
International Journal of Computer Applications (0975 – 8887)

Volume 29– No.8, September 2011

37

A New Approach for Representation of Multi-

dimensional Matrix Multiplication Operations

Satya Prakash Anil K. Ahlawat
 Asstt. Professor, Professor
 Department of Computer Science & Engineering, Department of Computer Science&
 Birla Institute of Technology, Mesra, Ranchi, Ajay Kumar Garg Engineering College

 India(Noida Campus) Ghaziabad

ABSTRACT
In this paper, the extended Karnaugh Map representation

(EKMR) scheme has been proposed as an alternative to the

traditional matrix representation (TMR) which caused the

multi-dimensional array operation to be inefficient when

extended to dimensions higher than two. Multi-dimensional

arrays are widely used in a lot of scientific studies but still

some issues have been encountered regarding efficient

operations of these multi-dimensional arrays. EKMR scheme

has managed to successfully optimize the performance of the

multi-dimensional array operations to the nth dimension of the

array. The basic concept EKMR is to transform the multi-

dimensional array in to a set of two-dimensional arrays.

EKMR scheme implies Karnaugh Map which is a technique

used to reduce a Boolean expression. It is commonly

represented with the help of a rectangular map which holds

all the possible values of the Boolean expression. Then the

efficient data parallel algorithms for multi-dimensional matrix

multiplication operation using EKMR are presented in this

study which outperformed those data parallel algorithms for

multi-dimensional matrix multiplication operation which used

the TMR scheme. The study encourages designing data

parallel algorithms for multi-dimensional dense and sparse

multi-dimensional arrays for other operations as well using

the EKMR scheme since this scheme produces the efficient

performance for all dimensions and for all operations of the

arrays.

Keywords: Matrix Multiplication Algorithm, EKMR,

TMR.

1. INTRODUCTION

When you submit Multi-dimensional arrays which are also

referred as tensors or n-ways arrays are usefully applied to a

wide range of studies or methods such as climate modeling,

finite element analysis (FEA), molecular dynamic and many

more but still many issues have been encountered regarding

efficient operations of these multi-dimensional arrays. Most

of the proposed methods are successful in case of two-

dimensional arrays which do not show accurate results when

applied to the extended form of tensors. This occurred due to

the traditional matrix representation (TMR) which is an array

representation scheme that is commonly used to represent the

multi-dimensional dense or sparse array. Dense and sparse are

the two categories of the array form which are provided

through the various data parallel programming languages [2]

for instance, Vienna Fortran, High Performance Fortran, etc.

If all or most of the array elements are non-zero values then it

is called a dense array. On the other hand, if most of the

elements of the array are zero then it is called a sparse array.

When an operation is applied on a dense array then it is

executed on elements of the dense array whereas in case of

the sparse array, an operation is exercised only on the non-

zero elements in order to optimize the performance [1].

Coming back to the flaws of the TMR which is also known as

canonical data layouts, there are three reasons found for the

failure of the TMR scheme when applied on a dense array

which has three or more than three dimensions.

First reason is the increase in the cost of packing/unpacking

of the elements of the dense tensor in relation to its

dimensions, second is the increase in its cost of the index

computations with the increase of its dimensions. Third

reason is the increase in the rate of cache miss for an

operation with the increase of the dimensions of the dense

tensor since more cache lines are acquired [5] [6] [7]. Due to

these three drawbacks, TMR scheme has turned out to be a

difficult and less tractable for designing efficient data parallel

algorithms for tensor operations.

In case of designing the parallel programs for operations on

sparse tensors, the programming languages usually use

compressed row storage (CRS) and compressed column

storage (CCS) as the data compression scheme to compress

the sparse arrays with respect to the TMR scheme due to

which operation is only performed over non-zero elements of

the sparse arrays in order to improve performance and reduce

memory space. But still parallel array operations with respect

to CRS or CCS for higher dimensional tensors have also

failed to produce good performance merely, because of the

following two reasons. First reason is that more of the single

dimensional matrices are required with the increase of

dimensions of the tensors in order to store the resultant extra

indices of non-zero elements which further increase the time

and the required storage space. The second reason is that with

the increase in the dimensions of the tensors, the cost of

indirect data access [4] and the cost of index comparisons

increase for parallel operations on sparse tensors.

Thus, this dissertation is aimed towards providing a new,

effective and efficient array representation scheme and data

compression scheme for dense and sparse tensors,

respectively. These new array representation scheme and data

compression scheme would then be used to design a parallel

algorithm for multi-dimensional matrix multiplication

operation. The new array representation scheme provided in

International Journal of Computer Applications (0975 – 8887)

Volume 29– No.8, September 2011

38

this dissertation is called the Extended Karnaugh Map

Representation (EKMR) which is based on the concept of

representing a multi-dimensional array as a set of two-

dimensional arrays [14]. This scheme is appropriate for both

dense and sparse tensors. Thus, it has become easier to design

an efficient parallel algorithm for tensors of higher

dimensions with the help of EKMR. The theoretical and

experimental analysis proved that the EKMR scheme is better

than the TMR scheme.

2. EKMR SCHEME

“Chun-Yuan Lin” from Institute of Molecular and Cellular

Biology, National Tsing Hua University, Hsinchu, 300,

Taiwan, “Yeh-Ching Chung” from Department of Computer

Science, National Tsing Hua University, Hsinchu, Taiwan,

300 and “Jen-Shiuh” Liu from Department of Information

Engineering and Computer Science, Feng Chia University,

Taichung, Taiwan, 407 proposed the scheme of Extended

Karnaugh Map Representation which is primarily based on

the Karnaugh Map. The Karnaugh Map is a technique used to

reduce a Boolean expression. It is commonly represented with

the help of a rectangular map which holds all the possible

values of the Boolean expression. The n variables are used to

hold memory space and 2n possible combinations are

represented for an n-input Karnaugh Map. If n is less than or

equal to 4 then the Karnaugh Map can be shown as a two-

dimensional array and thus, it can be easily represented on a

plane. EKMR(1) is a single input Karnaugh Map that is a

simple one-dimensional array or a vector. Similarly,

EKMR(2), EKMR(3) and EKMR(n) are two-dimensional,

three-dimensional and n-dimensional arrays, respectively

where n is the number of inputs. Thus, for n equals to 1 and 2,

EKMR(n) and TMR(n) exhibit the same array representation.

Therefore, we will take in to account EKMR(n) where n is

greater than 2.

Figure 1 represents the TMR(3) and EKMR(3) where (a) is a

3x4x5 array represented by TMR(3) and (b) is a 4x15 array

represented by EKMR(3). Practically, a multi-dimensional

array requires linear memory storage for programming

languages supporting multi-dimensional array. Programming

languages copy the array index space in to the linear memory

address. Thus, an array A[k][i][j] which is represented by

TMR(3), has the memory address LRM (k,i,j;3,4,5) (that is the

row major data representing function) and LCM (k,i,j;3,4,5)

(that is the column major data representing function) for the

array element in the third dimension „k‟, row dimension „i‟

and column dimension „j‟ with respect to the starting memory

address of a 3x4x5 size array.

A 3-input Karnaugh Map represents the TMR(3) array

A[k][i][j] as a 2-dimensional array with respect to EKMR(3).

Figure 2.1(b) shows the relative EKMR(3) representation of

A[k][i][j]. Figure 2.1(b) is a 4x15 size 2-dimensional array.

The EKMR(3) is also given by the row major data

representing function L‟
RM(i‟,j‟;4,15) which is equivalent to

i‟x15+j‟ or the column major data representing function

L‟
CM(i‟,j‟;5,12) which is equivalent to j‟x5+i‟.The placement

of the elements of the array with respect to the direction given

by the index „k‟ is the primary difference between the two

data representation schemes which are TMR(3) and

EKMR(3). A 3-input Karnaugh Map represents the TMR(3)

array A[k][i][j] as a 2-dimensional array with respect to

EKMR(3). Figure 2.1(b) shows the relative EKMR(3)

representation of A[k][i][j]. Figure 2.1(b) is a 4x15 size 2-

dimensional array. The EKMR(3) is also given by the row

major data representing function L‟
RM(i‟,j‟;4,15) which is

equivalent to i‟x15+j‟ or the column major data representing

function L‟
CM(i‟,j‟;5,12) which is equivalent to j‟x5+i‟.The

placement of the elements of the array with respect to the

direction given by the index „k‟ is the primary difference

between the two data representation schemes which are

TMR(3) and EKMR(3).

Further on, we will analyze the issues encountered in these

three phases which are concerned with the design of the data

parallel algorithms of the multi-dimensional dense matrix

operations with respect to the row major data layout using

Karnaugh Map that is EKMR scheme. These data parallel

algorithms are not regarded to be based on the recursive data

layout

Figure 1. (a) 3x4x5 array represented by TMR (b) 4x15

array represented by EKMR

3. PARALLEL ALGORITHM FOR

MULTIDIMENSIONAL MATRIX

The design of a parallel algorithm usually has three phases

which are: data distribution, local computation and result

collection [9]. Further on, we will analyze the issues

encountered in these three phases which are concerned with

the design of the data parallel algorithms of the multi-

dimensional dense matrix operations with respect to the row

major data layout using Karnaugh Map that is EKMR

scheme. These data parallel algorithms are not regarded to be

based on the recursive data layout [10]. The reason behind

this consideration is the selection of the recursive data layout

with respect to the TMR scheme tensor preparation algorithm

in order to optimize the performance [11]. In our design

example, we will only use multiplication operation on the

matrices although there are other array operations as well.

International Journal of Computer Applications (0975 – 8887)

Volume 29– No.8, September 2011

39

Our example is using the distribution of one dense array since

the distribution of more dense arrays for an operation will

design a very complicated parallel algorithm.

3.1 The Data Distribution Phase

In this section, we will illustrate the row and the column

which are the distribution methods for dense arrays. A dense

global array is distributed to the processor in three steps. In

step number one, the global array is divided in to the local

dense arrays on the basis of the data partition method. In step

number two, the elements of the local dense array from step

number one, are collected in the form of a batch and then

distributed to the relevant processor in the step number three.

The cost of the row and the column data distribution methods

are the same for the first and the third steps [3] so we will

discuss the cost of packing in the second step in order to

analyze these data distribution methods. The hypothesis is

that A[k][i][j] is an n x n x n dense array and P are the given

processors.

3.1.1 The Row Data Distribution Method

According to the definition of EKMR(3), A‟ comprises of n

rows and each row has n2 elements. As per the row

distribution method, A‟[i‟][j‟] is distributed to the processors

by diving A‟ in to 2-dimensional arrays P in the direction i‟.

The elements of the same row are saved in the sequential

memory addresses in the EKMR(3), so it is not necessary to

pack them before distribution as shown in figure 2(b).

Therefore, the row size is same for TMR(3) and EKMR(3).

According to figure 3 and the algorithm “Row_Data

Distribution Method_EKMR(n)”, P x n
n-4

 is the number of

non-consecutive data blocks on P processors. Thus, the

number of non-continuous data blocks in the EKMR scheme

for row data distribution method is less than that of TMR

scheme.

Figure 2: Row data distribution method for A and A’ to 4

processors (a)TMR(3) (b) EKMR(3).

Figure 3. Row data distribution method for A‟ to 4 processors

for EKMR(6).

Figure 2 shows the row data distribution method for A and A‟

to 4 processors where (a) is based on TMR(3) and (b) is based

on EKMR(3).The number of non-consecutive data blocks is

zero for a single processor as well as for multiple processors.

For the EKMR(4), elements of the partially dense arrays

allocated to each processor are saved to the sequential

memory addresses. So, they are packed before distribution as

shown in figure 3.2. Now A‟ is the corresponding EKMR(n)

of the nn dense array. The data parallel algorithm for the

EKMR(n) with respect to the row data distribution method of

the data distribution phase is given below by the algorithm.

Algorithm Row_Data Distribution Method_EKMR(n)

1. for (P_id = 0; P_id< P; P_id ++)

2. l = 0;

3. offset = P_id × row _size;

 /* row_size = or */

4. for(x = 0; x < nn-4; x++)

5. for (i =0; i < row_size; i++)

6. for(j = 0; j < n2 ; j++)

7. D[l] = Ax[i + offset] [j]; /*Pack array

elements into buffer D*/

8. l++ ;

9. Distribute D[] to appropriate processor;

End_of_Row_Data Distribution Method_EKMR(n)

The EKMR(n) row size for the first r processors =

and

EKMR(n) row size for the remaining P - r processors =

According to figure 3 and the algorithm “Row_Data

Distribution Method_EKMR(n)”, P x n
n-4

 is the number of

non-consecutive data blocks on P processors. Thus, the

number of non-continuous data blocks in the EKMR scheme

for row data distribution method is less than that of TMR

scheme.

International Journal of Computer Applications (0975 – 8887)

Volume 29– No.8, September 2011

40

3.1.2 The Column Data Distribution

Method Algorithm Column_Data

Distribution Method_EKMR(n)

1. for (P_id = 0; P_id < P ; P_id ++)

2. l = 0;

3. offset = P_id ×column _size;

/* column_size = or */

4. for(x = 0; x < nn-4 ; x++)

5. for (i =0; i < n ; i++)

6. for (j =0; j < column_size; j++)

7. D[l] = Ax [i][j + offset] ;

/*Pack array elements into buffer D*/

8. l++

9. Distribute D[] to appropriate processor ;

End_of_Coloumn_Data Distribution

Method_EKMR(n)

Figure 4. Column data distribution method for A and A‟ to

n=4 processors (a) represents TMR(3)

Figure 4. Column data distribution method for A and A‟ to

n=4 processors where (b) represents EKMR(3).

The following shows the algorithm for column data

distribution method for EKMR(n). According to figure 3.4

and figure 3.6, P x nn-2 is the number of non-consecutive data

blocks on P processors. Thus, the number of non-continuous

data blocks in the EKMR scheme for column data distribution

method is less than that of TMR scheme.

3.2 The Local Computation Phase Data

When single dense array is distributed to the processors then

the next phase is to perform local computation on these

distributed arrays. Assume A[mn-4] [mn-3]… [m1][l][k][i][j]

and B[mn-4] [mn-3]… [m1][l][k][i][j] are two dense arrays with

size nn for the TMR(n) then A‟ and B‟ are the relative

EKMR(n) of A(mn-4, mn-3,.. m1) and B(mn-4, mn-3,.. m1) ; C

for TMR(n) and C‟ for EKMR(n) are the local dense arrays in

each processor. The parallel algorithm of the computational

phase for multidimensional matrix multiplication operation

for EKMR(n) with respect to the row distribution method

(this algorithm is also similar for column data distribution

method) is shown by the procedure “Local

Computation_Row_Data Distribution Method_EKMR(n)”.

Algorithm Local Computation_Row_Data Distribution

Method_EKMR(n)

1. For (P_id = 0; P_id < P ; P_id ++)

2. for (x = 0; x <nn-4 ; x++)

3. for(i =0; i< row_size ; i++)

4. t = i×n;

5. for (j =0; j < n ; j++)

6. v = j×n;

7. for (l =0; l < n ; l++)

8. w = t + l;

9. u = l+ v;

10. for (m =0; m < n; m++)

11. r = m ×n ;

12. for (k = 0; k < n; k++)

13. for (k =0; k<n ; k++) Cx[w][k+r]=

Cx[w][k+r]+Ax[w][k+v]×Bx[u][k+r];

end_of_Local Computation_Row_Data Distribution

Method_EKMR(n)

The cost of computing index of elements and

dense array multiplication operations for TMR(n) =

 Figure 5. Column data distribution method for A to 4 processors according EKMR(6).

International Journal of Computer Applications (0975 – 8887)

Volume 29– No.8, September 2011

41

The cost of computing index of elements and dense array

multiplication operations for EKMR(n) =

The loopcost(l) for parallel algorithms of the local

computation phase of multiplication operations for EKMR(n)

with inner most loop index J=

The loopcost(l) for parallel algorithms of the local

computation phase of multiplication operations for TMR(n)

with inner most loop index J=

Thus, the cost of computing index of elements with EKMR

scheme is less than that of TMR scheme. Also, the number of

lines cached which the dense array operations have accessed

for EKMR scheme is less than that of TMR scheme [8].

3.2 The Result Collection Phase

The results generated from the computation phase which are

dispersed among processors must be gathered to produce the

final result. Generally, the processor that is used for

distributing the data is also used for collecting the results.

Different ways are adopted by the host processor to process

the interim results for various dense array operations by

collecting the interim results to produce the final result. For

matrix multiplication operation (and for other such

operations), the host processor unpacks the partial or interim

results, which have been collected from each processor, in to

relevant memory addresses to get the final result. This phase

is similar to the data distribution. The result collection phase

may have different implementations for different dense array

operations. The data parallel algorithm for the result

collection phase for multi-dimensional matrix multiplication

operation for the EKMR(n) with the row distribution method

(the similar algorithm will be used for the column data

distribution method) is given below by the procedure

“Result_Collection_Row_Data Distribution

Metheod_EKMR(n)”.

Algorithm Result_Collection_Row_Data Distribution

Metheod_EKMR(n)

1. For (P_id = 0; P_id< P; P_id ++)

2. Receive the buffer Dp-id [] from each processor

3. l = 0;

4. offset = P_id × row _size;

5. for(x = 0; x < nn-4; x++)

6. for (i =0; i < row_size; i++)

7. For(j = 0; j < n2 ; j++)

8. Cx [i + offset] [j] = Dp-id[l];

9. l++ ;

10. Distribute D[] to appropriate processor;

End_of_Result_Colection_Row_Data Distribution.

 Method_EKMR(n)Performance Comparison Between

TMR and EKMR Schemes Thus, the cost of computing

index of elements with EKMR scheme is less than that of

TMR scheme. Also, the number of lines cached which the

dense array operations have accessed for EKMR scheme is

less than that of TMR scheme.

Figure 6. Time of the data distribution phase of data parallel

algorithms with respect to the row data distribution method

for TMR(4) and EKMR(4) on 16 processors.

Figure 6 illustrates that EKMR scheme takes less time than

TMR scheme for data parallel algorithms in the distribution

phase of the row distribution method.

 Figure 7(a). Without Compiler Optimization

International Journal of Computer Applications (0975 – 8887)

Volume 29– No.8, September 2011

42

Figure 7(b). With Compiler Optimization

The figure 7 shows the time taken for local computation

phase of data parallel algorithms with matrix multiplication

by TMR(3) and EKM(3) schemes for array size 200 x 200 x

200 on 16 processors where (a) represents without complier

optimization option and (b) represents with complier

optimization option.

Figure 8. Time taken by the TMR(3) and EKMR(3) for the

result collection phase of data parallel algorithms of matrix

multiplication of array size 200 x 200 x 200 on 16 processors.

The above performance comparison graphs between TMR

and EKMR schemes are taken in the context of this study that

is data parallel algorithms for matrix multiplication. The

graphs portray that EKMR is a better and efficient scheme

than the TMR scheme in all phases due to the lesser values

obtained in the EKMR scheme for the following: the number

of non-continuous data blocks (with various data distribution

methods), the packing time, the cost of the index computation

of array elements, the number of cached lines accessed for

operations of dense arrays and the unpacking time. This

efficiency of EKMR in comparison to TMR is also true for all

operations, all array sizes including both dense and sparse

arrays [13] and all algorithms.

4. CONCLUSION

In this paper, we first identified and then discussed the issues

faced in relation to the efficient operations of the multi-

dimensional arrays. It was found that the most of the

proposed methods do not perform well for extended form of

tensors although these methods show good performance when

applied to two-dimensional arrays. We discussed the flaws of

the traditional matrix representation (TMR) and then

proposed the Extended Karnaugh Map Representation

(EKMR) as a new scheme which ruled out the drawbacks of

the TMR scheme. EKMR is based on the Karnaugh Map. The

basic concept of the EKMR technique is to represent the

multi-dimensional array in to the form of a set of two-

dimensional arrays. Thus, the extended Karnaugh map

representation made it easier to design the efficient data

parallel algorithms for multi-dimensional arrays having more

than two dimensions. We analyzed the data parallel

algorithms for multi-dimensional matrix multiplication using

the Karnaugh map that is EKMR and concluded that EKMR

is better than TMR in all aspects. The concepts given by O‟

Boyle to design the loop re-permutation have been applied in

this report to design the data parallel algorithms for multi-

dimensional array multiplication operation using the EKMR

scheme [16]. This report focused on the application of the

EKMR on the dense multi-dimensional array, however we

have discussed that EKMR is equally effective in case of

sparse multi-dimensional arrays.

With the help of the parallel algorithms for multi-dimensional

matrix multiplication operation using the Karnaugh map, it

was proved that the cost of computing index of elements with

EKMR scheme is less than that of TMR scheme and the

number of lines cached which the dense array operations have

accessed for EKMR scheme is less than that of TMR scheme.

These were the flaws of the TMR scheme which previously

caused the inefficient performance when the dimensions of

the arrays exceeded the value of 2. Thanks to the EKMR

scheme which optimized the performance even to the nth

dimension of the tensors.

5. REFERENCES

[1] A.J.C. Bik and H.A.G. Wijshoff, “Compilation

Techniques for Sparse Matrix Computations,” Proc.

ACM Int.l Conf. Supercomputing, 1993, pp. 416-424.

[2] A.J.C. Bik, P.M.W. Knijnenburg, and H.A.G. Wijshoff,

“Reshaping Access Patterns for Generating Sparse

Codes,” Proc. Int.l Workshop Languages and Compilers

for Parallel Computing, 1994, pp. 406-420.

[3] A.J.C. Bik and H.A.G Wijshoff, “Automatic Data

Structure Selection and Transformation for Sparse

Matrix Computations,” IEEE Transactions on Parallel

and Distributed Systems, vol. 7, no. 2, Feb. 1996,

pp. 109-126.

[4] G. Bandera, P.P. Trabado, and E.L. Zapata, “Local

Enumeration Techniques for Sparse Algorithms,” Proc.

IEEE Int.l Symp. Parallel Processing, 1998, pp.52-56.

[5] B.B. Fraguela, R. Doallo, E.L. Zapata, “Modeling Set

Associative Caches Behaviour for Irregular

Computations,” Proc. ACM Int.l Conf. Measurement

and Modeling of Computer Systems, 1998, pp.192-

201.

International Journal of Computer Applications (0975 – 8887)

Volume 29– No.8, September 2011

43

[6] B.B. Fraguela, R. Doallo, E.L. Zapata, “Cache Misses

Prediction for High Performance Sparse Algorithms,”

Proc. Int.l Euro-Par Conf., 1998, pp.224-233.

[7] B.B. Fraguela, R. Doallo, E.L. Zapata, “Cache

Probabilistic Modeling for Basic Sparse Algebra Kernels

Involving Matrices with a Non-Uniform Distribution,”

Proc. IEEE Euromicro Conf., 1998, pp. 345-348.

[8] B.B. Fraguela, R. Doallo, E.L. Zapata, “Automatic

Analytical Modeling for the Estimation of Cache

Misses,” Proc. Int.l Conf. Parallel Architectures and

Compilation Techniques, 1999, pp. 221-231.

[9] B. Kumar, C.H. Huang, R.W. Johnson, and P.

Sadayappan, “A Tensor Product Formulation of

Strassen's Matrix Multiplication Algorithm with

Memory Reduction,” Proc. Int.l Symp. Parallel

Processing, 1993, pp. 582-588.

[10] T.R. Chung, R.G. Chang, and J.K. Lee, “Sampling and

Analytical Techniques for Data Distribution of Parallel

Sparse Computation,” Pro. SIAM Conf. Parallel

Processing for Scientific Computing, 1997.

[11] S. Chatterjee, A.R. Lebeck, P.K. Patnala, and M.

Thottethodi, “Recursive Array Layouts and Fast Matrix

Multiplication,” IEEE Transactions on Parallel and

Distributed Systems, vol. 13, no. 11, Nov. 2002,

pp.1105-1123.

[12] G.H. Golub and C.F.V. Loan, Matrix Computations, 2nd

Edition, The John Hopkins University Press, Baltimore,

Maryland 21218, 1989.

[13] J.B. White and P. Sadayappan, “On Improving the

Performance of Sparse Matrix-Vector Multiplication,”

Proc. Int.l Conf. High-Performance Computing, 1997,

pp. 711-725.

[14] C.Y. Lin, J.S. Liu, and Y.C. Chung, “Efficient

Representation Scheme for Multi-Dimensional Array

Operations,” IEEE Transactions on Computers, vol. 51,

no. 3, Mar. 2002, pp. 327-345.

[15] C.Y. Lin, Y.C. Chung, and J.S. Liu, “Efficient Data

Parallel Algorithms for Multi-Dimensional Array

Operations Based on the EKMR Scheme for Distributed

Memory Multicomputers,” Accepted by IEEE

Transactions on Parallel and Distributed Systems, 2003.

[16] M.F.P. O'Boyle and P.M.W. Knijnenburg, “Integrating

Loop and Data Transformations for Global

Optimization,” Proc. Int.l Conf. ParallelArchitectures

and Compilation Techniques, 1998, pp. 12-19.

6. AUTHOR’S BIOGRAPHIES

First Author: Satya Prakash was born in Bulandshahr

District Utter Predesh India in 1971. He got his M.Sc.

Physics(Electronics) degree from Agra University Agra, and

M.Tech(Computer Science & Engineering) from Kurukshetra

University. He has a vast experience in teaching and research.

He is associated as a research scholar with JJTU, Rajasthan.

Currently, Working as a Asstt.. Professor(Senior Grad) in

Birla Institute of Technology, Mesra Ranch India(Noida

campus). His interest areas are parallel and Distributed

computing, Database management system.

Second Author: Dr. Anil K Ahlawat was born in

MuzaffarNagar District of UttarPradesh, India, in 1975. He

got his education from CCS University Meerut, IIT Roorkee

and M.Tech in Computer Science and Engineering from

Kurukshetra University. He has completed his Ph.D. degree

from University School of Engineering and Technology, Guru

Gobind Singh Indraprastha University, New Delhi, India. He

has published more than 30 research papers in

International/National Journals/Conferences. He is a

Professor in the Department of Computer Science and

Engineering of AKGEC Ghaziabad. His present research

interests include Algorithm Design, Artificial Neural

Networks, Artificial Intelligence, and Device Modeling.

