
International Journal of Computer Applications (0975 – 8887)

Volume 29– No.7, September 2011

21

NAT Traversal and Detection on Dual Stack

Implementation of Mobile IPv6

Dr. K.L.Bansal

Associate Professor
Department of Computer Science

H.P.University, Shimla

(H.P) India-171005

Chaman Singh

Assistant Professor
Department of Computer Applications

Govt.P.G.College, Chamba

(H.P) India-171005

ABSTRACT

IPv4 private networks are behind NAT devices. So, to bypass the

Binding Update and Binding Acknowledgment by NAT, we need

to encapsulate it in UDP packets. So, the dual stack mobile IPv6

should support NAT traversal and Detection. Dual Stack Mobile

IPv6 (DSMIPv6) is an extension of MIPv6 to support mobility of

devices irrespective of IPv4 and IPv6 network. Current IP

networks are predominantly based on IPv4 technology, and hence

various firewalls as well as Network Address Translators (NATs)

have been originally designed for these networks. Deployment of

IPv6 networks is currently work in progress. This research

provides an overview of network address translation (NAT) and its

detection and traversal on dual stack implementation on Mobile

IPv6. In DSMIPv6 the MIP6D daemon should bypass NAT, when

Mobile Node is behind NAT device in IPv4 Foreign Link.

General Terms
Networks

Keywords
NAT, Traversal, Detection, Dual Stack, MIPv6

1. INTRODUCTION
Network Address Translators are an important component for a

majority of Internet Protocol (IP) networks today. Current IP

networks are predominantly based on IPv4 technology, and hence

various NATs have been originally designed for these networks. A

network address translator a box that interconnects a local network

to the public internet, where the local network runs on a block of

private IPv4 addresses [1]. In the original design of the internet

architecture, each IP address was defined to be globally unique and

globally reachable. In contrast, a private IPv4 address is

meaningful only within the scope of the local network behind a

NAT and as such, the same private address block can be reused in

multiple local networks, as long as those networks do not directly

talk to each other. Instead, they communicate with each other and

with the rest of internet through NAT boxes. It is worth pointing

out that in the recent years many efforts were devoted to the

development and deployment of NAT traversal solution, such as

simple traversal of UDP (User Datagram Protocol) through NAT

(STUN) [2], traversal using relay NAT (TURN) [3], and Teredo

[4], to name a few. Theses solution removes obstacles introduced

by NATs to enable an increasing number of new application

deployments. A new effort in this direction is NAT traversal

through tunneling NATTT [5]. Mobile IPv6 (MIPv6) [15] is a

protocol developed as a subset of Internet Protocol veMyon 6

(IPv6) to support mobile connections. MIPv6 [6] allows a mobile

node to transparently maintain connections while moving from one

subnet to another [9]. The Mobile IPv6 protocol takes care of

binding addresses between Home Agent (HA) and Mobile Node

(MN). It also ensures that the Mobile Node is always reachable

through Home Agent. Dual Stack Mobile IPv6 (DSMIPv6) is an

extension of MIPv6 to support mobility of devices irrespective of

IPv4 [7] and IPv6 [8] network. The impact to IPv4, which changes

IP address semantics, provide ample evidence , since now coming

time MIPv6 are in progress so need of network address translation

traversal and detection on Dual Stack implementation of mobile

IPv6 [10]. NEPL (NEMO Platform for Linux) [11] is a freely

available implementation of DSMIPv6 for Linux platform. The

original NEPL release was based on MIPL (Mobile IPv6 for

Linux) [12]. Without the support of NAT Detection and Traversal

module in DSMIPv6, the mobile node will not be able to move

freely from IPv6 network to IPv4 network or vice-versa.

Connectivity also breaks at the time of switching from one network

to other will be accomplished by this research and how NAT

behave in common protocol like TCP [13] and UDP [14].

2. NAT TRAVERSAL AND DETECTION

MODULE

2.1 Module Name & Functionality

NAT (Network Address Translation) is the translation of an

Internet Protocol address (IP address) used within one network to a

different IP address known within another network. One network is

designated the inside network and the other is the outside. In

DSMIPv6 the mip6d daemon should bypass NAT, when Mobile

Node is behind NAT device in IPv4 Foreign Link.

2.2 Files used
mn.c, ha.c, xfrm.c, mn.h, ha.h, xfrm.h, nat.h, bcache.h, bul.h.

International Journal of Computer Applications (0975 – 8887)

Volume 29– No.7, September 2011

22

 Fig 1: NAT Detection and Traversal Modules.

2.3 Process Description
NAT detection is done when the initial Binding Update message is

sent from the mobile node to the home agent. When located in an

IPv4-only foreign link, the mobile node sends the Binding Update

message encapsulated in UDP and IPv4, this is handled in xfrm.c

file. The mip6d daemon adds xfrm policy/state for UDP

encapsulation for BU packet. When the home agent receives the

encapsulated Binding Update, it compares the IPv4 address of the

source address field in the IPv4 header with the IPv4 address

included in the IPv4 care-of address option. If the two addresses

match, no NAT device is in the path. Otherwise, a NAT is detected

in the path and the NAT detection option is included in the Binding

Acknowledgement. The Binding Acknowledgement, and all future

packets, is then encapsulated in UDP and IPv4. Note that the home

agent also stores the port numbers and associates them with the

mobile node's tunnel in order to forward future packets. This is

handled in ha.c file. The mip6d daemon adds the xfrm

polices/states for UDP encapsulation of BA and IPv6/IPv4 data

traffic. Upon receiving the Binding Acknowledgement with the

NAT detection option, the mobile node sets the tunnel to the home

agent for UDP encapsulation. Hence, all future packets to the

home agent are tunneled in UDP and IPv4. If no NAT device is

detected in the path between the mobile node and the home agent

then IPv4/IPv6 data traffic is not UDP encapsulated. A mobile

node will always tunnel the Binding Updates in UDP when located

in an IPv4-only network. Essentially, this process allows for

perpetual NAT detection. Similarly, the home agent will

encapsulate Binding Acknowledgements in a UDP header

whenever the Binding Update is encapsulated in UDP. This is

handled in mn.c and xfrm .c file. The mip6d daemon adds xfrm

polices/states for UDP encapsulation of IPv6/IPv4 data traffic,

when NAT is detected between Mobile Node and Home Agent.

2.4 Flow Chart
NAT Detection and Traversal flow in Mobile Node given in figure

2, 3. And NAT Detection and Traversal flow in Home Agent is

given in figure 4, 5.

2.5 Internal Data Structure
Following are the main structures that are being used between

some of the important functions in NAT Traversal and Detection.

1. struct encap_info:

Description: Structure to store the source IP address and port

information, once NAT is detected.

File: mipv6-daemon-umip-0.4/src/nat.h

Code Snippet:

struct encap_info {

struct in_addr src;

 uint16_t port;};

2. Enum for NAT detection:

Description:

 Enumeration used for NAT detection.

File: mipv6-daemon-umip-0.4/src/nat.h

Code Snippet:

typedef enum {

 MIP6_NAT_DISABLED,

 MIP6_NAT_ENABLED,};

3. struct xfrm_selector:

Description:

 Xfrm selectors for policy and state used for UDP Encapsulation.

File: linux-2.6.28.2/include/linux/xfrm.h

Code Snippet:

struct xfrm_selector{

 xfrm_address_t daddr;

 xfrm_address_t saddr;

 __be16 dport;

 __be16 dport_mask;

 __be16 sport;

 __be16 sport_mask;

 __u16 family;

 Foreign

Network

Internet

Home Network

 HoA

Mobile Node

Mobile Node

Home

Agent
IPv4

CoA

NAT

Device

AR
When NAT is detected both (BU/BA)

Signaling Messages and Data

Packets will be UDP Encapsulated

UDP Encap. BA

UDP Encap. BU

International Journal of Computer Applications (0975 – 8887)

Volume 29– No.7, September 2011

23

Fig. 2: Outbound Packet Flow in Mobile Node.

__u8 prefixlen_d;

 __u8 prefixlen_s;

 __u8 proto;

 int ifindex;

 uid_t user;};

4. struct xfrm_user_tmpl:

Description:

Used to create template for xfrm policy for UDP encapsulation.

File: linux-2.6.28.2/include/linux/xfrm.h

Code Snippet:

struct xfrm_user_tmpl{

 struct xfrm_id id;

 __u16 family;

 xfrm_address_t saddr;

 __u32 reqid;

 __u8 mode;

 __u8 share;

 __u8 optional;

 __u32 aalgos;

 __u32 ealgos;

 __u32 calgos;};

5. struct xfrm_encap_tmpl:

Description: Used to create template for xfrm policy for UDP

encapsulation,File: linux-2.6.28.2/include/linux/xfrm.h

Code Snippet:

struct xfrm_encap_tmpl {

 __u16 encap_type;

 __be16 encap_sport;

 __be16 encap_dport;

 xfrm_address_t encap_oa; };

6. struct bulentry:

Description:

This structure stores information about Binding Update List.

The members of this structure are used to set Xfrm policy/states

for UDP encapsulation in Mobile Node side.

File: mipv6-daemon-umip-0.4/src/bul.h

Code Snippet:

struct bulentry {

struct home_addr_info *home; /* Pointer to home_address

structure to which this entry belongs to */ struct tq_elem tqe; /*

Timer queue entry */

struct in6_addr peer_addr; /* CN / HA address */

struct in6_addr hoa; struct in6_addr coa;/* care-of address of the

sent BU */,int if_coa;int if_tunnel;/* Tunnel iface for the BCE */

int if_tunnel4; /* 4/4 or 6/4 tunnel iface for the BCE */

int type; /* BUL / NON_MIP_CN / UNREACH */

uint16_t seq; /* sequence number of the latest BU */

uint16_t flags; /* BU send flags */

struct in6_addr last_coa; /* Last good coa */

struct timespec lastsent;

Do Nothing

Movement of MN to FL

(movement.c)

IPv4 or IPv6?
(mn.c)

Send UDP Encapsulation BU Packet with

COA option in MH header (mh.c)

Add outbound and inbound xfrm

policy/states for UDP Encapsulation of BU

packet (xfrm.c)

Send BU UDP Encapsulation Flag

(xfrm.c)

Delete the flags for sig and
IPv6/IPv4 data traffic (mn.c)

Start

Check flags for sig and

data traffic for UDP
encapsulation (xfrm.c)

End

Delete outbound and inbound xfrm policy/states

for UDP Encapsulation of BU and IPv6/IPv4 data

traffic (xfrm.c)

IPv6 / HL
IPv4 / FL

Yes

No

Outbound Packet Flow

International Journal of Computer Applications (0975 – 8887)

Volume 29– No.7, September 2011

24

 Fig 3. Inbound Packet in Mobile Node.

struct timespec lifetime; * lifetime sent in this BU */

struct timespec delay; /* call back time in ms*/

struct timespec expires; /* Absolute time for timer expire */

struct timespec hard_expire; /* Absolute bulentry expiry time */

int consecutive_resends; /* Number of consecutive BU's

resent*/ int8_t coa_changed;

uint8_t wait_ack ;/* WAIT / READY */

uint8_t xfrm_state;

uint8_t use_alt_coa; /* Whether to use alt. CoA option */

uint8_t dereg; /* for calculating BSA key */

uint8_t do_send_bu; /* send bu / not send bu */

uint8_t behind_nat; /* whether a nat was detected */

uint8_t udp_encap; /* doing UDP encap */

 /* Information for return routability */

struct retrout_info rr;

uint8_t Kbm[HMAC_SHA1_KEY_SIZE];

void (* callback)(struct tq_elem *);

void (*ext_cleanup)(struct bulentry *);};

7. struct bcentry:

Description:

This structure stores information about Binding Cache Entry.

The members of this structure are used to set Xfrm policy/states

for UDP encapsulation in Home Agent side.

File: mipv6-daemon-umip-0.4/src/bcache.h

Code Snippet:

struct bcentry{

Struct in6_addr our_addr; /* Address to which we got BU */

Struct in6_addr peer_addr;/* Mobile Node home address IPv6 */

Struct in_addr peer_addr4; /* MN home address IPv4 */

Struct in6_addr old_coa; /* Previous care-of address */

Struct in6_addr coa ;/* MN care-of address */

struct timespec add_time; /* When was the binding added or

modified */ struct timespec lifetime; /* lifetime sent

in this BU in seconds */ struct encap_info nat_info; /*

Information for NAT traversal */ uint8_t behind_nat/*

Inbound Packet Flow

MN is behind

NAT Device

Wait for BA Packet

from HA (mn.c)

MN behind

NAT? (mn.c)

Add outbound and inbound xfrm

policys/states for UDP encapsulation

of IPv6/IPv4 data Packet (mn.c)

UDP Encapsulation BA

Packet received on MN side

Data Packets are encapsulated in IPv6 in

IPv4 or IPv4 in IPv4 Tunneling

Start

End

Yes No

MN is not behind NAT Device. So no

need to add xfrm policy/ state for UDP

encapsulation of IPv4/IPv6data traffic

Set flag for IPv6/IPv4 data traffic (mn.c)

Future IPv6/IPv4 data traffic

will be UDP Encapsulated

International Journal of Computer Applications (0975 – 8887)

Volume 29– No.7, September 2011

25

whether a nat was detected */uint16_t seqno;/* sequence

number of the latest BU */

uint16_t flags; /* BU flags */

uint16_t nonce_coa;

uint16_t nonce_hoa;

Fig 4. BU Receive Packet flow in Home Agent.

uint16_t type; /* Entry type */

uint16_t nemo_type; /* NEMO registration type */

int unreach; /* ICMP dest unreach count */

int tunnel; /* 6/6 or 6/4 tunnel interface index */

int tunnel4; /* 4/4 or 4/6 tunnel interface index */

int link; /* Home link interface index */

Set flag for BA
signaling (ha.c)

Add xfrm policy/state to accept
Incoming BU Packet (xfrm.c)

 NAT
Detection?
(ha.c)

UDP Encapsulation BU
received on HA side

Start

End

Yes

No

No need to store
Port Numbers

Store the Port Number

in Order to forward

future packets (ha.c)

Add the Inbound/Outbound
xfrm policy /state for UDP
encapsulation of BA and
IPv6/IPv4 data traffic (ha.c)

Set flags for UDP
encapsulation of BA and
IPv6/IPv4 data traffic (ha.c)

Add NAT Detection
Option in BA Packet

All future traffic will be UDP
encapsulated

Add xfrm policy/state
to UDP encapsulation
BA Traffic (ha.c)

Only BA will be UDP
encapsulated and no UDP
encapsulation of data traffic

BU Receive Packet Flow

International Journal of Computer Applications (0975 – 8887)

Volume 29– No.7, September 2011

26

int id; /* For testing */

 /* Following fields are for internal use only */

struct timespec br_lastsent; /* BR ratelimit */

int br_count; /* BR ratelimit */

pthread_rwlock_t lock; /* Protects the entry */

struct tq_elem tqe; /* Timer queue entry for expire */

 uint8_t xfrm_state; /* MY: status of xfrm state for UDP

encapsulation in HA */

void (*cleanup)(struct bcentry *bce); /* Clean up bce data */

struct list_head mob_net_prefixes; Mobile network prefixes

v6*/Struct net_prefix4 *mob_net_prefixes4;/*Mobile network

prefixes v4*/};

 Fig 5. Cleanup flow in Home Agent.

3. INTERNAL METHODS
Following table describe the main functions used in MIPv6d for

implementation of NAT Traversal and Detection module. Various

functions description, input parameter, returns value, which call them

and the file in which they are stored are given in table 1.2.

4. EVENT TRIGGERING THE PROCESS
When MN moves in IPv4 FL, mip6d code adds xfrm policy/state for

UDP encapsulation of BU and sends BU to Home Agent. This

processing is handled by routine xfrm_pre_bu_add_bule. When BU

is received on Home Agent side, it triggers the NAT detection called.

And if NAT is detected, it pushes xfrm policies/states for UDP

encapsulation of IPv6/IPv4 data traffic and BA in the kernel;

otherwise if NAT is not detected it only pushes Policy/state for UDP

encapsulation of BA. This processing is handled by routine

ha_recv_bu_worker, which further calls routine

udpencap_encap_out_traffic_start for adding UDP encapsulation of

IPv6 data traffic and routine udpencap_encap_out_IPv4_traffic_start

for UDP encapsulation of IPv4 data traffic. When UDP encapsulated

BA is received on Mobile Node side. The mip6d checks the presence

of NAT between Mobile Node and Home Agent. If NAT is detected,

it pushes xfrm policies/states in kernel for UDP encapsulation of

future IPv4/IPv6 data traffic. This processing is handled by routine

mn_recv_ba, which further call routine

udpencap_encap_out_traffic_start for adding UDP encapsulation of

IPv6 data traffic and routine udpencap_encap_out_IPv4_traffic_start

for UDP encapsulation of IPv4 data traffic. On Mobile Node side to

flush the xfrm policies and states for UDP encapsulation, the routine

called is xfrm_del_bule_dsmip, which further calls routine

udpencap_encap_out_traffic_end to flush policies/states for BU and

IPv6 data traffic and routine udpencap_encap_out_IPv4_traffic_end

to flush xfrm policies and states for UDP encapsulated of IPv4 data

traffic. On Home Agent side to flush the xfrm policies and states for

Yes
No

End

Remove the inbound / outbound
xfrm policy / state for UDP
encapsulation of BA packets (ha.c)

Movement Detection of MN
(movement.c)

 UDP
encapsulation
for data packet
flag set? (ha.c)

Start

Do Nothing

 Cleanup Flow

 UDP
encapsulation
BA flag set?
(ha.c)

Remove the inbound / outbound
xfrm policy / state for UDP
encapsulation of BA packets (ha.c)

Yes

International Journal of Computer Applications (0975 – 8887)

Volume 29– No.7, September 2011

27

UDP encapsulation, the routine called is

ha_udpencap_encap_traffic_end, which further calls routine

udpencap_encap_out_traffic_end to flush policies/states for BU and

IPv6 data traffic, and routine udpencap_encap_out_IPv4_traffic_end

to flush xfrm policies and states for UDP encapsulated of IPv4 data

traffic.

 Table 1. Internal Methods for NAT Detection and Traversal

5. CONCLUSION
This paper is one of the earliest attempts in the community to

investigate the problems and impacts when middleboxes,

especially NAT devices are placed in Dual stack Mobile IPv6are

implemented in computer laboratory. With the support of NAT

Detection and Traversal module in DSMIPv6, the mobile node

is able to move freely from IPv6 network to IPv4 network or

vice-versa. It accomplishes the main objective of not breaking

the connectivity at the time of switching from one network to

other. Now we are going to implement the following feature like

Security considerations related to IPV6 with IPSEC and IKEv2

Function Description Input Parameter Return

Value 0

Caller file

x
fr

m
_

st
at

e_
en

ca
p

_
d

el

for deletion of UDP encapsulation

xfrm state

proto: Protocol

sel: IPv4

selectors

spi: Security

parameter index

 xfrm_cn_cleanup

xfrm_udp_encap_delete

udpencap_receive_traffic_end

udpencap_encap_out_traffic_end

udpencap_encap_out_IPv4_traffic_end

X
frm

.c

x
fr

m
_

st
at

e_
en

ca
p

_
d

el

for deletion of UDP encapsulation

xfrm state

proto: Protocol

sel: IPv4

selectors

spi: Security

parameter index

 xfrm_cn_cleanup

xfrm_udp_encap_delete

udpencap_receive_traffic_end

udpencap_encap_out_traffic_end

udpencap_encap_out_IPv4_traffic_end

X
frm

.c

x
fr

m
_

d
e

l_
b
u

le
_

d
sm

ip
 Routine to delete states and

policies related to UDP

encapsulation for the BULE

bule: BUL

structure

 xfrm_del_bule

X
frm

.c

x
fr

m
_

p
re

_

b
u

_
ad

d
_

b
u

le

This routine is called before

sending BU; MN should insert

UDP encapsulation policy/state

only for BU/BA

bule: BUL

structure

No return

type

pre_bu_bul_update

X
frm

.c

m
n

_
re

cv
_
b

a

is called, when MN receives BA

from HA. From this routine the

Xfrm policies/states for UDP

encapsulation are added, when

NAT is detected

mh: Header

len: mh Length

in:

in6_addr_bundle

structure

iif: interface

index

none This routine is handler of type mh_handler. It is

called when BA is received on MN side by HA

X
frm

.c

h
a_

u
d

p
en

ca
p
_

en
ca

p
_
t

ra
ff

ic
_

en
d

to delete policy/state for udp

encapsulation of BA, IPv6 and

IPv4 data packets.

When BU is UDP Encapsulated,

BA is also UDP encapsulated.

If NAT is detected, all future

IPv6/IPv4 data traffic is also UDP

encapsulated

bce: binding

cache

In case of

error return

integer

value less

than 0

home_cleanup

H
a.c

h

a_
u
d

p
en

ca
p
_

en
ca

p
_
tr

af
fi

c_
st

ar
t

to add policy/state for UDP

encapsulation of BA, IPv6 and

IPv4 data packets

When BU is UDP Encapsulated,

BA is also UDP encapsulated.

I NAT is detected, all future

IPv6/IPv4 data traffic is also UDP

encapsulated.

bce: binding

cache

In case of

error return

integer

value less

than 0

ha_recv_bu_worker

H
a.c

u

d
p

en
ca

p
_

en
c

ap
_

o
u

t_
IP

v
4

_

tr
af

fi
c_

st
ar

t

to add UDP encapsulated xfrm

policy/state for IPv4 data traffic,

when

NAT is detected

Same as that of

Below function

In case of

error return

integer

value less

than 0

ha_udpencap_encap_traffic_start

mn_recv_ba

X
frm

.c

International Journal of Computer Applications (0975 – 8887)

Volume 29– No.7, September 2011

28

,Handover interactions for IPSec and IKE,IKE negotiations

between Mobile Node and Home Agent and IKEv2 operation

for securing DSMIPv6 signaling (BU & BA). The transition

from IPv4 to IPv6 will be time consuming process, so there will

be time, when both IPv4 and IPv6 networks will be there and

there will be always being scope for further development.

Table 2. Internal Methods for NAT Detection and Traversal

6. REFERENCES
1. Y.Rekhter et al, “Address allocation for private Internets”

RFC 1918, 1996.

2. J. Rosenberg et al., “STUN: Simple Traversal of User

Datagram Protocol (UDP) through Network Address

Translators (NATs),” RFC 3489, 2003.

3. J. Rosenberg, R. Mahy, and P. Matthews, “Traversal Using

Relays around NAT (TURN),” draft-ietf-behave-turn-08,

2008.

4. C. Huitema, “Teredo: Tunnelling IPv6 over UDP through

Network Address Translations (NATs),” RFC 4380, 2006.

5. E. Osterwell et. Al. “NAT traversal through tunnelling”

www.cs.arizona.edu/NAT.

6. G. Tsirtsis, Qualcomm; H. Soliman, Elevate Technologies;

“Dual Stack Mobility”, [RFC 4977], August 2007

7. Perkins, C., "IP Mobility Support for IPv4", RFC 3344,

August 2002.

8. Johnson, D., Perkins, C., and J. Arkko, "Mobility Support

in IPv6", RFC 3775, June 2004.

9. H. Soliman, Ed., Elevate Technologies; Mobile IPv6

Support for Dual Stack Hosts and Routers draft-ietf-mext-

nemo-v4traversal-06.txt, November 3, 2008.

10. K.L.Bansal, Chaman Singh, “Dual Stack Implementation of

Mobile IPv6 Software Architecture”, IJCA- Volume 25, No

9, July 2011.

11. NEPL (NEMO Platform for Linux) how to, June 24th,

2009.

12. MIPL (Mobile Ipv6 for Linux), how to, 2004-4-20.

13. S. Guha, K. Biswas, B. Ford, S. Sivakumar, and P.

Srisuresh. NAT Behavioral Requirements for TCP. RFC

5382, Internet Engineering Task Force, October 2008.

14. F. Audet and C. Jennings. Network Address Translation

(NAT) Behavioral Requirements for Unicast UDP. RFC

4787, Internet Engineering Task Force, January 2007.

15. Arkko, J., Devarapalli, V. and F. Dupont, RFC 3776, June

2004. "Using IPsec to Protect Mobile IPv6 Signaling

Between Mobile Nodes and Home Agents".

7. AUTHORS PROFILE

Chaman Singh have received the Master of Computer

Application Degree from H.P.University Shimla, India and also

qualified UGC NET. Doctor of Philosophy in Computer Science

is under Submission. Have more than 4 years of Working

Experience in Teaching, Software Development

(Programming) and Networks.

Function Description Input Parameter (in case of error return<0) Caller fil

e

u
d

p
en

ca
p

_
en

ca
p

_
o

u
t_

IP
v

4
_

tr
af

fi

c_
en

d

to delete UDP

encapsulated

xfrm policy/state

for IPv4 data

traffic, when

NAT is detected

local: IPv6 local address,lpreflen: prefix length of local address

dest: IPv6 peer address,dpreflen: prefix length of peer

address,proto: Protocol,type: MH header type,src: IPv4 local

address,dst: IPv4 peer address,dir: direction,spi: Security

parameter index

ha_udpencap_encap_tra

ffic_end

xfrm_del_bule_dsmip

X
frm

.c

u
d

p
en

ca
p

_
en

c

ap
_

o
u

t_
tr

af
fi

c

_
st

ar
t

to install a state

and policy to

encapsulate some

kind of traffic

into IPv4/UDP.

local: local IPv6 IP,lpreflen: length of local IP,dest: destination

IPv6 IP,dpreflen: length of destination IP,proto: protocol,type:

MH header type,/* Outer ip and UDP */,src: Source IP,sport:

Source IP,dst: destination IP,dport: destination port,/* Policy

*/,prio: priority,dir: direction,spi: Security parameter index

ha_udpencap_encap_tra

ffic_start

mn_recv_ba

X
frm

.c

u
d

p
en

ca
p

_

en
ca

p
_

o
u

t

_
tr

af
fi

c_
en

d

to remove state

and policy

installed in

previous function

local: local IPv6 IP,lpreflen: length of local IP,dest: destination

IPv6 IP,dpreflen: length of destination IP,proto: Protocol,type:

MH header type,/* Outer ip and UDP */,src: Source IP,dst:

destination IP,dir: direction,spi: Security parameter index

ha_udpencap_encap_tra

ffic_end

xfrm_del_bule_dsmip

X
frm

.c

x
fr

m
_

st
at

e_
en

ca
p

_
ad

d

to add the XFRM

states for

IPv4/UDP

encapsulation

sel: IPv6 selectors,proto: protocol

tmpl: template,update: add new SA or update old one,flags: flags

set

v4: IPv4 selectors,spi: Security parameter index

xfrm_cn_init

xfrm_pre_bu_add_bule

udpencap_encap_out_tr

affic_start

udpencap_receive_traffi

c_start

udpencap_encap_out_I

Pv4_traffic_start

X
frm

.c

