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ABSTRACT 

This paper deals with fuzzy goal programming approach to 

quadratic bi-level multi-objective programming problem 

involving a single decision maker with multiple objectives at the 

upper level and a single decision maker with multiple objectives 

at the lower level. The objective functions of each level decision 

maker are quadratic in nature and the system constraints are 

linear functions. In the model formulation of the problem, we 

first determine the individual best solution of the quadratic 

objective functions subject to the system constraints and 

construct the quadratic membership functions of the objective 

functions of both levels. The quadratic membership functions 

are then transformed into equivalent linear membership 

functions by first order Taylor series at the individual best 

solution point. A possible relaxation of each level decision is 

considered by providing preference bounds on the decision 

variables for avoiding decision deadlock. Fuzzy goal 

programming approach is then used to achieve maximum degree 

of each of the membership goals by minimizing negative 

deviational variables. To demonstrate the efficiency of the 

proposed approach, an illustrative numerical example is 

provided.   

General Terms 
Quadratic bi-level multi-objective programming. 

Keywords 
Fuzzy goal programming, Quadratic programming, Quadratic 

bi-level programming, Quadratic bi-level multi-objective 

programming. 

1. INTRODUCTION 
A quadratic bi-level multi-objective programming problem 

(QBLMOPP) involves a single decision maker viz. upper level 

decision maker (ULDM) with multiple objectives at the upper 

level and a single decision maker viz. lower level decision 

maker (LLDM) with multiple objectives at the lower level. The 

objective functions of each level decision maker (DM) are 

quadratic in nature and the system constraints are linear 

functions. Here, ULDM and LLDM independently control a set 

of decision variables. 

Our primary objectives of the study are (i) to transform the 

quadratic membership functions into equivalent linear 

membership functions at the individual best solution point by 

first order Taylor series approximation and (ii) to introduce an 

alternative fuzzy goal programming (FGP) approach for solving 

QBLMOPP.  

Rest of the paper is organized as follows. Section 2 provides a 

brief literature review. Section 3 presents QBLMOPP 

formulation. Section 4 discusses fuzzy programming 

formulation of QBLMOPP. Subsection 4.1 describes 

transformation of quadratic membership functions into 

equivalent linear membership functions by first order Taylor 

polynomial series. Subsection 4.2 describes preference bounds 

of both level DMs. In subsection 4.3, formulation of FGP model 

for solving QBLMOPP is presented. Section 5 provides FGP 

algorithm for solving QBLMOPP. Section 6 is devoted to solve 

the model for a numerical example and to show the efficiency of 

the proposed approach. Section 7 presents the concluding 

remarks and future research directions.  

2. LITERATURE REVIEW 
The formal formulation of bi-level programming problem 

(BLPP) was studied by Candler and Townsley [1] and Fortuny- 

Amat and McCarl [2]. Anandalingam [3] discussed multi-level 

programming problem (MLPP) as well as bi-level decentralized 

programming problem based on Stackelberg solution concept in 

1988. Lai [4] applied the concept of fuzzy set theory to MLPP 

for the first time. Shih et al. [5], Shih and Lee [6] extended Lai’s 

concept by introducing non-compensatory max-min aggregation 

operator and compensatory fuzzy operator respectively for 

MLPP. Sakawa et al. [7] presented interactive fuzzy 

programming for MLPP in 1998. Pramanik and Roy [8] 

discussed FGP approach for solving MLPP and they also extend 

the concept for solving decentralized bi-level programming 

problem. 

Edmund and Bard [9] dealt with nonlinear bi-level mathematical 

problems in 1991. Savard and Gauvin [10] proposed steepest 

decent direction for the nonlinear bi-level programming. Vicente 

et. al. [11] discussed descent approaches for quadratic bi-level 

programming problem (QBLPP) in 1994. Thirwani and Arora 

[12] proposed an algorithm to QBLPP for integer variables. Pal 

and Moitra [13] proposed FGP procedure to QBLPP. 

In this study, we formulate quadratic membership functions of 

the objective functions of both level DMs. The quadratic 

membership functions are then transformed into equivalent 

linear membership functions at the individual best solution point 

by first order Taylor series approximation. A possible relaxation 

of decision of ULDM and LLDM are considered by providing 
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preference bounds on the decision variables under their control 

in the decision-making situation for avoiding decision deadlock. 

Then FGP approach due to Pramanik and Roy [8] and Pramanik 

and Dey [14, 15] is used for achieving highest degree of each of 

the membership goals by minimizing negative deviational 

variables. To demonstrate the efficiency of the proposed FGP 

approach, a numerical example is solved. 

3. FORMULATION OF QBLMOPP 
We consider QBLMOPP of maximization – type of objective 

functions at each level. Let us suppose that the ULDM controls 

the decision vector 1x = (
1N11211 x,...,x,x ) and the LLDM 

controls the decision vector 2x = (
2N22221 x,...,x,x ) in the 

decision-making situation. Mathematically, QBLMOPP can be 

stated as:  

ULDM: 

1x

max Z1i ( x ) = { xDx
2

1
xC i1

T
i1 + } (i = 1, 2, …, m1)             (1)                                                                                                 

LLDM: 

2x

max Z2j ( x ) = { xDx
2

1
xC j2

T
j2 + } (j = 1, 2, …, m2)            

(2)                                                                                          

subject to 

x ∈ S = {( 21 x,x ) | 0x,0x,bxAxA 212211 ≥≥≤+ }           (3) 

Here, 21 xxx ∪= is the set of decision vector, N1 + N2 = N = 

total number of decision variables of the system and M is the 

total number of constraints. i1C (i = 1, 2, …, m1), j2C (j = 1, 2, 

…, m2) and b are constant vectors. 1A and 2A are constant 

matrices. i1D (i = 1, 2, …, m1), j2D (j = 1, 2, …, m2) are 

constant symmetric matrices. The symbol ‘T’ represents 

transposition. We assume that the objective functions )x(Z1i (i 

= 1, 2, …, m1) and )x(Z2j  (j = 1, 2, …, m2) are concave and the 

system constraints are convex. We also assume S (≠ Φ) to be 

bounded.                                                                                                         

4. FUZZY PROGRAMMING 

FORMULATION OF QBLMOPP 
We now formulate the fuzzy programming model of QBLMOPP 

by transforming the objective functions )x(Z1i (i = 1, 2, …, m1),

)x(Z2j  (j = 1, 2, …, m2)  into fuzzy goals by means of assigning 

an imprecise aspiration level to each of them. 

Let, B
1iZ = 






 B

1ii1 xZ = ( )xZmax i1
Sx∈

(i = 1, 2, …, m1) and B
2jZ = 







 B

2jj2 xZ = ( )xZmax j2
Sx∈

(j = 1, 2, …, m2) be the optimal 

solutions of the objective functions of ULDM and LLDM 

respectively when calculated in isolation subject to the system 

constraints. 

Then the fuzzy goals appear in the form: 

Z1i ( x ) 
~
≥ B

i1Z (i = 1, 2, …, m1) and Z2j ( x )
~
≥ B

j2Z (j = 1, 2, …, 

m2).  

Using the individual best solutions, we formulate a payoff 

matrix as follows: 

































)x(Z...)x(Z...)x(Z...)x(Zx

.....................

)x(Z...)x(Z...)x(Z...)x(Zx

.....................

)x(Z...)x(Z...)x(Z...)x(Zx

.....................

)x(Z...)x(Z...)x(Z...)x(Zx

)x(Z...)x(Z...)x(Z...)x(Z

B
m2m2

B
m221

B
m2m1

B
m211

B
m2

B
21m2

B
2121

B
21m1

B
2111

B
12

B
m1m2

B
m121

B
m1m1

B
m111

B
m1

B
11m2

B
1121

B
11m1

B
1111

B
11

m221m111

2222122

21

1211111

21

21

 

(4)  

The maximum value of each column gives the upper tolerance 

limit or aspired level of achievement for the objective functions 

)x(Z1i (i = 1, 2, …, m1) and )x(Z2j  (j = 1, 2, …, m2). The 

minimum value of each column gives lower tolerance limit or 

lowest acceptable level of achievement for the objective 

function i.e. W
i1Z = min { )x(Z

i1i1 }(i = 1, 2, …, m1) and W
j2Z = 

min { )x(Z j2j2 }(j = 1, 2, …, m2). 

The objective values, which are equal to or larger than )x(ZB
i1 (i 

= 1, 2, …, m1) should be absolutely satisfactory to ULDM. 

Similarly, the objective values, which are equal to or larger than 

)x(ZB
j2 (j = 1, 2, …, m2) should be absolutely satisfactory to 

LLDM. If the individual best solutions are identical, then a 

satisfactory optimal solution of the system is reached. However, 

this situation arises rarely because the objectives of ULDM and 

LLDM are conflicting in general. 

The quadratic membership function )x(µ1i  corresponding to the 

objective function )x(Z1i (i = 1, 2, …, m1) of the ULDM can be 

formulated as: 

µ1i ( x ) = 





















≤

≤≤
−

−
≥

W
i1i1

B
i1i1

W
i1W

i1
B
i1

W
i1i1

B
i1i1

Z)x(Zif,0

Z)x(ZZif,
ZZ

Z)x(Z

Z)x(Zif,1

(i = 1, 2, …, m1) 

(5)                                                                                                                          

Here, B
i1Z and W

i1Z  (i = 1, 2, …, m1) are respectively the upper 

and lower tolerance limits of the fuzzy objective goal for 

ULDM. 
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The quadratic membership function )x(µ2j corresponding to the 

objective function )x(Z2j  (j = 1, 2, …, m2) of the LLDM can be 

written as: 

µ2j ( x ) =

























≤

≤≤
−

−

≥

W
j2j2

B
j2j2

W
j2W

i1
B
i1

W
j2j2

B
j2j2

Z)x(Zif,0

Z)x(ZZif,
ZZ

Z)x(Z

Z)x(Zif,1

(j = 1, 2, …, 

m2)                                                                                             (6) 

Here, 
B
2jZ  and 

W
2jZ (j = 1, 2, …, m2) are respectively the upper 

and lower tolerance limit of the fuzzy objective goal for LLDM. 

Now the problem reduces to 

max ),x(i1µ (i = 1, 2, …, m1)                                                     (7)                                                                                                        

max ),x(j2µ (j = 1, 2, …, m2)                                                    (8)                                                                                                   
                                                                                     

subject to 

x ∈ S = {( 21 x,x ) | 0x,0x,bxAxA 212211 ≥≥≤+ }. 

4.1 Linearization of the quadratic 

membership functions by first order Taylor 

series 

Let, )x,...,x,x,...,x,x(x i1
N

i1
1N

i1
N

i1
2

i1
1

*
i1

11

∗∗
+

∗∗∗= be the individual 

best solution of the quadratic membership function )x(µ1i (i = 1, 

2, …, m1) subject to the constraints for ULDM. Also let, 

)x,...,x,x,...,x,x(x
j2

N
j2

1N
j2

N
j2

2
j2

1j2
22

∗∗
+

∗∗∗∗
= be the individual best 

solution of the membership function
 

)x(µ2j (j = 1, 2, …, m2) 

subject to the constraints for LLDM. Next, we transform the 

quadratic membership functions )x(µ1i (i = 1, 2, …, m1) and 

)x(µ2j (j = 1, 2, …, m2) into equivalent linear membership 

functions at the individual best solution point by first  order 

Taylor series as follows: 

µ1i ( x ) ≅ µ1i (
*
i1x ) + (x1 - 

*i1
1x )

1x∂
∂

 µ1i (
*
i1x ) + (x2 - 

*i1
2x )

2x∂
∂

 µ1i (
*
i1x ) + … + (

*i1
NN

11
xx − )

1Nx∂
∂

 µ1i (
*
i1x ) + (

*i1
1N1N

11
xx ++ − )

1N1
x +∂
∂

 µ1i (
*
i1x ) + … + (

*i1
NN xx − )

Nx∂
∂

 µ1i 

(
*
i1x ) = )x(i1ξ , (i = 1, 2, …, m1)                                               (9) 

µ2j ( x ) ≅ µ2j (
*

j2x ) + (x1 - 
*j2

1x )
1x∂

∂
 µ2j (

*
j2x ) + (x2 - 

*j2
2x )

2x∂
∂

 µ2j (
*

j2x ) + … + (
*j2

NN
22

xx − )

2Nx∂
∂

 µ2j (
*

j2x ) +  

(
*j2

1N1N
22

xx ++ − )
1N 2

x +∂
∂

 µ2j (
*

j2x ) + … + (
*j2

NN xx − )
Nx∂
∂

 

µ2j (
*

j2x ) = )x(j2ξ (j = 1, 2, …, m2)                                        (10)                                                                                                           

4.2 Characterization of preference bounds 
on the decision variables 
In the decision-making situation, each level DM desires to 

maximize his/her own objective function over a common 

feasible region. However, since the individual best solutions of 

ULDM and LLDM are distinct, the direct compromise optimal 

solution does not arise. Therefore, cooperation between ULDM 

and LLDM is essential to reach a compromise optimal solution. 

In this context, each level DM tries to get maximum benefit by 

considering the benefit of other DM also. Therefore, we 

consider the relaxation on decision of ULDM and LLDM 

simultaneously to reach a compromise optimal solution by 

providing their preference upper and lower bounds on the 

decision variables. 

Let, i1l and i1u be the lower and upper bounds on the decision 

variable i1x (i = 1, 2, …, N1) provided by the ULDM such that 

i1i1i1 ux ≤≤l (i = 1, 2, …, N1). Also let, j2l and j2u be the 

lower and upper bounds on the decision variable j2x (j = 1, 2, 

…, N2) provided by the LLDM so that j2j2j2 ux ≤≤l (j = 1, 2, 

…, N2). 

4.3 FGP model of QBLMOPP 
The QBLMOPP represented by (7) and (8) reduces to the 

following problem   

max ),x(i1ξ (i = 1, 2, …, m1)                                                   (11)                                                          

max ),x(j2ξ (j = 1, 2, …, m2)                               

(12) 

subject to 

x ∈ S = {( 21 x,x ) | 0x,0x,bxAxA 212211 ≥≥≤+ }, 

i1l ≤ x1i ≤ u1i, (i = 1, 2, …, N1) 

j2l ≤ x2j ≤ u2j (j = 1, 2, …, N2).  

The maximum value of a membership function is unity (one), so 

for the defined membership functions in (11) & (12), the flexible 

membership goals having the aspiration level unity can be 

presented as: 

)x(i1ξ +
−
i1d -

+
i1d = 1, (i = 1, 2, …, m1)                                     (13) 

)x(j2ξ +
−

j2d -
+

j2d = 1 (j = 1, 2, …, m1)                                   (14)                                                                                                                             

Here, 0d i1 ≥−
(i = 1, 2, …, m1), 0d j2 ≥−

(j = 1, 2, …, m2) represent 

the negative deviational variables and 0d i1 ≥+
(i = 1, 2, …, m1), 
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0d j2 ≥+
(j = 1, 2, …, m2) represent the positive deviational 

variables such that ×−
i1d 0d i1 =+

(i = 1, 2, …, m1) and ×−
j2d

0d j2 =+
(j = 1, 2, …, m2). Following Pramanik and Roy [8] and 

Pramanik and Dey [14, 15], (13) & (14) can be written as: 

)x(i1ξ +
−
i1d ≥  1, (i = 1, 2, …, m1)                                          (15) 

)x(j2ξ +
−

j2d ≥  1 (j = 1, 2, …, m2)                                         (16) 

Then proposed FGP model can be formulated as: 

min ∑+∑
=

−

=

− 21 m

1j
j2

m

1i
i1 )dd(

      
                                                         (17)

                                                                                            
            

subject to 

)x(i1ξ +
−
i1d ≥  1, (i = 1, 2, …, m1)                                          

)x(j2ξ +
−

j2d ≥  1, (j = 1, 2, …, m2)                                         

x ∈ S = {( 21 x,x ) | 0x,0x,bxAxA 212211 ≥≥≤+ }                                              

i1l ≤ x1i ≤ u1i, (i = 1, 2, …, N1) 

j2l ≤ x2j ≤ u2j, (j = 1, 2, …, N2) 

−
i1d ≥ 0, (i = 1, 2, …, m1)  

−
j2d ≥ 0 (j = 1, 2, …, m2). 

i.e.  min ∑+∑
=

−

=

− 21 m

1j
j2

m

1i
i1 )dd(

   
                                                    (18) 

µ1i (
*
i1x ) + (x1 - 

*i1
1x )

1x∂
∂

 µ1i (
*
i1x ) + (x2 - 

*i1
2x )

2x∂
∂

 µ1i (
*
i1x

) + … + (
*i1

NN
11

xx − )

1Nx∂
∂

 µ1i (
*
i1x ) + (

*i1
1N1N

11
xx ++ − )

1N1
x +∂
∂

 µ1i (
*
i1x ) + … + (

*i1
NN xx − )

Nx∂
∂

 µ1i (
*
i1x ) + ≥−

i1d 1, 

(i = 1, 2, …, m1) 

µ2j (
*

j2x ) + (x1 - 
*j2

1x )
1x∂

∂
 µ2j (

*
j2x ) + (x2 - 

*j2
2x )

2x∂
∂

 µ2j (

*
j2x ) + … + (

*j2
NN

22
xx − )

2Nx∂
∂

 µ2j (
*

j2x ) + (
*j2

1N1N
22

xx ++ − )

1N 2
x +∂
∂

 µ2j (
*

j2x ) + … + (
*j2

NN xx − )
Nx∂
∂

 µ2j (
*

j2x ) 

,1d j2 ≥+ −
(j = 1, 2, …, m2)  

x ∈ S = {( 21 x,x ) | 0x,0x,bxAxA 212211 ≥≥≤+ },                                                                                      

i1l ≤ x1i ≤ u1i, (i = 1, 2, …, N1) 

j2l ≤ x2j ≤ u2j, (j = 1, 2, …, N2)  

−
i1d ≥ 0, (i = 1, 2, …, m1)  

−
j2d ≥ 0 (j = 1, 2, …, m2).                                             

5. FGP ALGORITHM FOR QBLMOPP 
From the discussion of the previous section, the proposed FGP 

algorithm for solving QBLMOPP can be outlined as given 

below: 

Step 1: Find the individual best solution of each quadratic 

objective function for both ULDM and LLDM subject to the 

system constraints. 

Step 2: Formulate the payoff matrix as given by (4). Then 

define upper and lower tolerance limits of each objective 

function for both ULDM and LLDM.  

Step 3: Construct quadratic membership function )x(µ1i (i = 1, 

2, …, m1) corresponding to the objective function )x(Z1i (i = 1, 

2, …, m1) of ULDM. Similarly, construct quadratic membership 

function )x(µ2j (j = 1, 2, …, m2) corresponding to the objective 

function )x(Z2j (j = 1, 2, …, m2) of LLDM.  

Step 4: Find the individual best solution of the quadratic 

membership functions )x(µ1i (i = 1, 2, …, m1) and )x(µ2j (j = 1, 

2, …, m2) subject to the system constraints.   

Step 5: Transform the quadratic membership functions )x(µ1i (i 

= 1, 2, …, m1) and )x(µ2j (j = 1, 2, …, m2) into equivalent linear 

membership functions )x(1iξ (i = 1, 2, …, m1) and )x(2jξ (j = 1, 

2, …, m2) respectively at the individual best solution point by 

first order Taylor series approximation as given by (9) and (10). 

Step 6: Determine the preference bounds on the decision 

variables provided by the DMs under their control such that 

i1i1i1 ux ≤≤l (i = 1, 2, … N1) and j2j2j2 ux ≤≤l (j = 1, 2, … 

N2).  

Step 7: Formulate the FGP model (18) for QBLMOPP.  

Step 8: Solve the FGP model. If the solution is acceptable to 

ULDM and LLDM, then compromise optimal solution is 

reached. Otherwise, both the level DMs provide another set of 

preference upper and lower bounds on the decision variables to 

reach a compromise optimal solution i.e. go to step 6 until the 

compromise optimal solution is reached. 

Step 9: End. 
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6. NUMERICAL EXAMPLE 
To illustrate the proposed FGP approach for solving 

QBLMOPP, we consider the following numerical example: 

ULDM: 

1x
max

















−−+=
−−+=
−−+=

)x4xx3x5()x(Z

),x5xx4x7()x(Z

),xxx3x6()x(Z

2
2

2
12113

2
2

2
12112

2
2

2
12111

 

LLDM: 

2x
max 









−−+=
−−+=

)xxx7x3()x(Z

),xx3x6x2()x(Z
2
2

2
12122

2
2

2
12121  

subject to 

x1 + x2 ≤ 3, 

4x1 + x2 ≤ 9, 

x1 ≥ 0, x2 ≥ 0. 

The individual best solution of the objective functions subject to 

the constraints are 10ZB
11= at (2, 1); 25.11ZB

12 = at (2.167, 

0.333); 696.6ZB
13 =  at (2.161, 0.354); 25.9ZB

21=  at (0.25, 

2.75); 5.12ZB
22 =  at (0.5, 2.5).  

Then, the fuzzy goals appear as:
~

11 )x(Z ≥ 10,
~

12 )x(Z ≥ 11.25, 

~
13 )x(Z ≥ 6.696, 

~
21 )x(Z ≥ 9.25, 

~
22 )x(Z ≥ 12.5. 

Payoff matrix =  



















−−
−−

−
−
−

5.12925.15184
375.1225.9812.20125.25125.2

166.4689.7696.6246.11233.9
025.4866.7694.625.11194.9
125.235910

   

Here,
B
11Z = 10, 

W
11Z = 2.125, 

B
12Z = 11.25, 

W
12Z = -25.125, 

B
13Z = 

6.696, 
W
13Z = -20.812, 

B
21Z = 9.25, 

W
21Z = -7.866, 

B
22Z = 12.5, 

W
22Z = 4.025. 

The quadratic membership functions of ULDM are 

)x(11µ =
125.210

125.2)x(Z11

−
−

=
125.210

125.2xxx3x6 2
2

2
121

−
−−−+

, 

)x(12µ =
125.2525.11

125.25)x(Z12

+

+
=

125.2525.11

125.25x5xx4x7 2
2

2
121

+

+−−+
, 

)x(13µ =
812.20696.6

812.20)x(Z13

+

+
=

812.20696.6

812.20x4xx3x5 2
2

2
121

+
+−−+

 

The quadratic membership functions of LLDM are 

)x(21µ =
866.725.9

866.7)x(Z21

+
+

=
866.725.9

866.7xx3x6x2 2
2

2
121

+
+−−+

, 

)x(22µ =
025.45.12

025.4)x(Z22

−
−

=
025.45.12

025.4xxx7x3 2
2

2
121

−
−−−+

. 

The membership functions ),x(µ11 )x(µ12 and )x(µ13 for ULDM 

are maximal at the points (2, 1), (2.167, 0.333) and (2.161, 

0.354) respectively. The membership functions ),x(µ21 )x(µ 22

for LLDM are maximal at the points (0.25, 2.75) and (0.5, 2.5) 

respectively. 

 
Then, the quadratic membership functions are transformed into 

linear at the individual best solution point by first order Taylor 

polynomial series as follows: 

)x(11µ ≅ 11µ (2, 1) + (x1 – 2) 
1x∂

∂
11µ (2, 1) + (x2 – 1)

2x∂
∂

 

11µ (2, 1) = 1 + (x1 – 2) × 0.254 + (x2 – 1) × 0.127 = )x(11ξ , 

)x(12µ ≅ 12µ (2.167, 0.333) + (x1 – 2.167)
1x∂

∂
12µ ( 2.167, 

0.333) + (x2 – 0.333)
2x∂

∂
 12µ (2.167, 0.333) = 1 + (x1 – 2.167) 

× 0.073 + (x2 – 0.333) × 0.018 = )x(12ξ , 

)x(13µ ≅ 13µ (2.161, 0.354) + (x1 – 2.161) 
1x∂

∂
11µ (2.161, 

0.354) + (x2 – 0.354)
2x∂

∂
 11µ (2.161, 0.354) = 1 + (x1 – 2.161) 

× 0.025 + (x2 – 0.354) × 0.006 = )x(13ξ , 

)x(21µ ≅ 21µ (0.25, 2.75) + (x1 – 0.25) 
1x∂

∂
21µ (0.25, 2.75) + 

(x2 – 2.75)
2x∂

∂
 21µ (0.25, 2.75) = 1 + (x1 – 0.25) × 0.029 + (x2 

– 2.75) × 0.029 = )x(21ξ , 

)x(22µ ≅ 22µ (0.5, 2.5) + (x1 – 0.5) 
1x∂

∂
21µ (0.5, 2.5) + (x2 – 

2.5)
2x∂

∂
 21µ (0.5, 2.5) = 1 + (x1 – 0.5) × 0.236 + (x2 – 2.5) × 

0.236 = )x(22ξ . 

Let the preference bounds provided by the respective DMs be 

1 ≤ x1 ≤ 1.9,  

1 ≤ x2 ≤ 2 

Then, the proposed FGP model for solving QBLMOPP is 

formulated as follows: 
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min ( ∑
=

−
∑
=

− +
2

1j
j2

3

1i
i1 dd ) 

subject to 

1 + (x1 – 2) × 0.254 + (x2 -1) × 0.127 + 
−
11d ≥ 1, 

1 + (x1 – 2.167) × 0.073 + (x2 -0.333) × 0.018 + 
−
12d ≥ 1, 

1 + (x1 – 2.161) × 0.025 + (x2 -0.354) × 0.006 + 
−
13d ≥ 1, 

1 + (x1 – 0.25) × 0.029 + (x2 -2.75) × 0.029 + 
−
21d ≥ 1, 

1 + (x1 – 0.5) × 0.236 + (x2 -2.5) × 0.236 + 
−
22d ≥ 1, 

x1 + x2 ≤ 3,  

4x1 + x2 ≤ 9, 

1 ≤ x1 ≤ 2, 

1 ≤ x2 ≤ 1.9,
 

 

x1 ≥ 0, x2 ≥ 0, 

−
i1d ≥ 0, (i = 1, 2, 3)  

−
j2d ≥ 0, (j = 1, 2). 

By solving the FGP model, we find the optimal solution x1 = 

1.9, x2 = 1.1.  

 The objective values are 11Z = 9.88, 12Z  = 8.04, 13Z  = 4.35, 

21Z = -1.64, 22Z  = 8.54.  

The resulting membership values are 11µ = 0.9894, 12µ = 

0.9117, 13µ = 0.9147, 21µ = 0.3637, 22µ = 0.5375. 
 

Note: All solutions of the problem are obtained by using Lingo 

6.0. 

7. CONCLUSION 
This paper introduced an alternative technique for solving 

QBLMOPP. Proposed concept can be extended to multi-level as 

well as decentralized multi-level multi-objective quadratic 

programming problems. We hope that the proposed approach 

can contribute to future study in the field of practical 

implementation to real world hierarchical decision-making 

problems involving quadratic objectives especially in quadratic 

assignment problem, portfolio problems etc. 
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