
International Journal of Computer Applications (0975 – 8887)

Volume 29– No.5, September 2011

27

Defining Virtual Views of Electronic Resources

using Declarative Queries

Mark.B.Dixon

Leeds Metropolitan University
Leeds, LS6 3QS

England

ABSTRACT
This paper describes a mechanism which allows multiple views

of underlying electronic resource structures to be created. The

aim is to address problems faced by users when trying to

navigate file system structures defined by third parties. A

framework has been developed which supports the definition

and evaluation of an appropriate solution. The framework

includes a query language that allows for the construction of

user defined views using a declarative style grammar. Several

deployment architectures, which support practical application of

the proposed framework, have been developed and form the

basis of an initial implementation.

General Terms
Dynamic Resource Retrieval, Declarative Query Execution, File

Systems.

Keywords
Query language; virtual views; document retrieval; declarative.

1. INTRODUCTION
Modern day computer systems provide us with the ability to

store and retrieve enormous amounts of information. Web-

based access to electronic resources is now a trivial matter.

Web-servers often provide controlled access to an underlying

file system, the management of which is typically handled using

the mechanisms provided by the operating system. The filing

cabinet metaphor which prescribes the representation of

information as files within a hierarchy of folders is now an

accepted standard. The approach has been replicated across

many storage and distribution domains, including the Internet, as

evidenced by the presence of hierarchical paths within Uniform

Resource Identifiers (URIs) [1]. The use of such a simple

hierarchical structure has clearly been an overwhelming success,

but is there a better way of organising our information?

As individuals we typically organise file system structures to

suit our own particular requirements. The way we actually

decide upon these structures depends on many factors including

personal preference, historical patterns, accepted standards or

convention. Over time however our own personal requirements

can of course change, making this single structure less

meaningful in different situations. A much bigger problem

however is that information sources are very commonly shared.

Once an individual is required to navigate through a structure

defined by someone else, they lose the ability to recall the

decision making process that went into creating the structure in

the first place. Hence, when faced with an alien file system

structure, most users typically resort to a combination of

common sense and guess work while navigating.

The simple fact is that a single hierarchical file system structure

does not suit the needs of all its potential users. In fact a single

file system structure often does not even support the needs of the

user who created the structure in the first place. The creators of

the Unix file system clearly recognised this problem and

partially addressed it through the support for symbolic links [2].

These allow files and directories to simultaneously appear

within several appropriate, and often more meaningful, locations

within a single hierarchical structure. Support for short-cuts

within window manager desktops is also a way of addressing the

difficulties in identifying commonly used resources within a

large hierarchical file system.

The real way to address this problem however is to provide a

mechanism that allows for the presentation of a single

underlying file system structure in a manner that suits the needs

or a particular user or class of users. In essence what is required

is the ability to create one or more Virtual Views of an

underlying file system. This concept is diagrammatically

represented in Figure 1.

Figure 1: Virtual views of an underlying file system

2. RELATED WORK
The idea of presenting a virtual representation of the underlying

file system is not a new concept of course. In fact virtual file

systems have been in existence since the mid 1980's, for

example Sun Microsystems developed the Virtual File System

(VFS) and vnodes [3]. Traditional virtual file systems tend to be

hard-coded abstractions, based on underlying concrete file

systems, which provide a consistent API that supports a uniform

mechanism of file access and control. The virtual views

Virtual View A

Virtual View C

Source File System

Virtual View B

International Journal of Computer Applications (0975 – 8887)

Volume 29– No.5, September 2011

28

approach extends this idea by allowing ad-hoc abstractions to be

defined and evaluated dynamically.

As well as low level operating system level solutions there are

an increasing number of user level applications designed to help

access resources in a manner not restricted by their storage

location. Many of these are indexing based search approaches

and include Apple spotlight [4] and their associated Smart

Folders, Microsoft’s Windows Search [5] and Linux tools such

as Beagle and Beagle++ [6]. This work drops between these user

level applications and the very concrete implementation ideas

associated with kernel virtual file systems. Also the ideas

associated with aggregation of disparate resources, supported in

a very rudimentary way by technologies such as RSS feeds [7],

also have a bearing on the virtual views approach.

There are a number of projects that have addressed the middle

ground associated with this work. FiST is a language which

aims to ease the development of file systems [8]. The approach

provides an intermediate language capable of describing a file

system that can be compiled into modules for multiple

platforms. This removes the need to write low-level kernel

specific code in order to implement new file systems. Although

operating at a lower level of abstraction, the idea of allowing

definition of file system through an independent abstract

language is a similar approach to the virtual views concept

described in this paper.

In order to realize the true potential of organizing data in

multiple structures suited to individual needs, the presence of

meta-data to help describe the resources is necessary.

Additionally the ability to use expressions to define multiple

views is fundamental. Two approaches that exhibit such

functionality are the Semantic File System [9] and the Logic File

System [10]. The SFS introduces the concept of virtual

directories which are interpreted using queries. The attributes

used however (i.e. the meta-data) cannot be assigned as part of

the query. Also, navigation into a virtual directory that is the

result of a query is not possible. The LFS is an object based

approach, where logical descriptors are associated with objects

allowing expressions to be defined for supporting navigation and

querying. An interesting concept specified as Future directions

of this work suggests treating directories and files in a similar

way, thus allowing navigation into files as well as directories.

The Nebula File system [11] was designed specifically to

support information management. Nebula implements files as

sets of attributes and allows the user to assign attributes to files,

in fact this ability is fundamental to the design of this particular

system. It also supports the concept of views in the same way as

suggested by the virtual views approach. As with the Semantic

File System however, navigating the result of a query is not

possible.

Spyglass is a file metadata search system that is specially

designed for large-scale storage systems [12]. The approach

taken by Spyglass is to build indexes and use snapshots that

allow for fast searching of large amounts of metadata. The

system is designed for scalability since the work recognises the

fact that the size and complexity of today's storage systems

make it difficult to manage available files. The system uses

several interesting techniques to help deal with the requirement

of large scale storage support. Some of these techniques could

be applied to the virtual view query execution described within

this paper. However, the idea of indexing meta-data information

in order to improve performance may be in conflict when

performing on-demand access to remote web-based resources,

hence there is not a direct synergy between this work and the

approach described within this paper.

Damasc is a file system where rich data management services

for scientific computing are provided as a native part of the file

system [13]. Users of the system can use declarative queries and

updates over views of underlying files. An additional layer on

the file system is used which exposes the contents of files

through which views can be defined and used for queries and

updates. This work was undertaken specifically to support large

scale data processing for scientific applications, whereas the

virtual views approach is designed to be a general purpose

solution. Hence there are both similarities and differences

between this work and the virtual views discussed within the

paper.

3. REQUIREMENTS FOR A VIRTUAL

VIEW SYSTEM
A system that supports presentation of virtual views should have

the ability to dynamically identify resources of interest via the

evaluation of a set of instructions. A virtual view should

therefore be describable using a definition which provides these

instructional details. Such a definition can be described as a

virtual view query. An evaluation engine can then process these

queries on request to produce a set of results.

By examining the related work, further research and

development was undertaken in order to identify the primary

requirements of such a system. Identification and justification of

specific requirements is necessary in order to highlight

fundamental issues which must be suitably addressed by an

implementation. The primary requirements are discussed below.

These often address the weaknesses of existing approaches.

Arguably there are of course many other requirements which

may be identified. Those described however were seen as

fundamental to the successful development of an effective

solution.

3.1 On Demand Query Evaluation
Since the evaluation of a view query results in a virtual structure

which is derived from one or more other structures, each

evaluation should be performed on request. This is necessary to

ensure up to date information is extracted from the original

sources. This is not to say implementations are prohibited from

using caching mechanisms in order to improve performance. It

is important however to recognise the fact that virtual views aim

to dynamically construct result sets on request, rather than

explicitly store and retrieve resources directly.

3.2 Support for Structural Representation
The results obtained from the evaluation of a virtual view query

must be able to emulate traditional hierarchical structures. This

ensures that large sets of results can be effectively managed in a

manner to which users are accustomed. Typically these

structures will be specifically tailored to the requirements which

motivated the development of the view query rather than being a

replica of the original sources. The ability to be able to navigate

into sub-structures created as the results of other queries must be

supported.

International Journal of Computer Applications (0975 – 8887)

Volume 29– No.5, September 2011

29

3.3 Storable, Reusable and Configurable

Queries
It must be possible to store view queries so that evaluation can

be repeated as required. A query must be reusable in the

construction of new queries since there are undoubtedly

situations which have common requirements and therefore

common solutions. There must also be a mechanism provided

which allows different parameter values and context information

to be passed to generic definitions. The ability to reuse, combine

and refine existing definitions will ease the construction of new

virtual views.

3.4 Multiple Source Extraction
When a virtual view query is evaluated it must be capable of

constructing a view which contains results obtained from more

than one source. This allows virtual views to act as information

aggregators, where resources from a diverse set of sources are

presented in a single manageable view. Ideally the resources

should be accessible from a number of distinct storage

providers, including local storage, mapped network drives and

Internet based documents.

3.5 Scalable Query Evaluation
Virtual views aim to rearrange and effectively manage a

possibly large number of resources from a diverse set of sources.

Therefore a supporting system must be designed to be scalable.

This is typically achievable by applying query evaluation in a

parallel fashion whenever possible. Work has been undertaken

which shows how declarative type queries can be implemented

using a distributed service-based architecture [14]. This work

included the development of a service-based distributed query

processor. This processor is capable of factoring out, as services,

the functionalities related to the construction and execution of

distributed query plans. Although this work was aimed mainly

at data management, the same techniques could be applied to

building an equivalent virtual view query execution engine. The

ability to automatically distribute query execution into a service-

based architecture could help address the problem of evaluating

complex and computationally expensive queries.

3.6 Transitive Resource Discovery
Rather than simply identify resources that are readily available

from existing file systems, virtual view queries should have the

ability to identify resources via other resources. For example, a

virtual view query may refer to an HTML file via a URI. The

query processing engine should have the ability to process this

file and identify any referenced resources, eventually adding

these to the returned set. This effectively allows navigation into

files as well as directories.

3.7 Resource Property Values
During query processing it should be possible to examine

available property values in order to aid construction of the

desired results, e.g. the type of a file. It should also be possible

to associate new properties values with specific resources of

interest. This ability supports the association of arbitrary meta-

data with resources, thus providing a flexible mechanism for

communicating with higher level applications and allowing the

development of more expressive queries. The fact has been

highlighted that multiple ontologies must be supported when

associating meta-data with information sources [15].

Specifically, the problem of shared vocabulary across multiple

ontologies must somehow be taken into account. The ability to

assign extrinsic meta-data in the form of property values to

information sources during the construction of virtual view

queries allows this issue to be addressed, since the context in

which the query is being used can help define the most

meaningful ontology.

4. EXAMPLE IMPLEMENTATION
In order to help validate the requirements and to provide a test-

bed for query development an initial implementation of a virtual

view system was developed. This reference implementation was

developed in the Java programming language to ease

deployment across a number of platforms and architectures. The

two primary elements of this implementation are the query

processing engine (QPE) and the virtual view query language

(VVQL).

The query processing engine was designed to ensure maximum

flexibility within various application frameworks. This was

achieved by creating a core system that contains an evaluation

model which may be populated via XML. By default the results

of evaluation are also generated as XML. The existence of this

single core engine allows for the development of a suite of

related tools which leverage the query processing capabilities in

various ways. Queries are identified to the query processing

engine via a URI. This supports the re-use of common queries

and queries provided by 3rd parties. The queries identify the

location of the various resources to be included within the

generated view. The host file system and resources are

interrogated as necessary and the resulting virtual views are

output in an appropriate format.

One of the first additions to the core engine was the virtual view

query language (VVQL) parser. This was developed using the

Java Compiler Compiler (JavaCC) [16, 17]. This component

allows for the development and evaluation of queries using a

simple declarative language. Although the XML representation

of queries represents a canonical definition, the ability to specify

queries in a more concise manner drastically improves query

understanding and development. Several simple result

presenters were also developed which allow for output from the

QPE in formats other than XML. This core architecture is

depicted in Figure 2.

Figure 2: Virtual view implementation architecture

File system Host

Query Processing
Engine

Virtual View Queries (XML/VVQL)

File system Host

Query Language Parser

Result Presenters

(XML/HTML/Plain text etc.)

Virtual Views

Virtual Views

Virtual Views

International Journal of Computer Applications (0975 – 8887)

Volume 29– No.5, September 2011

30

The first higher level tool which was built on top of the QPE and

VVQL parser was a simple interactive shell. This allows for

simple testing and query experimentation. This interactive shell

program also provides a simple command line interface to the

QPE which can be easily driven from other higher level tools. A

screen shot of the interactive shell program is shown in Figure 3.

Within this example the simplest possible VVQL query has been

executed.

Figure 3: Interactive virtual view query shell

5. VIRTUAL VIEW QUERY LANGUAGE
The virtual view query language (VVQL) is a declarative

language that allows for the definition of virtual views. The

view definitions are constructed as query operations which are

evaluated against an underlying file system, or the results of

other virtual view queries. In many respects VVQL is

comparable to SQL with regard to how it evaluates queries

against an underlying dataset. The difference being of course

that the dataset for SQL is stored within relational tables rather

than within a hierarchical file system. The existence of this

similarity had an effect upon the syntax design. Keywords were

chosen carefully to ensure end-users did not confuse the VVQL

with common SQL syntax with which they may already be

familiar.

A basic query written in VVQL has the following form:

show <resource_definition>
[when <condition>]
[let <property_assignments>]
[<qualifiers>]
;

The <resource_definition> element can refer to resources

directly or via nested queries and referenced queries. Direct

references often include wildcards to allow for pattern matching.

Indirect references allow for the re-use of existing queries. The

<when> element allows conditions to be specified that filter the

results obtained. The <let> element allows for the assignment of

arbitrary property name and value pairs to the returned results.

The <qualifiers> provide additional post-processing options

such as sorting and grouping. A very simple query which

creates a virtual view containing only files with a document type

suffix can be specified as follows.

show ”*.doc”;

During query processing a current working location (CWL) is

maintained which is used to give a context to any relative

resource locations. Hence both absolute and relative resource

references can be included within a query. The ability to specify

relative resource locations is particularly important when

defining generic reusable queries.

The VVQL supports the ability to combine multiple sub-query

expressions. At the simplest level this allows for the aggregation

of resources from multiple sources. Combination of multiple

sub-queries can also be applied using set theory type operations.

For instance, support for union, intersection and difference is

provided. The most powerful combination operation however is

the sequence operator. This allows the query language to support

navigation and resource discovery through a number of arbitrary

paths. This is an essential capability when considering many

resources are typically stored within hierarchical structures.

Queries which support recursive evaluation are particularly

effective when using the sequence operation.

The VVQL support combination of sub-queries using the

following form:

show <sub_query> {<combination_op> <sub_query>};

The <combination_op> element specifies the type of

combination operation to be applied. In effect this acts as an

operator and the surrounding <sub_query> elements act as the

operands. An example of aggregation is shown below. This

combines three news resources into a single view. The plus

keyword is used to request the resource aggregation operation.

show ”http://www.bbc.co.uk”
plus ”http://www.cnn.com”
plus ”http://www.independent.co.uk/news”
;

The sequence operation takes the output of one sub-query and

uses it as the input into the next sub-query, in a manner similar

to the pipes which support the Unix tool philosophy [18]. A

good example of the sequence operator being applied is shown

below. This recursive query may be used to flatten a hierarchy

of resources into a single horizontal structure. Since this query is

recursive and hence refers to itself it must be stored within a file,

in this case this query is called “flat.vvq”. The then keyword is

used to request the resource sequence operation.

show * plus (show * when isDir() then
ref ”./flat.vvq”);

This query works by first identifying all resources within the

current working location (CWL). It then identifies all directory

type resources within the CWL and passes these via the

sequence operation back into itself. The presence of the

sequence operation effectively causes the CWL to traverse down

all possible branches of the hierarchy. The order in which the

resources are identified could be changed by restructuring of the

query or by the use of an appropriate qualifier.

The ability to divide queries into multiple sub-queries provides

an opportunity for parallel query evaluation. With the exception

of being applied against the sequence operator, all sub-queries

which appear as operands may be evaluated concurrently. This

allows multi-threading to be utilized, which is important when

accessing resources from multiple remote locations via

networks. The ability to access resources concurrently reduces

the inevitable latency which would occur if only sequential

evaluation was possible.

Virtual View Query Shell v0.1 – (c) Mark Brian Dixon 2008.
Type ”exit” to quit

vvq> show *;

file:/E:/workspace/Webository/.classpath
file:/E:/workspace/Webository/.project
file:/E:/workspace/Webository/.settings/
file:/E:/workspace/Webository/.svn
file:/E:/workspace/Webository/bin/
file:/E:/workspace/Webository/Docs/
file:/E:/workspace/Webository/src/

Execution complete – 7 resources returned
vvq>

International Journal of Computer Applications (0975 – 8887)

Volume 29– No.5, September 2011

31

The sequence combination operator partially resolves the

requirement for transitive resource discovery. To fully realize

support for the transitive concept however requires an additional

capability within the query language. This is achieved through

the provision of a processing token. When used this token

specifies that further processing is required on the identified

resources prior to them being added to the set of results. The

nature of this token’s behaviour led to the decision to use the @

character for this purpose. This suggests that resources located

‘AT’ the identified resource, rather than the resource itself, are

the real items of interest.

One of the most common processing requirements using this

approach is to identify resources from within HTML formatted

resources. This can be done using screen-scraping type

techniques as described by Schrenk [19] and Hemenway et al

[20]. Although this is a fairly simple concept to understand it

significantly enhances the capability of virtual views to include

a much wider range of target resources from multiple locations.

For example, the following query will show all resources

embedded within the specified resource, rather than simply

returning the resource itself.

show @”http://en.wikipedia.org/wiki/Fft”;

An optional processor name may be specified following the

token. If this is absent then a default processor is identified by

using the type of the accessed resource to guess the most

appropriate processor. In practice it may be necessary to refine

the processing capabilities to filter out unwanted results. This

would mean developing more sophisticated processors which

had a certain level of awareness about the format of the HTML

resource being processed. Although the query processor has

been designed to be extendible in terms of supporting transitive

processing capabilities, i.e. by providing dynamic loading of

processing classes, a cleaner alternative would be to extract

resources directly from a well defined publishing mechanism

such as RSS feeds. This is the preferred approach since it

ensures that returned resources have been specifically identified

as being of public interest and grouped accordingly, which is not

necessary the case in the “catch-all” approach supported by

generic screen scraping. Also there are both legal and ethical

considerations to take into account when using the screen

scraping approach [21].

The following example would produce a list of resources

extracted from the delicious.com hot list of topics.

show @”http://feeds.delicious.com/v2/rss”;

Although the basic HTML screen scraping approach is rather

coarse in its behaviour, it does permit an example which shows

the expressive power of VVQL. This next example defines a

view called “crawl.vvq” that recursively identifies all resources

referenced by other resources. It is in effect a very simple web-

crawler.

show * plus (show @* then ref ”./crawl.vvq”);

The creation of generic reusable queries require that

mechanisms exist which allow a certain amount of configuration

to take place during evaluation. This is supported within VVQL

using a parameter passing mechanism. Actual parameter values

may be passed during requests for query evaluation. These are

then accessible within the query using a dollar character

followed by a parameter number. For example a generic query

called “types.vvq” could be defined as follows.

show * when type = $1;

This query could then be called from another query as follows.

show ref ”./types.vvq(\”doc\”)”
plus ref ”./types.vvq(\”txt\”)”;

The <let> element supports the ability to assign to arbitrary

property value pairs during query evaluation. Higher level tools

may interrogate these property values and use them to support

complex structures. For example a high level tool can attempt to

read the “query” property of a returned resource, if this exists

then the tool can evaluate the specified query in order to identify

the contents of that resource. This provides a mechanism to

support directory structures within virtual views themselves. For

example a virtual view could be constructed in the following

manner.

show ”A” let query=”show A*;”
plus ”B” let query=”show B*;”
plus ”C” let query=”show C*;”
…
plus ”Z” let query=”show Z*;”
;

When evaluated this query would return twenty six resources,

each representing a virtual directory. The contents of each of

these directories would then become available by evaluating the

VVQL with the “query” property.

There is additional syntax supported by the VVQL which has

not been covered within this short introduction. The fully

defined grammar is given in the Appendix and is defined using

Extended Backus–Naur Form (EBNF) [22]. A set of predefined

properties and methods are available for use within filter

expressions and property assignments. For example, a

System.date property may be accessed to allow definition of

queries that identify resources stamped with a specific date and

time. Also the ability to include the results of nested queries

within expressions is also supported.

6. DEPLOYMENT ARCHITECTURES
The underlying concepts and implementation described so far

provide the basic justification and platform on which a virtual

view system can be based. There is however a need to describe

more abstract usage scenarios in order to identify how the virtual

view approach can be practically applied in real situations. End-

users after all are not going to be content with having a list of

resources listed within the interactive shell. What is required is

the definition of one or more deployment architectures which

place the underlying platform into an application context.

From a pragmatic point of view the most obvious form of user

engagement with the virtual view architecture is via a web-

browser. The basic approach is to provide a web-page which

allows exploring of the results obtained from evaluating

predefined virtual views. Generating the results of query

evaluation as HTML provides a workable solution fairly

quickly. There is however a need to actually instigate the

evaluation of a query in the first place. From a user’s point of

view this should be via a simple click of a link within the

International Journal of Computer Applications (0975 – 8887)

Volume 29– No.5, September 2011

32

browser. At the server side an appropriate evaluation can then be

performed using any one of the many technologies designed to

support dynamic user interaction. Any common server side

technology could be used including PHP, ASP.NET, Perl or

Python. Within this project however the Java Servlet [23]

infrastructure was used, since it was a fairly simple exercise to

wrap the Java based QPE within a Servlet. The architecture of

this particular deployment model is shown in Figure 4.

Figure 4: Server side deployment architecture

Placing the entire virtual view infrastructure at the server side

does of course ensure a low cost of entry for potential users. It

also provides an opportunity for information publishers to

provide virtual views of their resources with very little overhead.

An alternative approach to supporting user interaction is to

provide a client side standalone graphical file manager type

application. Such an application is essentially equivalent to the

multitude of available file managers bundled with OS desktop

environments. The difference being of course that information

regarding the displayed files and directories is actually derived

at run time via query execution, rather than being accessed from

the underlying file system. When a virtual view query file is

accessed via an existing file manager, file type associations may

be used to execute the virtual view file manager to allow

navigation through the virtual view. A prototype virtual view

file manager application has been built. This approach has not

been pursued to any great length however since it has been

identified that the tighter integration of a virtual view file system

into the host OS may make such an application redundant. This

suggestion is discussed further within the conclusions section.

One of the main problems with both of the suggested

deployment architectures is that of resource accessibility.

Resources which are located on file systems directly accessible

by the QPE are easy to identify. Also resources which are

identified through a fully defined URI are also typically

accessible via the specified protocol. The problem appears

however when attempting to identify groups of resources by

using pattern matching of wildcards. Many common protocols

such as HTTP [24] do not support such operations. i.e. a web

server typically does not allow the entire contents of a directory

to be listed.

There are a few ways of solving this problem. One approach

could be to interrogate remote file systems via the Java Servlet

mechanism described above. Although this is perfectly feasible

a more robust approach is to deploy remote server applications

which are capable of accessing the required file systems directly.

The application to achieve this already exists of course, in the

form of the Query Processing Engine. Therefore a simple

protocol has been developed which allows the driving of the

QPE via a network connection. This type of architecture, as

shown in Figure 5, effectively creates a network of

communicating VVQ servers, further addressing scalability

issues of large queries. As a query is being processed any

reference to remote file system contents not directly available

through the standard protocol may be passed for evaluation to a

remote VVQ server. This is achieved by stripping the

appropriate parts from a URI in order to identify the remote

server host.

Figure 5: Multiple VVQ server architecture

Any machine which provides a VVQ server is essentially

granting permission to external users to create their own

personal views of the machine’s file system. Hence, it is of

course necessary to restrict the part of the file system which can

be actually accessed by the VVQ server, otherwise the contents

of the entire file system could be discovered. In practice this is

achieved by the setting of a ROOT mount point in a similar way

to a typical http-server. Also it should be noted that a VVQ

server only provides a list of available resource URIs rather than

the resources themselves. It therefore only makes sense to

provide access to resources which may be ultimately accessible

via another protocol such as HTTP.

Both the QPE wrapper Servlet and the multi-threaded QPE

server were developed by extending the underlying core engine

and parser. Most of the code used within the different

deployment architectures is therefore shared. Other deployment

architectures, which have not yet been developed, are also

clearly possible. These include a web-based application which

allows the construction of virtual view queries via higher level

mechanisms. Additionally more user friendly presentation skins

could be developed using technologies such as Adobe Flash,

JavaFX or Silverlight which display resources in a variety of

ways.

7. CONCLUSIONS AND FUTURE WORK
The successful implementation of an example system which

provides a usable test-bed clearly indicates the viability of the

virtual view approach. This paper has only scratched the service

in terms of what is achievable. The VVQL is a simple yet

powerful language that is capable of expressing extremely

complex semantics in a very concise manner. These capabilities

combined with the multitude of possible deployment

architectures means that there are probably many other possible

applications. Also the development of related products such as

Server’s file system

QPE
Servlet

Virtual View Query

HTTP Server

HTTP Request

HTML Results (HTML)

Servlet Request

HTTP + VVQ

Server

HTTP + VVQ

Server

HTTP + VVQ Server

HTTP + VVQ

Server

Server’s file

system

Server’s file

system

Server’s file

system

Server’s file

system

International Journal of Computer Applications (0975 – 8887)

Volume 29– No.5, September 2011

33

browser plug-ins which are VVQ protocol aware would

encourage user interaction.

The ubiquitous presence of query processing aware servers

across large public networks such as the Internet would provide

an environment in which users could navigate 3rd party file

systems in a manner chosen by themselves, rather than the

provider of the file system. This would allow a consistent view

of information to be obtainable no matter how or where it was

stored.

A key future aim of this project is to more closely integrate the

QPE into host operating systems. This would allow virtual

views to appear as part of the native file system. Initial work has

already begun to create an integration of the QPE into the Linux

OS using the FUSE API [25], this however makes it necessary

to redevelop the QPE as a C language application. The MS

Windows Explorer application is also extendible through public

interfaces [26]. Linking the QPE to these extension points will

allow Windows OS users to browse virtual views in exactly the

same way as the host file system.

As the QPE implementation matures it may be possible to

develop caching mechanisms which allow virtual views to

evaluate complex queries extremely quickly. If this was

developed however it should be done in a manner which does

not impact the performance of a user’s individual machine.

Hence, a caching system is a valid extension providing it runs

independently on a server.

The use of virtual views could also be adapted to help automatic

generation of RSS feeds. This would involve the fairly simple

development of a new results presenter component which maps

the XML output into a form suitable for RSS aggregator

processing.

Finally the creation of development tools which allow for the

writing, profiling and debugging of virtual view queries needs to

be performed. The intention is to provide an Eclipse IDE plug-

in [27] that supports such features along with syntax aware

editors.

The philosophy behind the creation of the virtual views

approach was to place the ownership of resource presentation

with the user rather than the provider. Virtual views provide the

possibility of supporting multiple “role” centric views of

electronic resources. Hence, the term polymorphic file system

probably most concisely describes the overall concept.

8. ACKNOWLEDGMENTS
The author wishes to thank Prof. Colin Pattinson and Julian Old

for their very useful feedback during this research project and

the writing of this paper.

9. REFERENCES
[1] Berners-Lee, T., Fielding, R. and Masinter, L. 2005.

Uniform Resource Identifier (URI): Generic Syntax.

Request for Comments (RFC) 3986, STD 66.

http://tools.ietf.org/html/rfc3986 Accessed 11 April 2011.

[2] IEEE. 2004. The ln Utility, The Open Group Base
Specifications Issue 6: IEEE Std 1003.1,

http://www.opengroup.org/onlinepubs/009695399/utilities/l

n.html

[3] Kleiman, S. R. 1986. ‘‘Vnodes: An Architecture for
Multiple File System Types in Sun UNIX’’, in Proceeding

of the USENIX Association Conference, Atlanta, Georgia,

pp. 238-247.

[4] Apple Incorporated, 2009. Mac 101 : Spotlight. Article:
HT2531. http://support.apple.com/kb/HT2531

[5] Microsoft Corp. 2011. Windows Search 4.0.

http://www.microsoft.com/windows/products/winfamily/de

sktopsearch

[6] Chirita, P-A., Costache, S., Nejdl, W. and Paiu, R. 2006.
Beagle ++: Semantically Enhanced Searching and Ranking

on the Desktop. The Semantic Web: Research and

Applications Lecture Notes in Computer Science, Volume

4011/2006, 348-362, DOI: 10.1007/11762256_27.

[7] NotePage inc. 2010. RSS Specifications, http://www.rss-
specifications.com/rss-specifications.htm, Accessed 11

April 2011.

[8] Zadok, Erez and Nieh, Jason. 2000. “FiST: a language for
stackable file systems”, in Proceedings of the annual

conference on USENIX Annual Technical Conference.

USENIX Association Berkeley, CA, USA.

[9] Gifford, D. K., Jouvelot, P., Sheldon, M. A., and O’Toole
jr., J.W. 1991. “Semantic file systems”, In Proceedings of

the 13th ACM Symposium on Operating Systems

Principles (SOSP ’91) (Oct.), ACM, pp. 16–25. Doi:

10.1145/121133.121138.

[10] Padioleau, Y., and Ridoux, O. 2003. “A logic file system”,
in Proceedings of the 2003 USENIX Annual Technical

Conference (San Antonio, TX, June 2003), pp. 99–112.

[11] Bowman, C.M., Dharap, C., Baruah, M., Camargo, B. and
Potti, S. 1994. “A File System for Information

Management”, in Proceedings of the Conference on

Intelligent Information Management Systems. June.

Washington, DC.

[12] Leung, A.W., Shao, M., Bisson, T., Pasupathy, S., and
Miller, E.L. 2009. “Spyglass: fast, scalable metadata search

for large-scale storage systems” in Proceedings of the 7th

conference on File and storage technologies. pp. 153-166.

USENIX Association Berkeley, CA, USA.

[13] Brandt, S., Maltzahn, C., Polyzotis, N. and Tan, W-C.
2009. “Fusing data management services with file

systems”, in Proceedings of the 4th Annual Workshop on

Petascale Data Storage. pp. 42-46. ACM New York, NY.

doi:10.1145/1713072.1713085.

[14] Lynden, S., Mukherjee, A., Hume, A.C., Fernandes,
A.A.A., Paton, N.W., Sakellariou, R. and Watson, P. 2009.

The design and implementation of OGSA-DQP: A service-

based distributed query processor. Future Generation

Computer Systems. Volume 25, Number 3, pp. 224-236.

Elsevier. doi:10.1016/j.future.2008.08.003.

[15] Mena, E., Illarramendi, A., Kashyap, V. and Sheth, A.P.
2000. OBSERVER: An Approach for Query Processing in

Global Information Systems Based on Interoperation

Across Pre-Existing Ontologies. Distributed and Parallel

Databases, Volume 8, Number 2, pp. 223-271, DOI:

10.1023/A:1008741824956 . Springer.

International Journal of Computer Applications (0975 – 8887)

Volume 29– No.5, September 2011

34

[16] Java.net. 2009. Java Compiler Compiler - The Java Parser
Generator, Version 5.0, https://javacc.dev.java.net

Accessed 11 April 2011.

[17] Copeland, T. 2009. Generating Parsers with JavaCC,
second ed., Centennial Books, Alexandria, VA.

[18] The Linux Information Project (LINFO). 2006. The Unix
Philosophy: A Brief Introduction. Aug.

http://www.linfo.org/unix_philosophy.html, Accessed 11

April 2011.

[19] Schrenk, M. 2007. Webbots, Spiders, and Screen Scrapers.
No Starch Press. San Francisco.

[20] Hemenway, K and Calishain, T. 2004. Spidering Hacks:
100 Industrial-Strength Tips & Tools. O'Reilly.

[21] Adler, K.A. 2003. “Software Helps Users Access Web
Sites But Activity by Competitors Comes Under Scrutiny”,

New York Law Journal, June 9th, American Lawyer Media.

Available via reprint.

[22] ISO. 1996. Extended BNF, Syntactic Meta-language,
http://standards.iso.org/ittf/PubliclyAvailableStandards/s02

6153_ISO_IEC_14977_1996(E).zip. ISO/IEC 14977.

Accessed 11 April 2011.

[23] Coward, D., Yoshida, Y. 2003. JSR-000154 Java Servlet
2.4 Specification, Java Community Process,

http://jcp.org/aboutJava/communityprocess/final/jsr154/ind

ex.html Accessed 11 April 2011.

[24] Network Working Group. 1999. HTTP/1.1, June.

http://www.w3.org/Protocols/rfc2616/rfc2616.html

Accessed 11 April 2011.

[25] Source Forge. 2010. FUSE: Filesystem in Userspace.

http://fuse.sourceforge.net/ Accessed 11 April 2011.

[26] Rensin, D. 2006. Windows Shell: Create Namespace
Extensions for Windows Explorer with the .NET

Framework, MSDN Magazine,

http://msdn.microsoft.com/en-us/magazine/cc188741.aspx

Accessed 11 April 2011.

[27] Clayberg, E. and Rubel, D. 2006. Eclipse: Building
Commercial-Quality Plug-Ins, 2nd Edition. Addison-

Wesley.

APPENDIX

(* Virtual View Query Language, EBNF Grammar *)
(* (c) 2008-2011 M B Dixon *)

rootQuery = query , ";" ;

query = "show" , subQuery { ("plus" | "then" |
"union" | "intersect" | "minus") , subQuery } ;

subQuery = ["unique"] , ["@" , ["pi:" , name]]
, (resourceQuery | nestedQuery | refQuery) ,
["when" , expression] , ["let" ,
propertyAssignment , {"," , propertyAssignment}]
, {qualifier} ;

resourceQuery = (queryURI | "*") ;

nestedQuery = "(" , query , ")" ;

refQuery = "ref" , queryURI , ["(" , paramList
, ")"] ;

qualifier = ("sort_by" | "group_by") , "(" ,
paramList , ")" ;

propertyAssignment = name , "=" , expression ;

expression = subExpression , {binaryOperator ,
subExpression} ;

subExpression = (integerNumber | realNumber |
char | string | "true" | "false" | date | "(" ,
expression , ")" | "(" , query , ")" | ("!" |
"-" | "~") , subExpression | "$" ,
[integerNumber] | "null" | "system" | name , [
"(" , paramList , ")"]) ;

date = ? any valid US format date ? ;

paramList = [expression , {"," expression}] ;

binaryOperator = ("+" | "-" | "/" | "*" | "%"
| "&&" | "||" | "<=" | "<<" | ">=" | ">>" | "=="
| "!=" | "<" | ">" | "&" | "|" | "^" | "." |
"in" | "like" | "regexp") ;

name = ? any letter ? , { ? any letter ? | "0" |
digit } ;

queryURI = string ;

string = '"', {? all visible chars ?−'"'}, '"' ;

char = "'", ? all visible char ? − "'", "'" ;

integerNumber = ("0" | digit , {("0", digit)})
| ("0x" , ("0" | digit | hexDigit), {("0" |
digit | hexDigit)}) ;

realNumber = ("0" | digit) , {("0", digit)} ,
"." , ("0" | digit) , {("0", digit)} ,
[exponent] ;

digit = ("1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9") ;

hexDigit = ("a"|"b"|"c"|"d"|"e"|"f") ;

exponent = ("E" | "e") , [("+" | "-")] , (
"0" | digit) , {("0", digit)} ;

