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ABSTRACT 

The objective of the present work is precise control of distillate 

quality using the temperature profile of reactive distillation 

process. The temperature profile of the reactive process may be 

controlled using intelligent controller. The paper presents the 

methodology for the design of various intelligent controllers and 

its application on distillation process. Four intelligent controllers 

are designed based on fuzzy logic, adaptive linear network 

(Adaline) and hybrid of these two techniques i.e. Fuzzy-Neural 

Network and Fuzzy-Adaline Network. The Fuzzy Logic 

Controller (FLC) provides a better steady state response whereas 

the adaptive linear network controller (ADC) provides better 

transient response. The hybrid Fuzzy-Neural Network Controller 

(FNNC) and Fuzzy-Adaline Controller (HFADC) are proposed 

to combine the advantages of the two techniques. The results of 

the designed intelligent controllers are compared with the 

conventional PI controller. It is observed that the Hybrid Fuzzy-

Adaline Controller (HFADC) outperforms all the controllers.    

General Terms 

Intelligent Controllers, Distillation Process, Reactive Process, 

Process control. 

Keywords 
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1. INTRODUCTION 
Reactive distillation is a separation process that combines both 

chemical reaction and distillation in a single unit. The two feeds 

entering the column react to form the product components. 

These products must be removed from the column to increase 

the efficiency of the system. The removal is done with the help 

of distillation. The use of reactive distillation process has certain 

advantages such as utilization of heat of reaction, high gain, and 

compact nature etc. [1]. However the combination of reaction 

and distillation in a single unit increases the complexity that 

inhibits the design and tight control. Also reactive distillation is 

ideally suited for the systems where the reactant and product 

volatilities differ considerably.  
Various intelligent control techniques are found in the literature 

for controlling the complex and nonlinear systems. S.R. Vijaya 

Raghavan et al. in 2011 [2] have presented the design and 

implementation of a recurrent neural network based inferential 

state estimation scheme for an ideal reactive distillation column. 

K. J. Jithin Prakash et al. in 2011[3] proposed an artificial neural 

network based nonlinear control algorithm for simulated batch 

reactive distillation column. The authors synthesized a neuro-

estimator based generic model controller (GMC) which consist 

of an ANN based state predictor and the GMC law. Fatima 

Barcelo-Rico et al. in 2011[4] applied the fuzzy control 

technique to control the continuous distillation tower. The 

designed fuzzy controller was able to keep the target output in 

the desired range for different input disturbances, changing 

smoothly from a predefined target output to another. Almila 

Bahar and Canan Ozgan in 2010 [5] used an Elman neural 

network to estimate and control the product composition values 

of the distillation column from temperature measurements 

inferentially. J. Fernandez de Canete et al. in 2010 [6] presented 

a robust stability analysis based on the harmonic balance and 

applied to a neural network controller in series with a dynamic 

multi variable nonlinear plant. Jeen lin and Ruey-Jing Lian in 

2009 [7] developed a hybrid fuzzy logic and neural network 

controller for multi-input multi-output system. Swati Mohanty in 

2009 [8] proposed a neural network based model which is used 

to design a model predictive controller for controlling the 

interface level in a flotation column. The controller was tested 

both for liquid–gas system as well as liquid–gas–solid system 

and was found to perform very satisfactorily. The performance 

of the controller was compared with that of a conventional PI 

controller for a two-phase system and was found to be better. 

Vijander Singh et al. in 2007 [9][10] developed a Neural 

Network estimator using Back Propagation and LM Technique 

for estimating the distillate composition from temperature 

profile of distillation column along with the pressure and heat 

input. Harun Taskin et al. in 2006 [11] proposed a fuzzy logic 

control of a fluid catalytic cracking unit to improve the dynamic 

performance. S. Gruner et al. in 2003 [12] proposed an observer 

based on asymptotically exact input/output linearization. The 

steady state observer offsets are compensated by an outer loop 

with simple PI controllers.   

The present work proposes intelligent controllers based on fuzzy 

logic (FLC) and adaptive linear network (ADC). Further the two 

techniques are combined to obtain two hybrid controllers i.e. 

Fuzzy Neural Network Controller (FNNC) and Hybrid Fuzzy 

Adaptive linear network Controller (HFADC). FNNC is a 

combination of fuzzy logic and back propagation algorithm 

whereas HFADC is a switching controller which switches 

between the FLC and ADC. 

 

1.1 Reactive Distillation Process 

Reactive distillation shown in Fig.1 is a process of chemical 

reaction and separation of the products in the common chamber. 

It is a highly nonlinear and complex process. The chemical 



International Journal of Computer Applications (0975 – 8887) 

Volume 29– No.5, September 2011 

20 

industry has recognized the significance of reactive distillation 

due to its high gain and compact nature. Reactive Distillation 

Column (RDC) is an ideal two-reactant-two-product reactive 

distillation column proposed by Al-Arfaj and Luyben [13] and 

later developed into state space model. It consists of a reactive 

section in the middle and non-reactive rectifying and stripping 

sections at the top and bottom respectively.  

The column consists of Reactive Trays (Nrx) in the middle, 

Rectifying Trays (Nr) in the top and Stripping Trays (Ns) in the 

bottom. The trays of the column are numbered from reboiler to 

condenser. The reaction takes place in the reactive zone is 

exothermic liquid-vapour in nature and is given by 

                                                                        (1) 

During the distillation process, the reactant B which is one of the 

input feeds is recovered in the rectifying section from the output 

product C whereas the second feed i.e. reactant A, is recovered 

from output product D in the stripping section. The reactive 

section comprises the middle section of the reactive distillation 

column where the reactants A and B react to produce C and D. 

The reaction generates the heat which is then used for the 

distillation of the products. The products are separated to 

prevent any undesired reaction between reactants A and B and 

products C and D. The volatilities of the products and reactants 

are such that 

                                                                 (2) 

where  is the volatility of the  component, . 

 

 

 

 

 

 

 

 

 

 

 

Fig 1: Basic structure of reactive distillation column 

 

It is observed from the relation defined in eq. (2) that C is the 

lightest product with highest volatility, D is the heaviest product 

with lowest volatility and volatilities of A and B lie in between 

them. This relative volatility ensures that the products A and B 

have high concentration in the reactive section, which is typical 

example of an ideal reactive distillation column. The quality of 

products C and D is controlled by manipulating the feed flow 

rates. The controllers in the process are termed as dual end 

composition control structure. The purity of both products must 

be maintained at desired set point. The mathematical modeling 

of the reactive process is explained in the next section. 

1.2 Mathematical Modeling 
The net reaction rate for component j on tray-i in the reactive 

zone is given by 

                                   (3)     

The steady-state vapour and liquid flow rates are constant 

through the stripping and rectifying sections because equimolal 

overflow is assumed. However, these rates change through the 

reactive zone because of the exothermic reaction. The heat of 

reaction vaporizes some liquid on each tray in that section; 

therefore, the vapour rate increases up through the reactive trays 

and the liquid rate decreases down through the reactive trays. 

                                                                  (4)                                                      

                                                                  (5) 

The dynamic component balance equations for the column are 

as follows: 

Reflux drum:  

                                  (6) 

Rectifying and stripping trays: 

                (7) 

Reactive trays: 

     (8) 

Feed trays: 

                                                                                    (9) 

Column base: 

                                        (10) 

The forward and backward specific reaction rates on ith  tray is 

given as follows: 

                                                                   (11)         
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                                                                   (12) 

Temperature on ith tray is calculated by the following 

expression: 

                   (13) 

The ideal vapour–liquid equilibrium is assumed and column 

pressure P is optimized for each tray. With pressure P and tray 

liquid composition  known at each tray, the temperature  

and the vapor composition  is calculated. This bubble point 

calculation is made by Newton-Raphson iterative convergence 

method.  

                                                                    (14) 

                                                                           (15) 

The mathematical model of the reactive distillation column 

described in this section is simulated in MATLAB and then used 

for control and analysis purpose as shown in Fig. 2. A 

conventional controller is designed to control the temperature 

profile of the distillation process and hence the distillate quality. 

Various intelligent controllers are also designed based on fuzzy 

logic, neural network and hybrid of these two techniques. These 

control schemes are applied to control the temperature of the 

14th tray as explained in the next section. 

 

Fig 2: Basic block diagram of RDC control 

 

2. CONTROL SCHEMES 
A control system design problem is to obtain a nonlinear vector 

value function h() given as [14],  

 

                                                           (16)  

 

Where  is the control input to the process,  is the 

system state vector and r(t) is the reference input. The feedback 

control law  is selected in such a way that the closed loop 

system is stable and meets the performance indices. 

In case of single input single output system, the function  takes 

the following form for a proportional plus derivative plus 

integral or PID controller. 

                     (17) 

 

The possible combinations of the three controller terms can be 

used depending upon the nature of the system. Thus the control 

system design problem in case of PID controller is reduced to 

obtaining coefficients . The product quality of 

reactive distillation process depends upon the temperature 

profile of the column thus controlling the temperature will 

indirectly regulate the product quality. In the present control 

system problem the temperature of 14th tray of the reactive 

distillation process is controlled by using the proportional plus 

integral (PI) controller. The PI controller designed is tuned by 

using Tyreus-Luyben method and the values of and  

obtained are 2.94 and 113.182 respectively.  

 

Fig 3: Tray temperature control with PI controller 

 
The tuned PI controller is used to control the reactive process. It 

is observed from Fig. 3 that the there is a steady state error and a 

large undershoot in the response of the system. Thus both the 

transient response and steady state response need to be 

improved. The overall response of the system may be improved 

with the help of intelligent controllers. Therefore it is desired to 

control the tray temperature in a more efficient manner and for 

that purpose advanced control techniques are proposed. The 

different control schemes used are as follows. 

2.1 Fuzzy Logic Controller  

The fuzzy logic controller is applied to control the tray 

temperature of the reactive distillation process. In this case the 

Fuzzy rule base system uses a set of fuzzy conditional 

statements which are derived from system’s knowledge base to 

approximate the control input to the plant. The calculation of 

control input is based on interpolative and approximate 

reasoning. Simple fuzzy logic controllers for given system can 

be depicted in the form of a block diagram as shown in Fig. 4. 

The steps involved in designing a simple fuzzy control system 

are as follows: 

1. The inputs, states and outputs of the plant are identified.  

2. The universe of discourse of each variable is partitioned into 

a number of fuzzy subsets and each subset is assigned a 

linguistic label.  

3. Membership function for each fuzzy subset is selected 

depending on the nature of the system. 

4. The fuzzy relationships are defined between the inputs fuzzy 

subsets and the outputs fuzzy subsets in the form of IF-

THEN rules and thus forming the rule base. 
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5. Appropriate scaling factor is chosen for input and output 

variables so that the variables are normalized to [0,1] or [-

1,1] interval. 

6. Inputs to the controller are fuzzified. 

7. The fuzzy approximate reasoning is used to infer the output 

contributed from each rule. 

8. Aggregation and defuzzification of the fuzzy output is done 

to obtain a crisp output.  

 

 

 

 

 
 

Fig 4: Block diagram of fuzzy logic control system 

 

Based on the above procedure, a fuzzy controller is designed. 

The knowledge base required for the fuzzy controller is 

developed using the simulation results of the PI controlled 

reactive distillation process. Here, the error, change in error and 

output are fuzzified using triangular membership functions for 

the tray temperature control. The membership functions are as 

shown in Table 1, Table 2 and Table 3.  

 Table 1: Membership functions for error of 14th tray 

Membership 

function 

Lower limit Middle limit Higher 

limit 

ESP -0.0150 0 0.0150 

VVSP 0 0.0150 0.03 

VSP 0.0150 0.03 0.045 

SP 0.03 0.045 0.06 

NP 0.045 0.06 0.075 

VNP 0.06 0.075 0.09 

LP 0.075 0.09 0.105 

VLP 0.09 0.105 0.12 

VVLP 0.105 0.12 0.135 

ELP 0.12 0.135 0.15 

   

The rule base selected for the temperature control of the tray is 

shown in Table 4. Mamdani inference technique is selected for 

inferring the output results and centroid method is used for 

defuzzification. The designed fuzzy controller is applied on 

reactive distillation process for testing purpose and results are 

obtained. 

 Table 2: Membership functions of rate of change of error of 

14th tray 

Membership 

function 

Lower limit Middle limit Higher 

limit 

ESD -0.1 -0.05 0 

VSD -0.05 0 0.05 

SD 0 0.05 0.1 

ND 0.05 0.1 0.15 

VND 0.1 0.15 0.2 

LD 0.15 0.2 0.25 

VLD 0.2 0.25 0.3 

 

Table 3: Membership functions for output of controller 

Membership 

function 

Lower limit Middle limit Higher 

limit 

ESC -0.1 -0.05 0 

VSC -0.05 0 0.05 

SC 0 0.05 0.1 

NC 0.05 0.1 0.15 

VNC 0.1 0.15 0.2 

LC 0.15 0.2 0.25 

VLC 0.2 0.25 0.3 

 

 
Fig 5: Tray temperature control with PI and FLC 

 

 

Table 4: Rule Base 

Membership 

Functions 

ESP VVSP VSP SP NP VNP LP VLP VVLP ELP 

ESD ESC ESC ESC VSC VSC VSC VSC SC SC NC 

VSD VSC NC VSC VSC SC SC NC NC NC VNC 

SD LC LC VLC VLC VLC VLC VLC VLC LC LC 

ND NC NC LC LC VLC VLC LC LC LC LC 

VND NC NC VNC VNC LC VLC VLC VLC LC LC 

LD NC NC NC VLC VLC VLC VLC VLC VLC LC 

VLD VLC VLC VLC VLC VLC LC LC VNC VNC NC 
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From above results, it is observed that the fuzzy logic controller 

reduces the steady state error significantly but undershoot is 

larger than PI controller. On other hand the PI controller has 

poor steady state response but small undershoot as compared to 

the FLC. Thus to improve the transient response of the system a 

better controller needs to be designed. Therefore another 

intelligent technique i.e. adaptive linear network is used to 

design the controller which is discussed in the next section. 

2.2 Adaptive Linear Network based 

Controller (ADC) 

Adaptive Linear Network (Adaline) developed by Widrow and 

Hoff is found to use bipolar activation functions for both the 

input signals and target output (1960)[15]. The architecture of an 

Adaline is shown in Fig. 6. The Adaline has only one output unit 

which receives input from several units and also from bias 

whose action is always +1. The Adaline resembles a single layer 

network. In Fig. 6 an input layer with x1... xn and bias and an 

output layer with only one output neuron is present. The input 

and output neurons possess weighted interconnections. These 

weights are trained using suitable learning rules.    

 

Fig 6: Architecture of an Adaline 

  

The output y of the adaline is given as  

                                                                  (18) 

The Adaline controller (ADC) is designed to control the 

temperature profile of reactive distillation process. The inputs to 

the controller are change in temperature (i.e. difference between 

set point temperature and measured tray temperature) and rate of 

change of temperature. The target input to the controller is the 

change in feed flow rate. These input and target patterns are 

generated by simulating the closed loop reactive distillation 

column with PI as the controller. The proposed controller is 

trained with the help of the generated input and target patterns. 

The designed Adaline controller is then tested by replacing the 

PI controller with the adaline controller. It is observed from the 

results of Fig. 7 that the transient response of the Adaline 

controller is better as compared to the PI controller and FLC but 

there is an offset error which is more as compared to FLC. 

Therefore from the above observations it can be concluded that 

fuzzy provides better steady state response whereas neural 

network controller i.e. Adaline controller provides better 

transient response. Therefore a hybrid controller is proposed 

which uses both the fuzzy and neural network controller to get 

the overall improved performance of the system. In the present 

work two types of hybrid controller are proposed and are 

discussed in the next section. 

 
Fig 7: Tray temperature control with PI, FLC and ADC 

 

  2.3 Hybrid Controllers 

    2.3.1 Fuzzy-Neural Network Controller (FNNC) 

A Neuro-fuzzy approach gets the benefits of neural networks as 

well as of the fuzzy logic systems and it also removes the 

individual disadvantages when combined on the common 

features. Neural network and fuzzy logic have certain common 

features for example model free estimation, handling uncertain 

and imprecise data, distributed representation of knowledge etc. 

Neural networks can handle noisy data while fuzzy logic has the 

ability to handle imprecise data. Fuzzy Neural Network (FNN) 

is an approach in which a fuzzy inference system is constructed 

using a given set of input and output. The membership functions 

and rules of these systems are adjusted using various 

computational algorithms to make them learn from the data they 

are modeled.  

To present the FNN architecture, let us consider two-fuzzy rules 

based on a first-order Sugeno model. 

Rule 1: 

111111 ryqxpfTHENBisyandAisxIf   

Rule 2: 

222222 ryqxpfTHENBisyandAisxIf 
 

 

A possible FNN architecture to implement the above two rules is 

shown in Fig. 8. In Fig. 8 a circle indicates a fixed node whereas 

a square indicates an adaptive node (the parameters are changed 

during training). Different layers of Fig. 8 are described as 

follows: 

Layer 1: In this layer all the nodes are adaptive, i is the degree of 

the membership of the input to the fuzzy membership function 

(MF) represented by the node. The output of each node is given 

by  
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  Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 

       

     

        1w        1w     11fw  

  X           

           

            

                   F 

            

           

  Y      2w      2w      22fw  

     

    

  A1 

  A2 

  B1 

  B2 

Fig 8: Layers of FNN 

                                             (19) 

          
                                   (20)

 where,O1,i(x) is essentially the membership grade for x and y. Ai 

and Bi can be any appropriate fuzzy sets in parameter form. For 

example, if bell MF is used then 

                                                            (21)  

 

where ai, bi  and ci are the parameters for the MF. 

Layer 2: The nodes of this layer are fixed (not adaptive) and 

their work is to simply provide a gain. The outputs of these 

nodes are given by 

 

                                     (22) 

 

Layer 3: This layer also has fixed nodes. At this stage the nodes 

normalize the firing strength of previous layer. The output of a 

node in this layer is given by 

 

                                                                 (23) 

 

Layer 4: All the nodes in this layer are adaptive nodes. The 

output of a node is the product of the normalized firing strength 

and a first-order polynomial 

                                        (24) 

where pi, qi and ri are design parameters. 

 

Layer 5: This is a single node layer performing the function of a 

summer. The output of this node is given by 

                                                     (25) 

 

The FNN architecture is not unique. Some layers can be 

combined and still produce the same output. In this FNN 

architecture, there are two adaptive layers (1 and 4). Layer 1 has 

three modifiable parameters (ai,, bi  and ci) pertaining to the input 

MFs. These parameters are called premise parameters. Layer 4 

has also three modifiable parameters (pi, qi and ri) pertaining to 

the first-order polynomial. These parameters are called 

consequent parameters. 

A learning algorithm is used to update the parameters associated 

with the membership function. The updating of these parameters 

is facilitated by a gradient vector which provides a measure of 

how well the fuzzy inference system is modeling the 

input/output data for a given set of parameters. In this paper the 

hybrid algorithm is used for its non complexity and high 

efficiency in training. The output error is used to adapt the 

premise parameters by means of a standard back propagation 

algorithm.  

 

Fig 9: Tray temperature control with FLC, FNNC and 

ADC 

 

A FNN controller is designed for reactive distillation process 

control. The data used for training the network is same as for 

ADC. The structure of the network has two membership 

functions for inputs and output. The designed controller is then 

tested to control the system and the results are obtained as 

shown in Fig. 9. It is seen from the above results that FNN 

controller is slightly better than the ADC. The FNN has better 

performance because it has the advantages of both the fuzzy as 

well as neural network. Still the performance is not up to the 

mark so a new hybrid is proposed which uses the switching 

option as discussed in the next section. 

  2.3.2 Hybrid Fuzzy-Adaline Controller (HFADC) 

As discussed in the previous section neural network and fuzzy 

logic combination provides the advantages of both the 

techniques and the individual disadvantages are overcome. As 

observed from Fig. 9. FLC provides a response with large 

undershoot and oscillations, but the steady state error in the 

response is reduced to a very large extent. On the other hand if 

the behaviour of ADC is analyzed, it is found that it has lesser 

undershoot and less oscillations but a finite steady state error 

exists. The control strategy includes a FLC and a switching 

neural network as shown in the block diagram of Fig. 10. The 

design of the proposed hybrid fuzzy-adaline controller 

(HFADC) involved designing an adaline controller and a fuzzy 

logic controller. Already designed FLC and ADC are used for 

this purpose and a strategy is devised to switchover from FLC to 

ADC. This strategy is to find the switching time which is based 

upon the responses of the two controllers. The ADC controls the 

system response during transients i.e. the peak time and later on 

the control is switched over to the fuzzy controller (FLC) to 

control the steady state response of the system.  
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Fig 10: Block diagram of hybrid fuzzy-adaline control 

system 

 

 

Fig 11: Tray temperature control with FLC, ADC and 

HFADC 

 

Fig 12: Tray temperature control with PI, HFADC and 

FNNC 

 

The HFADC is designed and applied to control the temperature 

of reactive distillation process. It is observed from the Fig. 11 

that the hybrid controller HFADC provides less overshoot and 

oscillations as compared to FLC. Also HFADC has very less 

steady state error as compared to ADC. Therefore the HFADC 

improves the transient as well as steady state response of the 

reactive distillation process. Finally the hybrid controller thus 

proposed reduces the settling time to a large extent. The 

response of the system using HFADC and FNNC are obtained 

and compared with the PI controller as shown in Fig. 12. It is 

observed from the results that the HFADC outperforms the PI 

and FNNC. The performance indices of all the designed 

controllers are shown in Table 5. It is analyzed from the 

performance indices that the HFADC proves to be the best 

controller. 

Table 5: Performance indices of controllers 

Controller Undershoot Settling time 

(iterations) 

Steady  

state error 

PI 0.03983 310 0.0059 

FLC 0.04876 310 0.000045 

ADC 0.03989 275 0.0048 

FNNC 0.03988 280 0.003465 

HFADC 0.03979 230 0.00004 

 

3. CONCLUSION  
In this article the intelligent controllers are designed for reactive 

distillation column. The tray temperature used for distillate 

quality control is selected by conducting a sensitivity analysis. 

The necessary data for designing the controller is obtained using 

a dynamic reactive distillation model.   

For a comparative study a PI controller is designed. The 

performance of PI controller is analyzed and it is found that the 

peak undershoot is large, response is oscillatory and there is an 

offset error. In an effort to improve the control performance, the 

intelligent controllers FLC and ADC are designed. The results 

showed that the transient performance of ADC is better whereas 

the steady state performance of FLC is better. Utilizing this 

information two hybrid controllers are proposed to combine the 

advantages of fuzzy logic and neural network. The first hybrid 

controller is a FNNC in which membership function parameters 

are updated using output error by means of a standard back 

propagation method. The second hybrid control scheme HFADC 

consists of a switching controller where ADC works during the 

transients whereas FLC takes over the control after the peak 

time. The comparison of control performance of all the 

controllers is shown in Table 5. It is concluded from the above 

observations that the combination of fuzzy logic and adaptive 

linear network (HFADC) provides a significant improvement in 

transient as well as steady state performance in comparison to 

the designed intelligent controllers.     

Abbreviations: 

 Vapour composition of reboiler of  component (mole 

fraction) 

    Liquid flow rate leaving 1st tray (lb-mole/h)     

   Liquid composition on 1st tray of  component (mole 

fraction) 

Activation energy for backward reaction (Btu/mole)  

   Activation energy for forward reaction (Btu/mole) 

    Input feed flow rate (lb-mole/h)     

Liquid flow rate leaving  tray (lb-mole/h) 

   Molar holdup on  tray (lb-mole) 

 Rate of reaction on the  tray 

    Temperature on ith tray (K) 

   Backward specific reaction rate on  tray 

   Forward specific reaction rate on  tray 

     Stoichiometric coefficient of component j 

  Liquid composition in reflux drums of  component (mole 

fraction) 
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 Liquid composition on  tray in  component (mole 

fraction) 

    Mole fraction of component A on  tray (mole fraction) 

    Mole fraction of component B on tray (mole fraction) 

    Mole fraction of component C on  tray (mole fraction) 

    Mole fraction of component D on  tray (mole fraction) 

 Vapour composition on  tray of  component (mole 

fraction) 

Avp    Antione constant for component A 

B       Bottom flow rate (lb-mole/h)     

Bvp    Antione constant for component B 

D      Distillate flowrate (lb-mole/h)     

L       Liquid flow rate (lb-mole/h)     

NC   Number of component 

NT   Total number of trays 

P       Pressure in the column (psia) 

   Pure vapour pressure of components j (psia) 

R     Reflux flowrate (lb-mole/h)     

V     Vapour flow rate (lb-mole/h)     

α      Relative volatility  

  Heat of vaporization (Btu/lbm) 

       Heat of reaction (Btu/lb-mole) 
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