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ABSTRACT 

In this paper, a simple approach is proposed to design recursive 

digital differentiators and integrators by applying the concept of 

time-constant analysis. The time-constant combined with the 

magnitude response describes the system behavior of a digital 

differentiator and an integrator. Further, new recursive digital 

differentiator and integrator designs of first-order systems are 

also obtained for more accurate or comparable magnitude 

responses as compared to the existing designs of higher-order 

systems over wideband. These designs are more suitable for 

control systems and signal processing applications. 
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1. INTRODUCTION 
Differentiators and integrators are useful systems to determine 

and estimate the time derivatives and integrals of a signal. These 

systems have several applications in signal processing, control 

systems, Radar engineering, bio-medical engineering and in a 

host of other practical systems. The frequency response of an 

ideal differentiator and an integrator are given by 
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Where 1j   , dK  is the proportional constant of 

differentiator, iK is the proportional constant of integrator and 

  is the angular frequency in radians.  Many techniques have 

been developed to design digital differentiators and integrators, 

generally for 1d iK K   by using recursive or non-recursive 

methods in the study of digital signal processing (DSP) [1-23]. 

In general, the recursive digital differentiators have been 

obtained by inverting the transfer functions of recursive digital 

integrators with suitable modifications. Initially, recursive 

digital integrators have been designed by performing a simple 

linear interpolation between the magnitude responses of the 

classical rectangular, trapezoidal and Simpson digital integrators 

[1-6]. Later, Al-Alaoui has proposed several designs of recursive 

digital differentiators and integrators by using various 

techniques for lower percentage relative errors as in [7-10]. A 

linear programming optimization approach is also proposed to 

design recursive digital integrators and differentiators [11]. 

Later, Ngo has proposed wideband digital integrator and 

differentiator of third-order based on Newton-Cotes integration 

rule. These designs approximate the ideal integrator or 

differentiator over the whole Nyquist band with nearly 5 percent 

maximum percentage relative errors (MPREs) in magnitude 

responses over the full Nyquist band [12]. Pei-Hsu [13] and 

Gupta-Varshney-Viswewaran [14] have also developed 

new designs of recursive digital differentiators.  Then, 

Gupta-Jain-Kumar have proposed another wideband digital 

integrator and differentiator for lower relative errors [15]. 

Further, Al-Alaoui has also proposed 2-segment, optimized 3-

segment and optimized 4-segment digital integrators and 

differentiators [16]. Thereafter, Gupta-Jain-Kumar have also 

proposed recursive wideband digital integrators and 

differentiators for maximum percentage relative error of 3% 

over wideband [17]. Generally, all the existing wideband 

designs have higher-order systems. Therefore, the design of 

recursive wideband digital differentiators and integrators by 

using the lower-order systems is the main issue in current 

research environment. Recently, Upadhyay has also proposed 

recursive wideband digital differentiators of 2% maximum 

percentage relative errors almost over the full Nyquist band [18]. 

Non-recursive finite impulse response (FIR) digital 

differentiators have been designed for highly accurate 

magnitude response using various techniques [19-23]. However, 

non-recursive wideband digital differentiators comparatively 

have higher-order but satisfying the linear phase requirement 

over the whole Nyquist band. An important aspect of these 

investigations is that the exploration focused on the digital 

differentiators and integrators for 1d iK K   over wide 

bands. To overcome these limitations, there is the possibility to 

design digital differentiators and integrators for any value of 

dK or iK . Such type of designs may be more powerful to 

design more accurate digital Proportional-Derivative (PD), 

Proportional-Integral (PI) and Proportional-Integral-Derivative 

(PID) controllers in control systems. Sometimes, it is also 

possible that the few designs of non-unity proportional constant 

may be more accurate compared to the existing designs of unity 

proportional constant. Therefore, the more accurate design of 

recursive digital differentiator and integrator for unity 

proportional constants may be derived by using the non-unity 

proportional constant design with a constant multiplier. The 

time-constant control analysis of microwave differentiators is 

described by Tsai-Wu [24].  
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In this paper, the time-constant approach is discussed to 

characterize the performance of digital differentiators and 

integrators and it also serves as an important factor to derive 

more accurate recursive digital differentiators and integrators for 

unity or non-unity time-constants over wideband. This approach 

is applied over the existing digital differentiator of first-order 

system. All the figures are obtained by using MATLAB.  

This paper is organized as follows: the time-constant analysis of 

digital differentiators and integrators is discussed in Section 2 

and the design methodology of recursive wideband digital 

differentiators and integrators for required time-constants is 

discussed in Section 3. Further, the comparisons of proposed 

differentiator design with the existing designs of higher-order 

are given in Section 4. The conclusions are given in Section 5. 

2. TIME-CONSTANT ANALYSIS  
The time-constant analysis determines the transient behavior of 

a differentiator or integrator in the time-domain. As a 

consequence, it affects the frequency response of the system. 

The frequency responses of the differentiator and integrator, 

formed by an operational amplifier and a resistor-capacitor 

( R C ) circuit are given by (3) and (4) respectively. Hence, 

the time-constants ( ) of differentiators and integrators are 

defined by (5) and (6) respectively [24]. Similarly, the time-

constant of digital differentiator and integrator can be expressed 

by (7) and (8) respectively. It can be easily seen that the time-

constant and proportional constant are exactly same parameters 

for differentiators but are inverse in case of integrators.  
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Where d and i  are the time-constants of differentiator and 

integrator; ( )j

dH e   and ( )j

iH e 
are the frequency 

responses of digital differentiator and integrator. 

3. DESIGN METHODOLOGY  
In [19, 24], the continuous-time variable s  in terms of the 

discrete-time variable z  is given by 
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Where T  is the sampling period,  is a real constant and 

1z represents a unit time delay. It is obtained that the eq. (9) 

behaves as a wideband digital differentiator for the values of 

2 / 1.1517T   and 0.2668  , after the minimization 

of absolute percentage relative error as defined in (10) by using 

the linear programming approach [11]. This optimization also 

confirms that all the obtained designs must have the pole 

location inside the unit circle. This design of wideband digital 

differentiator ( 1dK  or unity time-constant) is given in (11). 

Similarly, we have also obtained the designs of recursive 

wideband digital differentiators for different values of 

proportion constants ( dK ) or time-constants ( d ) as 1.1, 

1.1595, 1.2 and 1.3; the corresponding digital differentiator 

designs are given in (12-15) respectively. Table 1 shows the 

values of 2 /T and   for the obtained recursive digital 

differentiators of required time-constants.  
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Table 1. Time-constants of recursive digital differentiators 

Time-constant 

( d ) or dK  2 /T    

1.0 1.1517 0.2668 

1.1 1.2658 0.1942 

1.1595 1.3217 0.159 

1.2 1.36 0.1342 

1.3 1.4241 0.0934 
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Fig 1: Magnitude responses of obtained recursive digital 

differentiators for required time-constants ( d ) 

The magnitude responses of the obtained recursive digital 

differentiators for required time-constants are shown in Figure 1. 

Further, the percentage relative errors (PREs) of the obtained 

recursive digital differentiators from the ideal differentiators of 

corresponding time-constants are shown in Figure 2. 

From Figures 1 and 2, it is observed that the few optimized 

designs for non unity time-constants may be wideband with 

lower percentage relative error compared to the unity time-

constant design as in (11). As an example, the proposed design 

of proportion constant 1.1dK  , 1.1( )H z has not more than 

3.6% relative error almost over the 95% of Nyquist bandwidth 

and the another proposed design of proportion constant 

1.2dK  , 1.2 ( )H z has not more than 1.3% relative error 

almost over the 70% of Nyquist bandwidth, while unity time-

constant design has nearly 9% maximum percentage relative 

error over the full Nyquist band. It is also observed that one 

another design of 1.1595dK  , 1.16 ( )H z has not more 

than 1.64% relative error almost over the 80% of Nyquist 

bandwidth. Hence, the obtained recursive digital differentiator 

designs 1.1( )H z , 1.16 ( )H z and 1.2 ( )H z as defined in (12-

14) are more preferable to design PD controllers. It is also 

noticed that the design of digital differentiator 1.16 ( )H z as in 

(13) can also be converted to design a recursive digital 

differentiator of unity time-constant. The corresponding digital 

differentiator of unity time-constant is given in (16).  
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Fig 2: Percentage relative errors of the obtained recursive 

digital differentiators with the ideal differentiators of 

required time-constants 

The recursive wideband digital integrators can be easily 

obtained by inverting the transfer functions of proposed 

recursive digital differentiators as in (11-16). Table 2 shows the 

values of proportion constants iK with the corresponding time-

constants for different designs of recursive digital integrators. 

The magnitude responses of such types of recursive wideband 

digital integrators for required time-constants are shown in 

Figure 3. Further, the percentage relative errors (PREs) of the 

recursive digital integrators, which are the exactly inverse of 

proposed recursive digital differentiators, are shown in Figure 4. 

 

Table 2. Time-constants of recursive digital integrators 

Time-constant 

( i )  
/ 2T    

iK  

1.0 0.8683 0.2668 1.0 

1.1 0.79 0.1942 0.9091 

1.16 0.7566 0.159 0.8621 

1.2 0.7353 0.1342 0.8333 

1.3 0.7022 0.0934 0.7692 
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Fig 3: Magnitude responses of the recursive digital 

integrators for different time-constants ( i ) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

Normalized frequency

R
e
la

ti
v
e
 e

rr
o
r 

(%
)

 

 

Int-1.0

Int-1.1

Int-1.1595

Int-1.2

Int-1.3

 

Fig 4: Percentage relative errors of the recursive digital 

integrators with the ideal integrators of required time-

constants   

The results from Figures 3 and 4 are similar to the results of 

obtained recursive digital differentiators. The main difference is 

that the time-constant of recursive digital integrator is the 

inverse of the proportion constant while this is same as in the 

case of proposed recursive digital differentiator. These non unity 

time-constant designs are much preferable to design PI 

controllers as compared to the unity time-constant design. 

Further, the design of recursive digital integrator for unity time-

constant, which has not more than 1.64% relative error almost 

over the 80% of Nyquist bandwidth, can also be obtained by 

inverting the transfer function of corresponding digital 

differentiator as given in (16). 

                       

4. COMPARISION                   

To verify the accuracy of proposed recursive digital 

differentiator ( )impH z as defined in (16), recently proposed 

Alaoui design of order two [16] and the Gupta-Jain-Kumar 

(GJK) design of order three [17] have been considered, the 

transfer functions of these designs are given in (17, 18) 

respectively. The PREs of the proposed, Al-Alaoui and the 

Gupta-Jain-Kumar recursive digital differentiators with the ideal 

differentiator of unity time-constant are shown in Figure 5.   
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Fig 5: Percentage relative errors of proposed, Al-Alaoui and 

Gupta-Jain-Kumar recursive digital differentiators with the 

ideal differentiator of unity time-constant     
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From Figure 5, it is observed that the proposed differentiator 

design ( )impH z has not more than 1.64% relative error almost 

over the 80% of Nyquist band, while the Al-Alaoui design of 

second-order system has high amount of error at mid band and 

the GJK design of third-order system has 3% relative error over 

wideband. Proposed integrator design is just the inverse of 

proposed differentiator design. Therefore, there is no need to 

compare the integrator design with the existing Al-Alaoui and 

Gupta-Jain-Kumar integrator designs. 

5. CONCLUSION 
The time-constant analysis of a digital differentiator and 

integrator is discussed. Then, the recursive wideband digital 

differentiators and integrators for different time-constants are 

obtained by using the proposed time-constant analysis. These 

designs are much useful to design more accurate digital PD and 

PI controllers. Further, a new recursive digital differentiator of 

first-order system for unity time-constant is also proposed which 

has maximum percentage relative error of 1.64% in magnitude 

response over wideband.  
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