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ABSTRACT 

Partial least squares technique has been in use for identification 

of the dynamics & control for multivariable distillation process. 

Discrete input-output time series data )( YX  were generated 

by exciting non-linear process models with pseudo random 

binary signals. Signal to noise ratio was set to 10 by adding 

white noise to the data. The ARX models as well FIR models in 

combination with least squares technique were used to build up 

dynamic inner relations among the scores of the time series data 

)( YX , which logically built up the framework for PLS based 

process controllers. In this work, process dynamics was also 

identified in latent subspace using neural networks. The inverse 

dynamics of the latent variable based NN process acted as 

inverse neural controller (DINN). Distillation process without 

any decoupler could be controlled by a series of NN-SISO 

controllers 
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1. INTRODUCTION 
Partial least square is one of the important multivariable 

statistical process control (MVSPC) techniques to find the latent 

variables from the measured data by capturing the largest 

variance in the data and achieves the maximum correlation 

between the predictor )(X  variables and response 

)(Y variables. First proposed by Wold PLS has been 

successfully applied in diverse fields including process 

monitoring, identification of process dynamics & control and it 

deals with noisy and highly correlated data, quite often, only 

with a limited number of observations available [1]. A tutorial 

description along with some examples on the PLS model was 

provided by Geladi Kowalaski [2]. When dealing with nonlinear 

systems, the underlying nonlinear relationship between predictor 

variables )(X  and response variables )(Y can be approximated 

by quadratic PLS (QPLS) or splines. Sometimes it may not 

function well when the non-linearities cannot be described by 

quadratic relationship. Qin and McAvoy suggested a new 

approach to replace the inner model by neural network model 

followed by the focused R& D activities taken up by several 

other researchers like Wilson et al. (1997); Holcomb & Morari 

(1992); Malthouse et al. (1997); Zhao et al. (2006); Lee et al. 

(2006) [3-9]. This approach of NNPLS employs the neural 

network as inner model keeping the outer mapping framework 

as linear PLS algorithm. The conventional PLS is suitable for 

modeling time independent or steady state processes.  Kaspar 

and Ray (1993) developed dynamic extension of the PLS 

models by filtering the process inputs and subsequent 

application of the standard PLS algorithm and demonstrated 

their approach for identification & control problem using linear 

models [10]. Lakshminarayanan, 1997 proposed the 

ARX/Hammerstein model as the modified PLS inner relation 

and used successfully in identifying dynamic models and 

proposition of PLS based feed forward and feedback controllers 

[11]. For modeling dynamic process, the input data matrix )(X   

is augmented either with large number of lagged input variables 

(called finite impulse response (FIR) model) or including lagged 

input and output variables (called auto regressive model with 

exogenous input, ARX). By combining the PLS with inner ARX 

/ FIR model structure, dynamic processes can be modeled apart 

from using NN. One of the earlier approaches of multivariable 

control had been the decoupling control to reduce the loop 

interactions. The decoupler combined multivariable processes 

were used to create as series of NN-SISO controllers and tuned 

independently without influencing the performance of other 

closed loops Damala & Kundu (2010) [12]. Yingwei & Zhiyong 

(2011) proposed a hierarchical PLS for monitoring of penicillin 

process. PLS integrated with wave propagation was applied in 

controlling a simulated moving bed for separation of sugar and 

enantiomers by Junghui et al (2010). An attempt made by 

Minjin et al., 2007 by combining modified PLS with bias update 

scheme and an advanced cross validation method for inferential 

quality control and exhibited better performance when it was 

applied to industrial processes. The existence of outliers in 

multivariate data makes empirical modeling using univariate 

strategy complicated. Wang & Srinivasan (2009) proposed a 

novel method that provides a robust model and retains the 

essential information from the data. PLS was employed to 

monitor the production of biodiesel from soybean (Mario et al., 

2011). Whenever the operating modes of the process is often 

changing, monitoring and control of such process is not an easy 

task with multivariate statistical process monitoring techniques 

like PCA and PLS since these assume solely one operating 

point. Multiple PLS method was proposed that uses the 

similarity based on principal angles between the two modes to 

monitor the industrial pyrolysis furnace with frequently 

changing operating conditions (Shi et al., 2006). The application 

of PLS for online monitoring of chemical processes was 

reported by researchers like Shengiing et al. (2006), Tiina et al. 

(2004) and Junghuni & Kun-Chih (2001). In this work, NNPLS 

based control strategies were proposed for MIMO process for 

set point tracking as well as disturbance rejection. 
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In the identification of the MIMO distillation process, a high 

degree of correlation is often observed between process 

variables. One way to circumvent the problem is to use the PLS 

technique. Linear and neural network models were used to build 

up inner relations among the scores of the discrete input-output 

time series data )( YX . The (2×2) process was identified in 

latent subspaces with reasonable accuracy along with the 

evaluation of input-output loading matrices, which logically 

built up the framework for PLS & NNPLS based process 

controllers. MIMO processes were casted as a series of SISO 

identification problems embedded in a PLS framework. Such 

multivariable processes could be controlled by a series of SISO 

controllers designed on the basis of identified dynamics in latent 

subspaces (transfer function relating projected X  i.e.,  and 

projected Y  i.e., U ) and the PLS loading matrices 

(corresponding to input & output data) being employed as pre 

and post compensators of the error and control signals, 

respectively. The rest of the paper are organized in the following 

way: section 2 contains a brief overview on PLS and dynamic 

extension of PLS; ARX and FIR model; section 3 contain 

identification & control of a (2×2) distillation process using 

linear dynamic PLS; section 4 contain identification & control 

of the same distillation process using NNPLS; section 5 

concludes and summarized the findings of this particular study. 

2. PARTIAL LEAST SQUARES 

2.1 Linear PLS 
If two blocks of measurements say X  and Y  which are highly 

correlated, it becomes difficult to predict space using only the 

space and the ordinary least squares technique. Several 

multivariate techniques such as Cannonical Correlation Analysis 

(CCA), Partial Least Squares (PLS), Principal component 

regression (PCR) have been proposed for this purpose. Input - 

output data were generated by exciting the MIMO processes 

with pseudo random binary signals.  and  matrices are scaled 

in the following way before they are processed by PLS 

algorithm. 

1
XXSX  and 1

YYSY          (1) 
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XS and YS are scaled matrices. The idea of PLS is to develop a 

model by relating the scores of X  and Y data. PLS model 

consists of outer relations that decompose X  & Y data 

individually as a summation of product of score vector and 

loading vector and inner relations that links X  data to Y data 

through their scores. The outer relationship for the input matrix 

and output matrix can be written as  
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Where T and U represents the matrices of scores of X  and Y  

while P and Q represent the loading matrices for X  and Y . If 

all the components of X  and  Y    are described, the errors 

E & F  become zero.  

The inner model that relates X   to  Y    is the relation between 

the scores T  & U . 

TBU      (4) 

Where B  is the regression matrix. The response  can now be 

expressed as: 

FTBQY T                    (5) 

To determine the dominant direction of projection of X and  Y    

data, the maximization of covariance within X  and Y  is used 

as a criterion. The first set of loading vectors 1p  and 1q  

represent the dominant direction obtained by maximization of 

covariance within X  and Y . Projection of X  data on 1p  and 

Y  data on 1q  resulted in the first set of score vectors 1t  and 1u  

, hence the establishment of outer relation. The matrices X  and 

Y  can now be related through their respective scores, which is 

called the inner model, representing a linear regression between 

1t  and 1u : 111 btû . The calculation of first two dimensions is 

shown in Fig. 1. The residuals are calculated at this stage is 

given by the following equations. 

'
111 ptXE      (6) 

''
111111 qbtYquYF                   (7) 

The procedure for determining the scores and loading vectors is 

continued by using the newly computed residuals till they are 

small enough or the number of PLS dimensions required are 

exceeded. In practice, the number of PLS dimensions is 

calculated by percentage of variance explained and cross 

validation. The irrelevant directions originating from noise and 

redundancy are left as E and .F   

2.2 Dynamic PLS 
For incorporation of linear dynamic relationship in a time series 

data in the PLS framework, the decomposition of X block is 

given by equation (2), the dynamic analogue of equation (3) is 

as follows: 
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where iG  s denote the linear dynamic model identified at each 

time instant by ARX model as well as FIR model and T
iii qtG )(  

is a measure of Y   space explained by the i th PLS dimension in 

latent subspaces.  G  is the diagonal matrix comprising the 

dynamic elements identified at each of the n th latent subspaces. 

Figure 2 represents the PLS based dynamics prediction. 

Equation (9) represents the ARX structure. 

)1()1()2()1()( 2121 kxbkxbkyakyaky    (9) 
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where )(ky  =output at k
th instant, )(kx =input. The input 

matrix for ARX based inner models used in this study 

was }2,1,2,1{ kTkTkUkUARXX
  (10) 

Finite Impulse Response Model or FIR model was also tested 

for inner model development. The input matrix for FIR models 

used: }
4

,
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T  and U .represents the matrices of scores of X  and 

Y ,respectively. The identified process transfer function:  

21
2
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P
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The post compensation of  U  matrix (PLS inner dynamic model 

output) with loading matrix Q  provided the PLS predicted 

output, Y . The input matrix to the PLS inner dynamic model  T  

was generated by post compensating the original X  matrix with 

loading matrix P . Prior to dynamic modeling, order of the 

model should be selected. It is difficult to choose the order of 

the model. Autocorrelation signals renders a good indication 

about order that depends on how many past input and past 

output values taken in the input matrix for FIR and ARX 

models. The model parameters for both ARX and FIR models 

were estimated by linear least square technique.  

 

Fig 2: Schematic of PLS based dynamics prediction 

 

 

Fig 1: Standard Linear PLS Algorithm 

 

3. PROCESS IDENTIFICATIONA 

AND CONTROL SYSTEM DESIGN 

USING LINEAR PLS 

Series of direct synthesis SISO controllers designed on the 

basis of the dynamic models identified into latent subspaces 

were used to control the output variables in distillation 

column and mixing tank system being embedded in the 

PLS framework. The desired transfer function for closed 

loop simulation was selected as second order system. This 

approach is having two advantages; firstly, instead of using 

a typical multivariable controller, independent SISO 

controllers have been designed based on the inner dynamic 

model G(z) identified at each dimension ( G(z)  relates the 

scores T and U  ) along with the error and control signals 

being pre and post compensated by the loading matrices 

namely P  and  Q  , respectively. Secondly,   is the only 

tuning parameter for the developed SISO controllers. The 

value of the tuning parameter was taken as 5. This PLS-

based control strategy is presented in Figure 3.  The 

controller was designed as direct synthesis controller in the 

following way,  
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Where is tuning parameter. Direct Synthesis controller 

resulted is as follows:
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)(sG = )(zG  represents the identified process transfer 

function in the latent subspaces. The controller acts on 

projected error uE  i.e., actually measured output error post 

compensated by matrices 
1

yS  &  1Q  , respectively.  T  , 

the score is computed actually by the controller in closed 

loop PLS framework. The T  score then gets projected on 

loading matrix P  and transformed in to real physical 

inputs through xS which drive the processes. Because of 

the diagonal structure of the dynamic part of the PLS 

model, input-output pairings are automatic. Infeasible part 

of the set point vector is not allowed to pass directly to the 

controller because only the feasible part of set point vector 

is being retained after it is projected down to the latent 

variable subspace. This approach eliminates the futile battle 

which happen, generally, among the multi-loop controllers 

to reach an impossible target. 

 

Fig 3: Schematic of PLS based Control 

3.1 Distillation Column 
A 22  distillation process was chosen to identify the 

process dynamics in latent subspaces and compare the PLS 

predicted dynamics with the actual one. Top product 

composition DX  and bottom product composition BX  

were controlled by reflux rate and vapor boil-up using PLS 

based direct synthesis controllers. The following transfer 

function equation (15) was used to simulate the process 

when perturbed by pseudo random binary signals (1000 

samples).  

Inputs: 

   1u  =Reflux flow rate;  2u  = vapour boil up 

   Disturbances: 

1d = Feed flow rate; 2d = Feed light component mole 

fraction 
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Both FIR based and ARX based inner models were used to 

identify the process dynamics in projected subspaces. 

Equations (16-17) represent the identified ARX based 

dynamic models for outputs 1& 2, respectively. Equations 

(18-19) represent the identified FIR based dynamic models 

for outputs 1& 2, respectively.  
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FIR and ARX based inner correlation between the scores 

T and U  were established keeping the outer linear 

structure of the PLS intact. The predicted outputs 

corresponding to the inputs within a PLS framework were 

obtained by post compensating the  U  scores with Q  

matrix. The T  score were generated by post compensating 

the original X  matrix with P  matrix. Figures 4 and 5 

present the comparison of actual plant dynamics involving 

top product composition DX  and bottom product 

composition BX  with ARX based PLS predicted 

dynamics. The performances of proposed direct synthesis 

controllers designed on the basis of equations (15-19) and 

embedded in PLS framework were examined. PLS 

controller perfectly could track the set point (set point 

change in top product composition from 0.99 to 0.996 and 

set point change in bottom product composition from 0.01 

to 0.005). Figures 6 and 7 illustrate and compare the 

performance of PLS controllers ( FIR based/ARX based 

inner dynamic model)  in servo mode. 

 

4. PROCESS IDEBTIFICATION 

AND CONTROL SYSTEM DESIGN 

USING NNPLS 
The process transfer function was simulated over a 

stipulated period of time to generate output-input data using 

signal to noise ratio as 10.0. The scores corresponding to all 

the time series data were generated using the principal 

component decomposition. The relationship between the 

T  & U   scores are estimated by feed forward back 

propagation neural network. The network input was 

arranged in ARX structure using the process historical 

database. In the closed loop simulation of the process, the 

inverse NN models were used as a controller typically in a 

feed forward fashion with the error, if any; adjusted as a 

bias. The inputs ( 1N ) and outputs ( 3N ) to the multilayer 

(3 layers) feed forward neural network (FFNN) 

representing forward dynamics of the process regarding its 

training & simulation phase were as follows: 

Training phase 
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For DINN the simulation phase is synonymous to control 

phase. The number of hidden layer neurons varies from 

process to process. Figure 8 represents the NNPLS scheme; 

both in servo and regulator mode. In regulator mode, the 

effective disturbance transfer function was simulated to 

produce the Y  data and D  data; hence their corresponding 

scores. The FFNN representing disturbance dynamics acts 

as effective disturbance process. The disturbance rejection 

was done along with the existing servo mode. 

The inputs ( 1N ) and outputs ( 3N ) of the multilayer (3 

layers) disturbance FFNN regarding the training & 

simulation phase were as follows, 

Training phase 

)}2(),3(),2(),3({1 tdtdtUtUN          (24) 

)1(3 tUN                                                              (25) 

Simulation Phase 

)}(),1(),1(),2({1 tdtdtUtUN              (26) 

)(3 tUN                                                                      (27) 

In the distillation process output 1 (Top Product 

composition, XD) – input1 (reflux flow rate) & the output 2 

(Bottom Product composition, XB)– input 2 (vapour boil-

up) time series relations were identified using neural 

networks in a latent variable sub-space. Inverse neural 

network acted as controller. To control the process, 2 

numbers of SISO controllers were designed. During the 

training phase of the NNs’, the input scores to the network 

were arranged as per the ARX structure following eq.(20) 

and output or target score was set as per eq.(21). In 

simulation mode, the inputs and outputs to the trained 

networks were arranged as per eqs. (22) & (23).  Neural 

networks were also used to mimic the disturbance 

dynamics for output 1 (Top Product composition, XD)– 

input disturbance 1 (d1,feed flow rate) & the output 2 

(Bottom Product composition, XB)– input disturbance 2 

(d2,feed light component mole fraction). During the training 

phase, the input scores to the network were arranged as per 

the ARX structure following eq. (24) and output or target 

score was set as per eq. (25). In simulation mode, the inputs 

and outputs to the trained networks were as per eqs. (26) & 

(27). The training algorithm used was gradient based. The 

convergence criterion was MSE or mean squared error. The 

performances of the networks representing the process in 

servo and regulatory modes are presented in Table 1. 
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Fig 4: Comparison between actual and ARX based PLS 

predicted dynamics for output1 (top product 

composition DX ) in distillation process. 
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Fig 5: Comparison between actual and ARX based PLS 

predicted dynamics for output2 (bottom product 

composition BX ) in distillation process. 
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Fig 6: Comparison of the closed loop performances of 

ARX based and FIR PLS controllers for a set point 

change in DX  from 0.99 to 0.996. 
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Fig 7: Comparison of the closed loop performances of 

ARX based and FIR PLS controllers for a set point 

change in BX  from 0.01 to 0.005. 
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Fig 8: NNPLS control scheme (a) in servo (b) in 

regulator mode 

 

Table 1. Performance criterion of the designed 

networks 

 

G(z) Mode of 

Operation 

Identified 

NNPLS 

MSE R2 

22

 

Servo G1 0.0006807 0.99 

G2 0.0002064 0.99 

Regulatory Gd1 0.0006081 0.99 

Gd2 0.0001651 0.99 

 

Figure 9 presents the comparison between actual process 

outputs and NN identified process outputs namely the top 

and bottom product compositions corresponding to 

disturbance inputs. Figure 10 shows the closed loop 

performance of 2 numbers of SISO controllers. In servo 

mode, the controller proved to be a very reliable in set point 

tracking and reached the steady state value in less than 15 s, 

when the top product composition changes from 0.99 to 

0.996. The 2 nd controller could track the set point changing 

in bottom product composition from 0.01 to 0.005 by 

reaching the steady state value within 10 s. Figure 11 

presents the closed loop simulation in regulatory mode in 

conjunction with the existing servo; showing the 

disturbance rejection performance in BD XX & .  
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Fig 9: Comparison between actual and neutrally 

identified outputs of a 22  Distillation process in 

regulatory mode using projected variables in latent 

space. 
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Fig 10: Closed loop response of top and bottom product 

composition using NNPLS control in servo mode. 
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Fig 11: Closed loop response of top and bottom product 

composition using NNPLS control in Regulatory mode. 
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5. CONCLUSIONS 
Dynamic time series data were projected in latent 

subspaces. The resulted scores were correlated as the PLS 

inner model following ARX as well as FIR based 

structures. Linear least squares and neural networks were 

used to derive PLS inner relationship. The identified linear 

(both ARX and FIR based) &NN based dynamics in the 

latent subspaces were used to predict the outputs 

corresponding to the inputs over a specified time span. In 

this study, the ARX-PLS predicted outputs were in much 

better agreement than in comparison to FIR-PLS 

predictions. NNPLS predicted dynamics were in excellent 

agreement with the actual (simulated) distillation output. 

Following this approach dynamic multivariable regression 

problems were decomposed into series of univariate 

regression problems.  Series of direct synthesis and NN 

controllers designed on the basis of identified dynamics and 

embedded in PLS framework were used to control the 

distillation process considered. The performances of the 

PLS & NNPLS controllers were excellent in servo as well 

as regulator mode. 
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