

UW
1j

L

1j

LB
1jLB

1j

UW
1j

L

1j

UW
1j

UW
1j

L

1j

≤if ,1

≤≤if ,

-

 ≥if ,0

,       

(j = 1, 2, …, M1)                                                                      (27)                                   
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Similarly, the resulting membership functions for SLDM can be 

formulated as: 

  ))((( L
2jj2

    
    
   

      

     















































LB
2j

L

2j

UW
2j

L

2j

LB
2jLB

2j

UW
2j

L

2j

UW
2j

UW
2j

L

2j

≤if ,1

≤≤if ,

-

-

 ≥if ,0

  

(j = 1, 2, .., M2)                                                                      (28) 

Suppose that j2 and 
j2 (j = 1, 2, …, N2) are the fixed upper 

and lower bounds on the decision variables provided by SLDM 

such that j2 ≤ X2j ≤ 
j2 (j = 1, 2, …, N2). Let j1 and 

j1 (j = 1, 

2, …, N1) be the upper and lower bounds on the decision 

variables provided by FLDM by considering  the preference 

bounds of SLDM. It is to be noted that the FLDM may vary 

his/her preference bounds for overall benefit of the organization 

[18].                                                                                              

4.2 Formulation of FGP Model of BLMOPP 
The proposed FGP formulation for solving BLMOPP can be 

presented as: 

Minimize  = ∑  D  w∑  D  w
21 M

1 j

-
2j

-
2j

M

1 j

-
1j

-
1j



                              (29)                                                                                                                        

subject to 

L
1jj1 ))((  

 +
 -

1jD = 1, (j = 1, 2, …, M1)                           (30)         

L
2jj2 ))((  

 +
 -

2jD = 1, (j = 1, 2, ..., M2)                           (31)                 

                             

j

N

1 j

U
~

ij XA 


















L

~

i 
















, (i = 1, 2, …, m1, m2+1, …, M)  (32)                                                                                

j

N

1 j

L
~

ij XA 


















U

~

i 
















,(i = m1+1, …, m2, m2+1, …, M)(33)                                                                                                                                                                                                                                                                                                                                 

j1 ≤ X1j ≤ 
j1 , (j = 1, 2, …, N1)                                             (34)                                                                                               

 

j2 ≤ X2j ≤ 
j2 , (j = 1, 2, …, N2)                                           (35)                                                                                                                                                                                            

-
1jD 0 (j = 1, 2, …, M1),

-
2jD 0 (j = 1, 2, ..., M2),               (36) 

1X  0 , 2X  .0                                                                       (37)                                                                                                                      

The numerical weights corresponding to negative deviational 

variables are determined as [15]. By solving FGP model (29), if 

FLDM and SLDM are satisfied with this solution, then 

satisficing solution is reached.  

 

5. FGP ALGORITHM TO BLMOPP WITH 

FUZZY PARAMETERS 
By the following steps, we present the proposed FGP algorithm 

for solving BLMOPP with fuzzy parameters as follows: 

Step 1: For specified value of , to formulate the membership 

functions corresponding to the objective functions of both level 

DMs, the upper and lower bounds of their  - cuts are defined. 

Similarly, for inequality constraints, the upper bound and lower 

bound of their  - cuts are defined.    

Step 2: Determine the individual maximum and minimum 

values for the upper and lower  - cuts of the objective 

functions for both level DMs subject to the system constraints.  

Step 3: Determine the weight ])Z()Z(/[1w LB
ij

UW
ijij

  (i = 

1, 2), (j = 1, 2, …, Mi ). 

Step 4: Formulate the membership function ))((( L
ijij   , (i 

= 1, 2), (j = 1, 2, …, Mi ).  

Step 5: Let, the preference bounds of SLDM on the decision 

variables be j2 ≤ X2j ≤ 
j2 (j = 1, 2, …, N2). Then, the FLDM 

provides his/her preference bounds on the decision variables 

such that j1 ≤ X1j ≤ 
j1 (j = 1, 2, …, N1).  

Step 6: Formulate the FGP model (29) and solve the problem. If 

the solution is acceptable to both the DMs, then compromise 

optimal solution is reached. Otherwise, the FLDM provides 

another set of preference upper and lower bounds considering 

fixed preference bounds of SLDM.  

Step 7: Termination criteria: The family of distance functions 

[20] is defined as: 

pD  t,w =  
p/1

k

 1t

p
t

p
t d1w














 


                                                             

Here, td (t =1, 2, …, k) denotes the degrees of closeness of the 

preferred compromise solution to the optimal solution vector 

with respect to t-th objective function. 

w = (w1, w2, …, wk) is the vector of attribute attention levels 

tw . We assume that ])Z()Z(/[1w LB
t

UW
tt

  . The power p 

denotes the distance parameter 1 ≦ p ≦ . 

For p = 2, 2D  t,w  =  
2/1

k

 1t

2
t

2
t d1w














 


                           

For maximization problem, td  is defined by td = (the preferred 

compromise solution)/ (the individual best solution). For 

minimization problem, td is defined by td  = (the individual 

best solution)/ (the preferred compromise solution). The 

solution, for which 2D  t,w  will be minimum would be the 

most satisfying solution for FLDM and SLDM.  

Step 8: End. 



International Journal of Computer Applications (0975 – 8887) 

Volume 30– No.10, September 2011 

17 

6. NUMERICAL EXAMPLE 
Consider the following BLMOPP with fuzzy parameters 

21 X,X
Min



























)XX9X9X3()X(Z

),X5X3X9X2()X(Z

),X3X2X3X()X(Z

43

~

2

~

1

~

13

~
4

~

3

~

2

~

1

~

12

~
4

~

3

~

2

~

111

~

(First level) 

21 X,X
Min





















)X6X9X9X5()X(Z

),X2X2X3X6()X(Z

4

~

3

~

2

~

1

~

22

~
4

~

3

~

2

~

1

~

21

~

 (Second level) 

subject to  

~

4

~

321

~

48X3XXX3  , 

~

4

~

3

~

2

~

1

~

35X2X2X4X2  , 

~

432

~

1 30XXX2X  , 

X1, X2, X3, X4 ≥ 0.                                                                           

Here, all the fuzzy numbers are assumed to be triangular fuzzy 

numbers and are given as follows 

~

2 = (0, 2, 3), 
~

3 = (2, 3, 4), 
~

4 = (3, 4, 5), 
~

5 = (4, 5, 6), 
~

6 = (5, 6, 

7), 
~

8 = (6, 8, 10), 
~

9 = (8, 9, 10), 
~

30 = (28, 30, 32), 
~

35 = (33, 35, 

37), 
~

48 = (45, 48, 49).     

By replacing the fuzzy coefficients by their  -cuts, the above 

problem can be written as 

21 X,X
Min L

11 ))X(Z( = X1 + (2+ ) X2 + (2 ) X3 + (2+ ) X4, 

21 X,X
Min L

12 ))X(Z( = (2  ) X1 + (2+  ) X2 + (2+  ) X3 + 

(4+  ) X4, 

21 X,X
Min L

13 ))X(Z( = (2+  ) X1 + (8+ ) X2 + (8+  ) X3 + X4, 

43 X,X
Min L

21 ))X(Z( = (5+  ) X1 + (2+  ) X2 + (2  ) X3 + (2  ) 

X4, 

43 X,X
Min L

22 ))X(Z( = (4+  ) X1 + (8+ ) X2 - (8+  ) X3 + 

(5+  ) X4, 

subject to  

(2+  ) X1 - X2 + X3 + (2+ ) X4  49 - ,  

2   X1 + (3+ ) X2 + 2 X3 - 2 X4  37 - 2 ,  

X1 + (3 - ) X2 - X3 + X4  28 + 2 ,  

X1, X2, X3, X4  0. 

For,   = 0.5, the fuzzy BLMOPP reduces to deterministic 

BLMOPP as follows: 

21 X,X
Min L

11 ))X(Z( = X1 + 2.5 X2 + X3 + 2.5 X4, 

21 X,X
Min L

12 ))X(Z( = X1 + 8.5 X2 + 2.5 X3 + 4.5 X4, 

21 X,X
Min L

13 ))X(Z( = 2.5 X1 + 8.5 X2 + 8.5 X3 + X4, 

43 X,X
Min L

21 ))X(Z( = 5.5 X1 + 2.5 X2 + X3 + X4, 

43 X,X
Min L

22 ))X(Z( = 4.5 X1 + 8.5 X2 – 8.5 X3 + 5.5 X4, 

subject to  

2.5 X1 - X2 + X3 + 2.5 X4  48.5, 

X1 + 3.5 X2 + X3 - X4  36, 

X1 + 2.5 X2 - X3+ X4  29, 

X1, X2, X3, X4  0. 

The individual best solutions subject to the system constraints 

are LB
11)Z( = 29 at (11.5, 7, 0, 0), LB

12)Z( = 48.862 at 

(20.724, 3.31, 0, 0), LB
13)Z( = 48.862 at (0, 3.31, 0, 20.724), 

LB
21)Z( = 29 at (0, 10.833, 0, 1.917), LB

22)Z( = 55.875 at (0, 

10.833, 15.833, 17.5). 

The individual worst solutions subject to the system constraints 

are UW
11 )Z( = 111.048 at (0, 17.871, 0, 26.548), UW

12 )Z( = 

271.371 at (0, 17.87, 0, 26.584), UW
13 )Z( = 242.042 at (0, 

10.833, 15.583, 17.5), UW
21)Z( = 126.705 at (21.102, 4.256, 0, 

0), UW
22)Z( = 297.919 at (0, 17.87, 0, 26.584). 

Then, the fuzzy goals appear as 
~

L
11 ))X(Z(   29, 

~

L
12 ))X(Z(   48.862, 

~

L
13 ))X(Z(   48.862, 

~

L
21 ))X(Z(   

29, 
~

L
22 ))X(Z(   -55.875. 

Now, we construct the membership functions for both level 

DMs as follows: 



International Journal of Computer Applications (0975 – 8887) 

Volume 30– No.10, September 2011 

18 

L
1111 ))X(Z(


 = ,

)29048.111(

)X5.2XX5.2X(048.111 4321




 

L
1212 ))X(Z(


 = ,

)862.48371.271(

)X5.4X5.2X5.8X(371.271 4321




 

L
1313 ))X(Z(


 = ,

)862.48042.242(

)XX5.8X5.8X5.2(042.242 4321




 

L
2121 ))X(Z(


 = ,

)29705.126(

)XXX5.2X5.5(705.126 4321




 

L
2222 ))X(Z(


 =

)875.55919.297(

)X5.5X5.8X5.8X5.4(919.297 4321




 

 Let, the fixed preference bounds provided by the LLDM on the 

decision variables be  

2   X3 15,   

1X4 17 

Then the proposed FGP model for solving BLMOPP with fuzzy 

parameters is as follows: 

Min = (d11/ (111.048 - 29)) + (d12/ (271.371 – 48.862)) + (d13/ 

(242.042 – 48.862)) + (d21/ (126.705 - 29)) + (d22/ (297.919 – 

55.875)), 

subject to 

 
)29048.111(

)X5.2XX5.2X(048.111 4321




+ d11 =1, 

)862.48371.271(

)X5.4X5.2X5.8X(371.271 4321




+ d12 =1, 

)862.48042.242(

)XX5.8X5.8X5.2(042.242 4321




+ d13 =1, 

)29705.126(

)XXX5.2X5.5(705.126 4321




+ d21 =1, 

)875.55919.297(

)X5.5X5.8X5.8X5.4(919.297 4321




+ d22 =1, 

2.5 X1 - X2 + X3 + 2.5 X4  48.5, 

X1 + 3.5 X2 + X3 - X4  36, 

X1 + 2.5 X2 - X3+ X4  29, 

2   X3 15,   

1X4 17, 

X1, X2, X3, X4  0. 

The results obtained by considering different preference bounds 

provided by FLDM are shown in the Table 1. Now from Table 

1, we see that the minimum distance value is 0.01084. The 

optimal compromise solution of the problem is given by *
1X = 

10, *
2X = 7.5, *

3X = 2, *
4X = 2.5.The objective values are Z11 = 

37, Z12 = 90, Z13 = 108.25, Z21 = 78.25, Z22 = 105.5. The 

corresponding membership values are 11 = 0.902, 12 = 0.815, 

13 = 0.692, 21 = 0.496, 22 = 0.795. 

Note: All solutions of the problem are obtained by Lingo, 6.0. 

7. CONCLUSIONS 
In this paper, we have considered an alternative FGP approach 

to BLMOPP with fuzzy parameters. The proposed approach can 

be extended to optimization problems in different fields such as 

agriculture planning problems, decentralized planning problems 

and other multi-objective programming problems consisting 

fuzzily described different parameters. The proposed approach 

can also be extended to decentralized multi-objective as well as 

multi-level multi-objective programming problem with fuzzy 

parameters. 
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Figure1. Membership function for objective function 













 L

~

ij ))((  (i = 1, 2), (j = 1, 2, …, Mi). 

Table1. Comparison of optimal solutions based on distance function  

Serial  No Fixed preference 

bound of LLDM 

preference bound 

of ULDM 

Solution 

point              

Objective values Membership 

values 

Distance 

values 

1 2 ≤ x3 ≤ 15,             

1 ≤ x4 ≤ 17   

12 ≤ x1 ≤ 17,            

6.5 ≤ x2≤ 18   

12, 6.833, 2, 

1.917 

35.875, 83.707, 

106.998, 87, 

105.624 

0.916, 0.843, 0.699, 

0.406, 0.794 

0.01095 

2 - 11.5 ≤ x1 ≤ 16,            

6.5 ≤ x2 ≤ 17.5   

11.5, 7, 2, 2 36, 85, 107.25, 

84.75, 105.25 

0.915, 0.838, 0.698, 

0.429, 0.796 

0.01094 

3 - 10.5 ≤ x1 ≤ 16,          

6.5 ≤ x2 ≤ 17   

10.5, 7.333, 

2, 2.167 

36.25, 87.582, 

107.748, 80.25, 

104.5 

0.912, 0.826, 0.695, 

0.475, 0.799 

0.01091 

4 - 10 ≤ x1 ≤ 17.5,          

6.5 ≤ x2 ≤ 16.5   

10, 7.5, 2, 2.5 37, 90, 108.25, 

78.25, 105.5 

0.902, 0.815, 0.692, 

0.496, 0.795 

0.01084 

5 - 9 ≤ x1 ≤ 17,              

6 ≤ x2 ≤ 16   

9, 7.833, 2, 

2.417 

36.625, 91.457, 

108.498, 73.5, 

103.374 

0.907, 0.808, 0.691, 

0.544, 0.804 

0.01085 

6 - 9 ≤ x1 ≤ 17.5,            

6 ≤ x2 ≤ 16   

9, 7.833, 2, 

2.241 

36.185, 90.665, 

108.322, 73.324, 

102.406 

0.912, 0.812, 0.692, 

0.546, 0.808 

0.01179 
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