
International Journal of Computer Applications (0975 – 8887)

Volume 30– No.1, September 2011

7

Analysis of Static and Dynamic Metrics for

Productivity and Time Complexity

Manik Sharma
Assistant Professor & Head

 Deptt. of Computer Science & Applications
Sewa Devi S.D. College

Tarn Taran, India

Dr. Gurdev Singh
Professor & Head

Deptt. of Computer Sci. & Engineering

Adesh Institute of Engg. & Tech.

Faridkot, India

ABSTRACT

The aspiration of this study is to perform the comparative

analysis of static and dynamic metric for structured

programming environment. Software metrics is one of the vital

tools that can be worn to find significant estimates for software

products and directs us in intriguing managerial and technical

decisions. Software metrics have become an integral part of

software development and are used during every phase of the

software development life cycle. Research in the area of

software metrics tends to focus predominantly on static metrics

that are obtained by static analysis of the software artifact. But

software quality attributes such as execution time, performance

and reliability depend on the dynamic activities of the software

artifact. With the help of conventional static metrics we are not

able to analyze various facts of software‟s. It is very important

to understand the dynamic behaviour of the program or an

application in developing new effective strategies in computer

science. This becomes the basis for working on dynamic metrics

in place of traditional static metrics. Dynamic metrics gives

more accurate result than static metrics as they are able to

capture the dynamic behaviour of the software system during

measurement.

Keywords

Software, Metric, Accuracy, Performance.

1. INTRODUCTION
Software metric is one of the important aspects of software

engineering acts as an indicator for software attribute. It plays an

important role in understanding the important concepts in the

field of software engineering. The name software metric [1][2] is

associated with diverse measurements of computer software and

its development. It helps us in measuring the performance of

various features of the software. With the help of software

metric once can measure some property of software or its

component. Computer science researchers are putting all their

efforts in measuring quantitative information from software

component. Software metric [3] are helpful in improving the

quality of software, planning the budget, its cost estimation etc.,

In other words software metric is a way to understand software

product in an effective way. We apply some software logical of

mathematical technique to software process or product to supply

or improve engineering and management information [4]
. Some

of the software metric‟s objective [5][6] are perception, software

inspection, planning, optimization and quality improvement.

1.1 Objectives: The objectives of this article are:

 To study the foundation of static and dynamic metrics

 Measuring static and dynamic metric for software

productivity and time complexity.

 Comparative analysis of static and dynamic metrics for

productivity and time complexity.

 Comparative analysis of different programming approaches

for time complexity.

2. STATIC AND DYNAMIC METRIC

The research cycle of software metrics starts in 1970, it was

Wolverton [6] who performs a research on production ratio of the

programmer by using the concept of LOC i.e. line of code.

According to Somerville the metric can be classified into two

categories i.e. control metric and predictive metric. Predictive

metric are normally associated with software product. With the

help of predictive metric [7] we are able to determine both static

as well as dynamic characteristics of the software. There are two

major types of predictive metrics i.e. Static and Dynamic

Metrics.

2.1 Static metric: First static metric [8] (LOC/KLOC) was used

to measure the productivity of a program. The most commonly

used complexity metric before 1990 was cyclomatic [9]

complexity that was measured by McCabe. He uses the flow

graph and some mathematical equations to compute software

complexity. This metric was used in code development risk

analysis [10], change risk analysis in maintenance and in test

planning. In 1976 McCabe [11] defined the cyclomatic

complexity number metric. The metric measures the number of

independent paths through a software module. Although

cyclomatic complexity is widely used, critique on it exists

claimed that it‟s based on poor theoretical foundations and an

inadequate model of software development. The cyclomatic

complexity has been selected to be a part of the benchmarks.

 Since the initiate of software engineering engineers

have been counting the lines of code they wrote. Counting lines

is used for estimating the amount of upholding or maintenance

required and it can be used to normalize other software metrics.

For Example consider the following effective segment code of a

program:

clock_t start, end;

International Journal of Computer Applications (0975 – 8887)

Volume 30– No.1, September 2011

8

clrscr();

start = clock();

//perform calculations for which performance needs to be

checked

for(i=1;i<=100;i++)

{

 for(j=1;j<=100;j++)

 {

 cout<<"hello";

 }

 }

end = clock();

Table 1: LOC - A Static Metric

I J Number of

Characters

Line of code

100 100 1 12

100 100 2 12

100 100 3 12

100 100 4 12

100 100 5 12

100 100 6 12

100 100 7 12

100 100 8 12

100 100 9 12

100 100 10 12

Now again consider the same code with functional approach.

We observe that again the line of code remain independent of

the number of printed character on console, however now line of

code (LOC) is more as compare to code where no functional

approach is used.

clock_t start, end;

clrscr();

start = clock();

//perform calculations for which performance needs to be

checked

hello();

end = clock();

void hello()

{

for(i=1;i<=100;i++)

{

 for(j=1;j<=100;j++)

 {

 cout<< “hello”;

 }

 }

}

Table 2: LOC - A Static Metric

I J Number of

Characters

Line of code

100 100 1 14

100 100 2 14

100 100 3 14

100 100 4 14

100 100 5 14

100 100 6 14

100 100 7 14

100 100 8 14

100 100 9 14

100 100 10 14

Again consider the static measure LOC [12] for same effective

segment code with recursion. Again it is observed that the LOC

is independent of number of printed characters, but again LOC

is different from iterative as well as functional approach.

clock_t start, end;

clrscr();

start = clock();

//perform calculations for which performance needs to be

checked

hello();

end = clock();

void hello()

{

 static int flag=1;

 if (flag<=100*100)

 {

 cout<<"hello World";

 flag++;

 hello();

 }

}

International Journal of Computer Applications (0975 – 8887)

Volume 30– No.1, September 2011

9

Table 3: LOC - A Static Metric

I J Number of

Characters

LOC

100 100 1 16

100 100 2 16

100 100 3 16

100 100 4 16

100 100 5 16

100 100 6 16

100 100 7 16

100 100 8 16

100 100 9 16

100 100 10 16

The static metric LOC (Lines of code) will never change if we

change the number of character in printing statement. It will

always give the same measure that is when we print just “H”,

“He”, “Hel”, “Hell”, “Hello world” etc. this means the number

of character in printing statement does not give any impact in

LOC.

 But the execution time of the printing statement is

heavily depends upon the number of character that can be

measure by using the dynamic metrics only. The following chart

give the comparative analysis of number of character and

programming approach used in C language.

Figure1: Number of character versus LOC

From the above analysis it is crystal clear that static software

metric does not change by changing the contents of a program. I

also lag behind various factor while measurements.

2.2 Dynamic Metric: Dynamic metrics [13] that can be used to

evaluate relevant runtime properties of programs, with the vital

goal of establishing some standard metrics that could be used for

quantitative analysis of standard programs. Dynamic Metrics are

derived from an analysis of code while it is executing. Thus

dynamic metrics can only be calculated on the software as it is

executing. For example: extent of class usage, Dynamic

Coupling, and Dynamic Lack of Cohesion

Dynamic metrics in contrast to static metric [14] have a time

aspect and the values tend to vary over time. Dynamic metric

give us more accurate and efficient result as comparative to

static metric because dynamic metric analyze the program in

working or running environment. Dynamic metrics differs from

static metrics in various respects as discussed below. Static

metrics measures are associated with static program i.e. non

executing code, on the other hand dynamic metrics are

associated with executing code. Static metrics is independent of

the input test data where as dynamic metrics is heavily based on

it. Static metric is independent of running environment where as

majority of dynamic metrics are measured under running

Static Metrics (LOC)

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10

Number of Characters

L
in

es
 o

f
C

o
d

e

Number of Characters

Iterative Approach

Functional Apporach

Recursion

International Journal of Computer Applications (0975 – 8887)

Volume 30– No.1, September 2011

10

environment by taking care of machine architecture, operating

system, language used, compiler used etc. Further it should be

noted that Static metric are affected by non executing code like

comments, blank line, blank space where as Dynamic metric is

not affected by these factors. In concern of accuracy obviously

dynamic metrics are more accurate as compare to static metrics.

At last Static metrics are greatly affected by the programming

technique used for developing program, in contrast Dynamic

metric are least or even independent of the programming

technique used.

A lot of research has been focused on the measurement of

source code of programs now for experiment considers the

above „C‟ language code, the execution time depending upon the

number of character is measures and is shown as below:

Table 4: Average Execution Time for Characters

Number of

Characters

(C)

Execution

Time

Average

Execution

Time (T)

Min Max

1 0.10989 0.164835 0.137363

2 0.274725 0.32967 0.302198

3 0.384615 0.43956 0.412088

4 0.549451 0.604396 0.576924

5 0.714286 0.769231 0.741759

6 .879191 .879121 0.879121

7 1.043956 0.989011 1.016483

8 1.153846 1.208791 1.153845

9 1.263736 1.318681 1.291207

10 1.483516 1.538462 1.428569

start = clock();

//perform calculations for which performance needs to be

checked

hello();

end = clock();

void hello()

{

for(i=1;i<=100;i++)

{

 for(j=1;j<=100;j++)

 {

 cout<<"hello";

 }

 }

}

Number of

Characters

Execution Time Average

Execution

Time Min Max

1 0.10989 0.164835 0.137363

2 0.274725 0.32967 0.302198

3 0.384615 0.43956 0.412088

4 0.549451 0.604396 0.576924

5 0.714286 0.769231 0.741759

6 .879191 .879121 .879121

7 1.043956 0.989011 1.016483

8 1.153846 1.208791 1.153845

9 1.263736 1.318681 1.291207

10 1.483516 1.538462 1.428569

start = clock();

//perform calculations for which performance needs to be

checked

hello();

end = clock();

void hello()

{

 static int flag=1;

 if (flag<=100*100)

 {

 cout<<"hello world";

 flag++;

 hello();

 }

}

Number of

Characters

Execution Time Average

Execution

Time Min Max

1 0.10989 0.164835 0.137363

2 0.274725 0.32967 0.302198

3 0.384615 0.43956 0.412088

4 0.549451 0.604396 0.576924

5 0.714286 0.769231 0.741759

International Journal of Computer Applications (0975 – 8887)

Volume 30– No.1, September 2011

11

6 .879191 .879121 .879121

7 1.043956 0.989011 1.016483

8 1.153846 1.208791 1.153845

9 1.263736 1.318681 1.291207

10 1.483516 1.538462 1.428569

In the above table the I,J refer to looping variable, min and max

are the minimum and maximum time taken by the code. From

the above table it is very clear that the execution time is greatly

influenced by the number of characters, i.e. the execution time

increases with increased number of characters.

The graphical representation of the above concept is as shown

below:

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11

Number of Characters

Non Functional Approach

Functional Approach

Recursive Approach

Figure2: Analysis of Number of character and execution time

2% 4%
5%

7%

9%

11%

13%15%

16%

18%

Execution Time V/S Number of
Characters

1 2 3 4 5 6 7 8 9 10 11

Figure3: Number of Character versus exaction Time

International Journal of Computer Applications (0975 – 8887)

Volume 30– No.1, September 2011

12

From the above graphical representation it is very clear that

execution time for character printing is independent of the

structured programming approach used.

Keeping I, J loop variable as constant we can derive the dynamic

metric by using the concept of lagranginan interpolation. Let us

consider the first three case of dynamic metric having number of

characters and average execution time as given below only.

Number of Characters

(C)

Average Execution

Time (T)

1 0.137363

2 0.302198

3 0.412088

In order to derive the basic dynamic metric we will consider the

second order polynomial made up from Number of characters (

C) and Average execution time (T) as follow:

 1.1

The above equation gives the relationship that exists between

number of character and its average execution time. For

simplicity we have taken a polynomial of second degree.

Number of Character (C)

c1

c2

C3

By substituting the value from above table in equation 1.1 we

are able to derive the relation as follow:

 1.2

Similarly by taking n value we are able to derive the relation

between number of characters and their execution time as

specified by the above code segment. The derived dynamic

metric entitled “Dynamic Execution Character Time” i.e. DECT

is as follow:

3. CONCLUSION:
Metrics can identify potential areas of problems that may lead to

problems or errors. Finding these areas in the phase they are

developed decreases the cost and avoids major ripple effects

from the changes, later in the development life cycle. From the

above calculation we come to know that the dynamic metric for

character printing remain same independent of technique i.e. the

time complexity is independent of iterative, functional and

recursive programming approach. Though the static metric that

gives us the measure of LOC which is different for different

programming technique (iteration, function and recursion). The

static metric are simple measure of some statistics can

sometimes leads to vague result, on the other hand the dynamic

metrics are more efficient and accurate than static metric

because they are based on the running environment.

4. ACKNOWLEDGMENT
Authors are highly thankful to Dr. Gurvinder Singh, Associate

Professor, DCSE, Guru Nanak Dev University Amritsar for his

valuable guidance and precious time. Authors are also thankful

to all the experts of the field of software engineering those have

given contribution in the field of software metrics. Authors are

also highly thankful and indebted to their family for giving a

support for such tasks. At last but not least authors are indebted

to the almighty.

5. REFERENCES
[1] H F Li, W K Cheung “An Empirical Study of Software

Metrics” Software Engineering IEEE Transactions

on (1987) Volume: SE-13, Issue: 6, Pages: 697-708

[2] N E Fenton “Software Metrics” Conference Proceedings of

on the future of Software engineering ICSE 00(2000)

Volume: 8, Issue: 2, Publisher: ACM Press

[3] Kuljit Kaur Chahal , Hardeep Singh “Metrics to study

symptoms of bad software designs” ACM SIGSOFT

Software Engineering Notes (2009)

Volume: 34, Issue: 1, Pages: 1

[4] 12 Steps to Useful Software Metrics by Linda Westfall,

[online] www.westfallteam.com/Papers/12_steps_paper.pdf

[5] Manik Sharma , Gurdev Singh “Static and Dynamic metrics-

A Comparative Analysis”, Emerging Trends in Computing

and Information Technology 2011.

[6] Tu Honglei, Sun wei, Zhang Yanan, “The Research of

Software metric and software complexity metrics”

International Forum on Computer Science Technology and

Applications (2009) Publisher: IEEE, Pages: 131-136

[7] Somerville “Software Engineering” 6th Edition, Editor:

Addison Wesley.

International Journal of Computer Applications (0975 – 8887)

Volume 30– No.1, September 2011

13

[8] Li, H.F., Cheung, W.K. “An Experimental investigation of

software metric and their relationship to software

development effort”, IEEE Transaction on software

engineering 649-653, Piscataway, NJ, USA.

[9] Thomas J McCabe, “A Complexity Measure”, IEEE

Transaction on Software Engineering, Vol. SE-2 No. 4

[308-320]

[10] Van Doren “Cyclometic Complexity” [Online] web

publication access in:

http://www.sei.cmu.edu/str/decriptions/cyclometic_body.ht

ml

[11] Geoffery K. Gill, Chris F. Kemerer, “Cyclomatic

Complexity Metrics Reivisted: An empirical Study of

Software Development and Maintenance” Center for

Information System research.

[12] Norman Fenton and Martin Neil “Software Metrics and

Risk” proceeding of FESMA 99 2nd European Software

Measurement Conference.

[13] Gurdev Singh, Dilbag Singh et. al “A Study of Software

Metrics” International Journal of Computational

Engineering and Management. vol. 11. 2230-7893.

[14] Kamaljit Kaur, Kirti Minhas et. al “Static and Dynamic

Complexity Analysis of Software Metrics”, World

Academy of Science, Engineering and Technology 56 2009

