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ABSTRACT 
In this paper, the extended Karnaugh Map representation 

(EKMR) scheme has been proposed as an alternative to the 

traditional matrix representation (TMR) which caused the 

multi-dimensional array operation to be inefficient when 

extended to dimensions higher than two. Multi-dimensional 

arrays are widely used in a lot of scientific studies but still 

some issues have been encountered regarding efficient 

operations of these multi-dimensional arrays. EKMR scheme 

has managed to successfully optimize the performance of the 

multi-dimensional array operations to the nth dimension of the 

array. The basic concept EKMR is to transform the multi-

dimensional array in to a set of two-dimensional arrays. 

EKMR scheme implies Karnaugh Map which is a technique 

used to reduce a Boolean expression. It is commonly 

represented with the help of a rectangular map which holds 

all the possible values of the Boolean expression. Then the 

efficient data parallel algorithms for multi-dimensional matrix 

multiplication operation using EKMR are presented in this 

study which outperformed those data parallel algorithms for 

multi-dimensional matrix multiplication operation which used 

the TMR scheme. The study encourages designing data 

parallel algorithms for multi-dimensional dense and sparse 

multi-dimensional arrays for other operations as well using 

the EKMR scheme since this scheme produces the efficient 

performance for all dimensions and for all operations of the 

arrays.  

Keywords: Matrix Multiplication Algorithm, EKMR, 

TMR. 

1. INTRODUCTION 

When you submit Multi-dimensional arrays which are also 

referred as tensors or n-ways arrays are usefully applied to a 

wide range of studies or methods such as climate modeling, 

finite element analysis (FEA), molecular dynamic and many 

more but still many issues have been encountered regarding 

efficient operations of these multi-dimensional arrays. Most 

of the proposed methods are successful in case of two-

dimensional arrays which do not show accurate results when 

applied to the extended form of tensors.  This occurred due to 

the traditional matrix representation (TMR) which is an array 

representation scheme that is commonly used to represent the 

multi-dimensional dense or sparse array. Dense and sparse are 

the two categories of the array form which are provided 

through the various data parallel programming languages [2] 

for instance, Vienna Fortran, High Performance Fortran, etc. 

If all or most of the array elements are non-zero values then it 

is called a dense array. On the other hand, if most of the 

elements of the array are zero then it is called a sparse array. 

When an operation is applied on a dense array then it is 

executed on elements of the dense array whereas in case of 

the sparse array, an operation is exercised only on the non-

zero elements in order to optimize the performance [1]. 

Coming back to the flaws of the TMR which is also known as 

canonical data layouts, there are three reasons found for the 

failure of the TMR scheme when applied on a dense array 

which has three or more than three dimensions. 

First reason is the increase in the cost of packing/unpacking 

of the elements of the dense tensor in relation to its 

dimensions, second is the increase in its cost of the index 

computations with the increase of its dimensions. Third 

reason is the increase in the rate of cache miss for an 

operation with the increase of the dimensions of the dense 

tensor since more cache lines are acquired [5] [6] [7]. Due to 

these three drawbacks, TMR scheme has turned out to be a 

difficult and less tractable for designing efficient data parallel 

algorithms for tensor operations.  

In case of designing the parallel programs for operations on 

sparse tensors, the programming languages usually use 

compressed row storage (CRS) and compressed column 

storage (CCS) as the data compression scheme to compress 

the sparse arrays with respect to the TMR scheme due to 

which operation is only performed over non-zero elements of 

the sparse arrays in order to improve performance and reduce 

memory space. But still parallel array operations with respect 

to CRS or CCS for higher dimensional tensors have also 

failed to produce good performance merely, because of the 

following two reasons. First reason is that more of the single 

dimensional matrices are required with the increase of 

dimensions of the tensors in order to store the resultant extra 

indices of non-zero elements which further increase the time 

and the required storage space. The second reason is that with 

the increase in the dimensions of the tensors, the cost of 

indirect data access [4] and the cost of index comparisons 

increase for parallel operations on sparse tensors.   

Thus, this dissertation is aimed towards providing a new, 

effective and efficient array representation scheme and data 

compression scheme for dense and sparse tensors, 

respectively. These new array representation scheme and data 

compression scheme would then be used to design a parallel 

algorithm for multi-dimensional matrix multiplication 

operation. The new array representation scheme provided in 
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this dissertation is called the Extended Karnaugh Map 

Representation (EKMR) which is based on the concept of 

representing a multi-dimensional array as a set of two-

dimensional arrays [14]. This scheme is appropriate for both 

dense and sparse tensors. Thus, it has become easier to design 

an efficient parallel algorithm for tensors of higher 

dimensions with the help of EKMR. The theoretical and 

experimental analysis proved that the EKMR scheme is better 

than the TMR scheme. 

2. EKMR SCHEME 

“Chun-Yuan Lin” from Institute of Molecular and Cellular 

Biology, National Tsing Hua University, Hsinchu, 300, 

Taiwan, “Yeh-Ching Chung” from Department of Computer 

Science, National Tsing Hua University, Hsinchu, Taiwan, 

300 and “Jen-Shiuh” Liu from Department of Information 

Engineering and Computer Science, Feng Chia University, 

Taichung, Taiwan, 407 proposed the scheme of Extended 

Karnaugh Map Representation which is primarily based on 

the Karnaugh Map. The Karnaugh Map is a technique used to 

reduce a Boolean expression. It is commonly represented with 

the help of a rectangular map which holds all the possible 

values of the Boolean expression. The n variables are used to 

hold memory space and 2n possible combinations are 

represented for an n-input Karnaugh Map. If n is less than or 

equal to 4 then the Karnaugh Map can be shown as a two-

dimensional array and thus, it can be easily represented on a 

plane. EKMR(1) is a single input Karnaugh Map that is a 

simple one-dimensional array or a vector. Similarly, 

EKMR(2),  EKMR(3) and EKMR(n) are two-dimensional, 

three-dimensional and n-dimensional arrays, respectively 

where n is the number of inputs. Thus, for n equals to 1 and 2, 

EKMR(n) and TMR(n) exhibit the same array representation. 

Therefore, we will take in to account EKMR(n) where n is 

greater than 2.  

Figure 1 represents the TMR(3) and EKMR(3) where (a) is a 

3x4x5 array represented by TMR(3) and (b) is a 4x15 array 

represented by EKMR(3). Practically, a multi-dimensional 

array requires linear memory storage for programming 

languages supporting multi-dimensional array. Programming 

languages copy the array index space in to the linear memory 

address. Thus, an array A[k][i][j] which is represented by 

TMR(3), has the memory address LRM (k,i,j;3,4,5) (that is the 

row major data representing function) and LCM (k,i,j;3,4,5) 

(that is the column major data representing function)  for the 

array element in the third dimension „k‟, row dimension „i‟ 

and column dimension „j‟ with respect to the starting memory 

address of a 3x4x5 size array.  

A 3-input Karnaugh Map represents the TMR(3) array 

A[k][i][j] as a 2-dimensional array with respect to EKMR(3). 

Figure 2.1(b) shows the relative EKMR(3) representation of 

A[k][i][j]. Figure 2.1(b) is a 4x15 size 2-dimensional array. 

The EKMR(3) is also given by the row major data 

representing function L‟
RM(i‟,j‟;4,15) which is equivalent to 

i‟x15+j‟ or the column major data representing function 

L‟
CM(i‟,j‟;5,12) which is equivalent to j‟x5+i‟.The placement 

of the elements of the array with respect to the direction given 

by the index „k‟ is the primary difference between the two 

data representation schemes which are TMR(3) and 

EKMR(3). A 3-input Karnaugh Map represents the TMR(3) 

array A[k][i][j] as a 2-dimensional array with respect to 

EKMR(3). Figure 2.1(b) shows the relative EKMR(3) 

representation of A[k][i][j]. Figure 2.1(b) is a 4x15 size 2-

dimensional array. The EKMR(3) is also given by the row 

major data representing function L‟
RM(i‟,j‟;4,15) which is 

equivalent to i‟x15+j‟ or the column major data representing 

function L‟
CM(i‟,j‟;5,12) which is equivalent to j‟x5+i‟.The 

placement of the elements of the array with respect to the 

direction given by the index „k‟ is the primary difference 

between the two data representation schemes which are 

TMR(3) and EKMR(3). 

Further on, we will analyze the issues encountered in these 

three phases which are concerned with the design of the data 

parallel algorithms of the multi-dimensional dense matrix 

operations with respect to the row major data layout using 

Karnaugh Map that is EKMR scheme. These data parallel 

algorithms are not regarded to be based on the recursive data 

layout 

 
Figure 1. (a) 3x4x5 array represented by TMR (b) 4x15 

array represented by EKMR 

3. PARALLEL ALGORITHM FOR 

MULTIDIMENSIONAL MATRIX  

The design of a parallel algorithm usually has three phases 

which are: data distribution, local computation and result 

collection [9]. Further on, we will analyze the issues 

encountered in these three phases which are concerned with 

the design of the data parallel algorithms of the multi-

dimensional dense matrix operations with respect to the row 

major data layout using Karnaugh Map that is EKMR 

scheme. These data parallel algorithms are not regarded to be 

based on the recursive data layout [10]. The reason behind 

this consideration is the selection of the recursive data layout 

with respect to the TMR scheme tensor preparation algorithm 

in order to optimize the performance [11].  In our design 

example, we will only use multiplication operation on the 

matrices although there are other array operations as well. 
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Our example is using the distribution of one dense array since 

the distribution of more dense arrays for an operation will 

design a very complicated parallel algorithm. 

3.1 The Data Distribution Phase 

In this section, we will illustrate the row and the column 

which are the distribution methods for dense arrays. A dense 

global array is distributed to the processor in three steps. In 

step number one, the global array is divided in to the local 

dense arrays on the basis of the data partition method. In step 

number two, the elements of the local dense array from step 

number one, are collected in the form of a batch and then 

distributed to the relevant processor in the step number three. 

The cost of the row and the column data distribution methods 

are the same for the first and the third steps [3] so we will 

discuss the cost of packing in the second step in order to 

analyze these data distribution methods. The hypothesis is 

that A[k][i][j] is an n x n x n dense array and P are the given 

processors. 

3.1.1 The Row Data Distribution Method 

According to the definition of EKMR(3), A‟ comprises of n 

rows and each row has n2 elements. As per the row 

distribution method, A‟[i‟][j‟] is distributed to the processors 

by diving A‟ in to 2-dimensional arrays P in the direction i‟. 

The elements of the same row are saved in the sequential 

memory addresses in the EKMR(3), so it is not necessary to 

pack them before distribution as shown in figure 2(b). 

Therefore, the row size is same for TMR(3) and EKMR(3).  

 

According to figure 3 and the algorithm “Row_Data 

Distribution Method_EKMR(n)”, P x n
n-4

 is the number of 

non-consecutive data blocks on P processors. Thus, the 

number of non-continuous data blocks in the EKMR scheme 

for row data distribution method is less than that of TMR 

scheme. 

 

 
Figure 2: Row data distribution method for A and A’ to 4 

processors (a)TMR(3) (b) EKMR(3). 

 

 

Figure 3. Row data distribution method for A‟ to 4 processors 

for EKMR(6). 

 

Figure 2 shows the row data distribution method for A and A‟ 

to 4 processors where (a) is based on TMR(3) and (b) is based 

on EKMR(3).The number of non-consecutive data blocks is 

zero for a single processor as well as for multiple processors. 

For the EKMR(4), elements of the partially dense arrays 

allocated to each processor are saved to the sequential 

memory addresses. So, they are packed before distribution as 

shown in figure 3.2. Now A‟ is the corresponding EKMR(n) 

of the nn dense array. The data parallel algorithm for the 

EKMR(n) with respect to the row data distribution method of 

the data distribution phase is given below by the algorithm.   

Algorithm  Row_Data Distribution Method_EKMR(n) 

1. for (P_id = 0; P_id< P;  P_id ++) 

2.  l = 0; 

3.   offset = P_id × row _size;  

 

 

 /* row_size =                    or                    */ 

 

 

4.     for(x = 0; x < nn-4;  x++) 

5.         for (i =0; i < row_size; i++) 

6.          for(j = 0; j < n2 ;  j++ ) 

7.            D[l]        = Ax[i + offset] [j];  /*Pack array 

elements into buffer D*/ 

 

8.                  l++ ; 

9. Distribute D[ ] to appropriate processor; 

End_of_Row_Data Distribution Method_EKMR(n) 

 

The EKMR(n) row size for the first r processors     =                                      

 

 

and  

 

 

 

EKMR(n) row size for the remaining P - r processors =                    

 

According to figure 3 and the algorithm “Row_Data 

Distribution Method_EKMR(n)”, P x n
n-4

 is the number of 

non-consecutive data blocks on P processors. Thus, the 

number of non-continuous data blocks in the EKMR scheme 

for row data distribution method is less than that of TMR 

scheme. 
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3.1.2 The Column Data Distribution 

Method Algorithm Column_Data 

Distribution Method_EKMR(n) 

1. for (P_id = 0; P_id < P ;  P_id ++) 

2.     l = 0; 

3.       offset = P_id ×column _size;           

 

 

/* column_size =                or                  */ 

 

 

 

4.         for(x = 0; x < nn-4 ;  x++) 

5.           for (i =0; i <  n ; i++) 

6.                     for (j =0; j < column_size; j++) 

7.                D[l]    = Ax [i][j + offset] ;                  

/*Pack array elements into buffer D*/ 

8.                   l++  

9. Distribute D[] to appropriate processor ; 

End_of_Coloumn_Data Distribution 

Method_EKMR(n) 

 

 
 

Figure 4. Column data distribution method for A and A‟ to 

n=4 processors  (a) represents TMR(3) 

 
 
Figure 4. Column data distribution method for A and A‟ to 

n=4 processors where (b) represents EKMR(3). 

 

 

 

 

 

 

 

The following shows the algorithm for column data 

distribution method for EKMR(n). According to figure 3.4 

and figure 3.6, P x nn-2 is the number of non-consecutive data 

blocks on P processors. Thus, the number of non-continuous 

data blocks in the EKMR scheme for column data distribution 

method is less than that of TMR scheme. 

3.2 The Local Computation Phase Data 

When single dense array is distributed to the processors then 

the next phase is to perform local computation on these 

distributed arrays. Assume A[mn-4] [mn-3]… [m1][l][k][i][j] 

and B[mn-4] [mn-3]… [m1][l][k][i][j] are two dense arrays with 

size nn for the TMR(n) then A‟ and B‟ are the relative 

EKMR(n) of A(mn-4, mn-3,.. m1)  and B(mn-4, mn-3,.. m1) ; C 

for TMR(n) and C‟ for EKMR(n) are the local dense arrays in 

each processor. The parallel algorithm of the computational 

phase for multidimensional matrix multiplication operation 

for EKMR(n) with respect to the row distribution method 

(this algorithm is also similar for column data distribution 

method) is shown by the procedure “Local 

Computation_Row_Data Distribution Method_EKMR(n)”. 

 

Algorithm Local Computation_Row_Data Distribution 

Method_EKMR(n) 

1. For (P_id = 0; P_id < P ;  P_id ++) 

2.         for (x = 0; x <nn-4 ; x++) 

3.             for(i =0; i< row_size ; i++) 

4.                t = i×n; 

5.                   for (j =0; j <  n ; j++) 

6.                v = j×n; 

7.                for (l =0; l <  n ; l++) 

8.            w = t + l; 

9.         u =  l+ v; 

10.        for (m =0;  m  < n;   m++) 

11.      r = m ×n ; 

12.    for (k = 0; k < n;  k++)  

13. for (k =0; k<n ; k++) Cx[w][k+r]= 

Cx[w][k+r]+Ax[w][k+v]×Bx[u][k+r]; 

end_of_Local Computation_Row_Data Distribution 

Method_EKMR(n) 

 

The cost of computing index of elements and  

dense array multiplication operations for TMR(n) =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5. Column data distribution method for A to 4 processors according EKMR(6). 
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The cost of computing index of elements and dense array 

multiplication operations for EKMR(n) =  

 

 

 

The loopcost(l) for parallel algorithms of the local 

computation phase of multiplication operations for EKMR(n) 

with inner most loop index J= 

                                                                                                      

 

   

 

 

The loopcost(l) for parallel algorithms of the local 

computation phase of multiplication operations for TMR(n) 

with inner most loop index J=     

                                                                                    

    

 

 

Thus, the cost of computing index of elements with EKMR 

scheme is less than that of TMR scheme. Also, the number of 

lines cached which the dense array operations have accessed 

for EKMR scheme is less than that of TMR scheme [8]. 

3.2 The Result Collection  Phase  

The results generated from the computation phase which are 

dispersed among processors must be gathered to produce the 

final result. Generally, the processor that is used for 

distributing the data is also used for collecting the results. 

Different ways are adopted by the host processor to process 

the interim results for various dense array operations by 

collecting the interim results to produce the final result. For 

matrix multiplication operation (and for other such 

operations), the host processor unpacks the partial or interim 

results, which have been collected from each processor, in to 

relevant memory addresses to get the final result. This phase 

is similar to the data distribution. The result collection phase 

may have different implementations for different dense array 

operations. The data parallel algorithm for the result 

collection phase for multi-dimensional matrix multiplication 

operation for the EKMR(n) with the row distribution method 

(the similar algorithm will be used for the column data 

distribution method) is given below by the procedure 

“Result_Collection_Row_Data Distribution 

Metheod_EKMR(n)”. 

Algorithm Result_Collection_Row_Data Distribution 

Metheod_EKMR(n) 

1. For (P_id = 0; P_id< P;  P_id ++) 

2. Receive the buffer Dp-id [] from each processor 

3. l = 0; 

4. offset = P_id × row _size;  

5. for(x = 0; x < nn-4;  x++) 

6.     for (i =0; i < row_size; i++) 

7.       For(j = 0; j < n2 ;  j++ ) 

8.          Cx  [i + offset] [j] = Dp-id[l];  

9.                     l++ ; 

10. Distribute D[] to appropriate processor; 

 

End_of_Result_Colection_Row_Data Distribution. 

 Method_EKMR(n)Performance Comparison Between 

TMR and EKMR Schemes Thus, the cost of computing 

index of elements with EKMR scheme is less than that of 

TMR scheme. Also, the number of lines cached which the 

dense array operations have accessed for EKMR scheme is 

less than that of TMR scheme. 

 

 
 
Figure 6. Time of the data distribution phase of data parallel 

algorithms with respect to the row data distribution method 

for TMR(4) and EKMR(4) on 16 processors. 

 

Figure 6 illustrates that EKMR scheme takes less time than 

TMR scheme for data parallel algorithms in the distribution 

phase of the row distribution method. 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

  Figure 7(a). Without Compiler Optimization   
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Figure 7(b). With Compiler Optimization   

The figure 7 shows the time taken for local computation 

phase of data parallel algorithms with matrix multiplication 

by TMR(3) and EKM(3) schemes for array size 200 x 200 x 

200 on 16 processors where (a) represents without complier 

optimization option and (b) represents with complier 

optimization option. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Time taken by the TMR(3) and EKMR(3) for the 

result collection phase of data parallel algorithms of matrix 

multiplication of array size 200 x 200 x 200 on 16 processors. 

The above performance comparison graphs between TMR 

and EKMR schemes are taken in the context of this study that 

is data parallel algorithms for matrix multiplication. The 

graphs portray that EKMR is a better and efficient scheme 

than the TMR scheme in all phases due to the lesser values 

obtained in the EKMR scheme for the following: the number 

of non-continuous data blocks (with various data distribution 

methods), the packing time, the cost of the index computation 

of array elements, the number of cached lines accessed for 

operations of dense arrays and the unpacking time. This 

efficiency of EKMR in comparison to TMR is also true for all 

operations, all array sizes including both dense and sparse 

arrays [13] and all algorithms. 

4. CONCLUSION 

In this paper, we first identified and then discussed the issues 

faced in relation to the efficient operations of the multi-

dimensional arrays. It was found that the most of the 

proposed methods do not perform well for extended form of 

tensors although these methods show good performance when 

applied to two-dimensional arrays. We discussed the flaws of 

the traditional matrix representation (TMR) and then 

proposed the Extended Karnaugh Map Representation 

(EKMR) as a new scheme which ruled out the drawbacks of 

the TMR scheme. EKMR is based on the Karnaugh Map. The 

basic concept of the EKMR technique is to represent the 

multi-dimensional array in to the form of a set of two-

dimensional arrays. Thus, the extended Karnaugh map 

representation made it easier to design the efficient data 

parallel algorithms for multi-dimensional arrays having more 

than two dimensions.  We analyzed the data parallel 

algorithms for multi-dimensional matrix multiplication using 

the Karnaugh map that is EKMR and concluded that EKMR 

is better than TMR in all aspects. The concepts given by O‟ 

Boyle to design the loop re-permutation have been applied in 

this report to design the data parallel algorithms for multi-

dimensional array multiplication operation using the EKMR 

scheme [16]. This report focused on the application of the 

EKMR on the dense multi-dimensional array, however we 

have discussed that EKMR is equally effective in case of 

sparse multi-dimensional arrays. 

With the help of the parallel algorithms for multi-dimensional 

matrix multiplication operation using the Karnaugh map, it 

was proved that the cost of computing index of elements with 

EKMR scheme is less than that of TMR scheme and the 

number of lines cached which the dense array operations have 

accessed for EKMR scheme is less than that of TMR scheme. 

These were the flaws of the TMR scheme which previously 

caused the inefficient performance when the dimensions of 

the arrays exceeded the value of 2. Thanks to the EKMR 

scheme which optimized the performance even to the nth 

dimension of the tensors. 
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