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ABSTRACT 

In bioinformatics, the discovery of transcription factor binding 

affinities is important.  This is done by sequence analysis of 

micro array data. The determination of continuous and gapped 

motifs accurately from the given long sequence of data, say 

genetic data is challenging and requires a detailed study.  In this 

paper, we propose an algorithm that can be used for finding 

short continuous, short gapped, long continuous, long gapped 

and negative existence of motifs. We propose a new DNA 

algorithmic approach which solves the accurate determination of 

motifs continuous and gapped, parallely with optimum time. 

Using the proposed algorithm, firstly a modified Position 

Weight Matrix is generated according to the searched motif 

pattern, which contains the position of its appearance in the 

given database, using DNA operations. Then, this Position 

Weight Matrix is used for searching of continuous and gapped 

subsequences. The proposed algorithm can be used to search 

genetic, scientific as well as commercial databases. 

Implementation results showed the correctness of the algorithm. 

Finally, the validity of the algorithm is checked and its 

complexity is analyzed. 
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1. INTRODUCTION 
Extracting frequent subsequences from a database of sequences 

[23], is an important data mining task with plenty of different 

application domains, such as bioinformatics, web usage mining, 

mobility data analysis, motif discovery, commercial database 

analysis, program execution traces, sequences of words in a text, 

DNA and protein sequence extraction. Motif discovery in 

sequences, typically involves the discovery of binding sites, 

conserved domains or otherwise discrimatory subsequences.  In 

bioinformatics, the two predominant applications of motif 

discovery are sequence analysis and micro array data analysis. 

Less common applications include discovering structural motifs 

in proteins and RNA [8].  

The task of discovering frequent subsequences as patterns in a 

sequence data base has become an important topic in data 

mining [22, 1, 12, 16, 28, 20, 7]. The proposed new approach 

can be used for mining closed repetitive non overlapping gapped                                          

subsequences from a sequence database apart from continuous 

sequences using DNA operations.  The majority of the tools can 

be found at the extreme ends of the spectrum with tools that 

exhaustively enumerate regular expressions at one end and 

probabilistic tools, based on Position Weight Matrices(PWMs), 

at the other [24, 5, 11, 26, 25]. This partitioning of tools is due 

to a computational trade-off: more descriptive motif 

representations such as PWMs frequently make exhaustive searches 

computationally infeasible[11]. The definition of the search 

problem, especially the formulation of objective functions, 

leaves space for substantial improvement in the performance of 

the motif discovery tool [27]. 

PWM are broadly used in computational biology to model 

conserved sequence patterns.  The most common application of 

PWMs is about gene regulation:  the transcription of a gene is 

controlled by regulatory proteins that bind to transcription 

factor binding sites (TFBSs) on DNA. A PWM specifies the 

frequency distribution of nucleotides at each position of the 

binding sites, and is considered to be related to the energy of 

binding of the transcription factor to the DNA. The motif 

finding problem is to find a PWM representing binding sites of 

an unknown transcription factor, an initio from sequence data [24]. 

2. LITERATURE REVIEW 
Our work is a variant of sequential pattern mining, first 

introduced by Agarwal and Srikant [22] and further studied by 

many, with different methods proposed, such as PrefixSpan by 

Pei et al [12] and SPAM by Ayres et al[2].  There are studies on 

mining only representative patterns, such as closed sequential                                         

patterns by Yan et al [28] and Wang and Han [13]. However, 

different from ours, sequential pattern mining ignores the 

(possible frequent) repetitions of patterns within a sequence.  

The support of a pattern is the number of sequences containing 

the given pattern. Consider an example: in a database of 100 

sequences, S1 ... S50 = CABABABABABD and S51... S100 = 

ABCD. In sequential pattern mining, both AB and CD have 

support 100. It is undesirable to consider AB and CD equally 

frequent because AB appears more frequently than CD does in 

the whole database, as it repeats more frequently in S51,. . . , 

S100, which is useful in the applications mentioned above.  In 

our repetitive support definition, we  differentiate AB from CD: 

sup(AB)=5*50+50=300 and  sup(CD)=100[6]. 

DNA operations are simulated in [19], the proposed work uses 

the DNA operations CUT and PCR found in [19]. Mining 

Generalized Centre String using DNA operations, given a 

sequential database is done in [18]. In DNA sequence mining, 

Zhang et al [20] introduce gap requirement in mining periodic 

patterns from sequences. In particular, all the occurrences (both 

overlapping ones and non overlapping ones) of a pattern in a 

sequence satisfying the gap requirement are captured, and the 
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support is the total number of such occurrences. El-Ramly et al 

[16] study mining user-usage scenarios of GUI programs 

composed of screen.  Lo et al [7] proposed iterative pattern 

mining, which captures occurrences in the semantics of Message 

Sequence Chart, a standard in software modeling. PWMs are 

widely used to represent TFBS in promoter regions of genes [26, 

9, 25]. Various ways of building a PWM have been carried out, 

some of them are found in [10, 24, 5, 11]. Similar works on PWM 

have been done by Segal et al 2003, Jensen and Liu 2004. 

Unfortunately many of these PWMs have low information 

content and match a huge number of sequences in the genome.  

However, most of these matches are likely to be false positives [17, 

21]. There are also studies on mining repetition of patterns 

within sequences [1, 16, 20, 7] and mining closed repetitive gapped 

subsequences from a sequence database [6]. The time complexity of 

algorithms INSgrow and GSgrow [6] are 

O(|I|.logL)= O(sup(P).logL), and O(∑P Fɛre∑e Eɛ sup(P).logL) 

= O(∑P sup(P).ElogL)  respectively, where P is the pattern, E is 

the additional factor and I is the left most  support  set. 

3. PRELIMINARIES 
In this paper, we study the continuous and gapped subsequences 

mining problem.  Here we propose a new approach to paralley 

search for all models of any length, and also the positions of all 

their gapped instances in input sequence, using Position Weight 

Matrices (PWM). Our approach makes minimal (no) 

assumptions about the background sequences model and the 

mechanism by which elements affect gene expression.  This 

provides a versatile motif discovery method, across all data 

types and genomes, with exceptional sensitivity and near-zero 

false-positive rates. In this work, we describe an approach for 

inferring motifs from gene expression data that aims at making as 

few a priori assumptions as possible. Our algorithm does not use any 

complex statistical models but rather involves directly 

quantifying the dependency between the presence or absence of a 

given motif in a regulatory region and the expression of the 

corresponding gene. 

The exponential nature of some PWM problems is a limiting 

factor for using matrices of medium or large length.  Score 

threshold computations for matrices whose length is greater than 

15 usually require several seconds, and hours or days for 

matrices of length greater than 20 [10].  The JASPAR [4] and 

TRANSFAC [15] databases already contain almost 200 matrices 

of length 15 to 30 that is 20 of their total number of matrices.  

Moreover, the new techniques using data from next-generation 

sequencers should produce longer matrices [10].  Thus we need 

an efficient way to store the larger databases and access it 

parallel.  Here we use DNA strands to store large data and DNA 

operations to access them parallely [18].  These experiments [4, 

15, 3, 14] provide an opportunity to computationally improve 

the accuracy of existing position-specific matrices. It is this 

important problem that we address in the proposed study.  

Let ϵ be a set of distinct events. A sequence S is an ordered list 

of events, denoted by S = 〈e1,e2,...elength〉, where ei ∈ ϵ is 

an event. For brevity, a sequence is also written as S = e1, e2, 

...elength. We refer the ith event ei in the sequences, denoted by 

SeqDB = S1, S2, ..., Sn. 

Definition 1 (Subsequence and Landmark): Sequence S = e1, e2, 

...em is a subsequence of another sequence S′ = e’1, e’2, ...e’n 

(m ≤ n), denoted by S ⊆ S′ (or S′ is a super sequence of S) 1 ≤ 

l1 ≤ l2 ≤ ... ≤ lm ≤ n such that S[i] = S′[li] (i.e., ei = e’li) for i = 

1, 2, ..., m. Such a sequence of integers 〈l1, l2, ...lm〉is called 

a landmark of S in S′. 

Note that there may be more than one landmark of S in S′. By 

gapped subsequence we mean a subsequence, which appears in a 

sequence in the database, possibly with gaps between two 

successive events. 

A pattern P = e1, e2, ...em is also a sequence. For two patterns P 

and P ′, if P is a subsequence of P ′, then P is said to be a 

subpattern of P ′, and P ′ a super-pattern of P. Definition 2 

(Instances of Pattern): For a pattern P in a sequence database 

SeqDB = S1, S2, ..., Sn, if 〈l1, e2, ...lm〉 is a landmark of 

pattern P = e1, e2, ...em in Si ∈ SeqDB, pair (i, 〈l1, e2, ...lm〉) 

is said to be an instance of P in SeqDB, and in particular, an 

instance of P in sequence Si. 

Definition 3 (Overlapping Instances): Two instances of pattern P 

= e1, e2, ...em in SeqDB = S1, S2, ..., Sn,(i, 〈l1, e2, ...lm〉) and (i′, 

〈l1, e2, ...l’m〉), are overlapping if (i) i = i′, AND (ii) ∃1 ≤ j ≤ 

m; lj = l’j. Equivalently, (i, 〈l1, e2, ...lm〉) and (i′, 〈l’1, e’2, 

...l’m〉) are non-overlapping if (i′) i = i′, OR (ii′) ∀1 ≤ j ≤ m : lj 

= l’j . 

Definition 4 (Repetitive Support and Support Set): The 

repetitive support of a pattern P in SeqDB is defined to be 

sup(P) = max (I) where I Ɛ SeqDB(P) is non-redundant. The 

non-redundant instance set I with I = sup(P) is called a support 

set of P in SeqDB. 

Definition 5 (Position Weight Matrix): Given a finite alphabet Σ 

and a positive integer m, a PWM M is a matrix with ||Σ|| rows 

and m columns. The coefficient M, (p, x) gives the score at 

position p for the letter x in Σ. The PWM defines a function 

from σm to ʀ, that associates a score to each word u = u1u2...up of 

σm : 

ScoreM (u)=Σmp−1 M (p, up), 

 

Let α be a score threshold. We say that M has an occurrence in a 

text T at position k if ScoreM (Tk ...Tk+m−1) ≥ α. 

The most recurrent task is to predict binding sites in a large 

DNA sequence, that is to look for occurrences of a PWM, given 

a text. 

4. DNA-BASED-ALGORITHM 
The algorithm is a new approach to find motifs of short 

continuous, short gapped, long continuous, long gapped and 

negative existence of motifs. 

Algorithm 1: DNA-based-algorithm  

Input: S1, S2 

Output: PWM strands, INST strand 

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 29– No.5, September 2011 

47 

Begin 

let L ← length(S2) ; 

  foreach element of S2 do 

         Create threads for each element of S2 

         parallely ; 

        foreach thread do 

           let S3 ← pcr(S1) ; 

               PWM1[]...PWML[]←  

         cut(S3, S2[element1...L]) ; 

           End 

       End 

       Check for instances of S2 such that S2[1] < 

        S2[2] < ... S2[L] in PWM ; 

foreach PWM1[i1] PWM2[i2] PWM3[i3]                                             

... PWML[iL] do 

for(i1, i2, i3, ..., iL ranges from 0 to L)              

and (no PWM strand is empty) ; 

if PWM1[i1] < PWM2[i2] ...  <  

                   PWML[iL] then                         

INST[1..N]←PWM1[i1],                 

PWM2[i2]...,PWML[iL];  

 i1 + +, i2 + +, ..., iL ++; 

end 

end  

end 

Inputs for Algorithm 1 are S1 (the DNA strand which contains 

the encoded sequence, for example A can be encoded as AT and 

B can be encoded as CG, as shown in Figure 2) and S2 (the 

subsequence for which the instances are to be searched for in 

S1). The algorithm outputs the Position Weight Matrix (PWM) 

strands and the INST strand that is, the positions at which the S2 

is found in S1. 

Step 2 gets the length, L, of S2, that is the number of elements in 

the subsequence. Steps 3-8 performs the task of PCR and CUT 

operations [19], for each of the element in S2. Parallely for 

every element of S2 a thread is generated, S1 is multiplied and 

stored in S3, the CUT operation is performed on S3 for the 

given S2[element] and the positions are stored in the respective 

PWM strands, that is, PWM1, PWM2, PWM3, ..., PWML, one 

for each element of S2, thus generating L PWM strands. In 

Steps 10-18, the entries in the PWM strands are checked for the 

order of presence of S2[elements], with respect to the positions 

in which they appear in S1. The entries in PWM are checked for 

their instances, such that the position of S2[1] < position of 

S2[2] etc till S2[L], thus we obtain the instances of S2 in S1 as 

shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

Figure 1: Illustration of Algorithm 1 

The PWM used in the Algorithm 1, stores the positions of 

presence of elements in the subsequence S2, such that positions 

of presence of each element is stored in a DNA strand, by 

checking for PWM1[i1] < PWM1[i2] < ... < PWM1[iL] until any 

of the PWM strand is empty, then the positions,(instances) are 

stored in INST strand. Since DNA operations are used for 

generation of PWM strands and DNA strands are used for the 

storage and access of elements of PWM, the computational 

difficulty of storage and retrieval of large data from large 

databases are minimum, unlike discussed in [11, 4, 15, 3, 14]. 

Thus the Algorithm 1 discovers the gapped motifs of all patterns 

parallely with optimum time complexity as discussed below. 

Lemma: 1 Let n = |S1|, where n > 0 and L = |S2| where 0 ≤L≤n. 

Then |INST| = ≤ n/L. 

 

 

 

 

 

 

 

 

 

Figure2: Illustration of Algorithm 1 using nucleotides 

 

 

 

 

 

 

 

 

 

Figure 3: Negative Existence of Given Sequence 

       S 1    A B A B C A B C C A B A B C C C A A B B A
                                [Given Sequence] 

       S 2    A B C     [Sequence to be searched] 

         A    1 3 6 10 12 17 18 21 

         B    2 4 7 11 13 19 20 

         C    5 8 9 14 15 16 

Positions of the gapped sequences are 

(1,2,5) (3,4,8) (6,7,9) (10,11,14) (12,13,15) 

 

The Given Encoded Sequence 

S1      A T A T A T A T A T A T A T A T C G C G C G C                            

          G C G C G A T C G A T C G A T C G 

S2      A T C G    [ Sequence to be searched ] 

AT     1 3 5 7 9 11 13 15 29 33 37 

CG     17 19 21 23 25 27 31 35 39 

Positions of the gapped sequences are 

(1,17) (3,19) (5,21) (7,23) (9,25) (11,27) (13,31) (15,35) (29,39) 

 

The Given Sequence     A B C A B C A B C A A B B C C 

Sequence to be searched       A B C D 

                                        A      1 4 7 10 11 

                                        B      2 5 8 12 13 

                                        C      3 6 9 14 15 

                                       D 

Since D is empty, we conclude that the subsequence ABCD does 
not exists or negative existence of a subsequence. 
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Proof: If S2 occurs in equal probability in S1, where n =|S1| 

and L = |S2| then |PWM1| == |PWM2| == |PWML| therefore 

|INST | = n/L, otherwise |INST | < n/L . 

From Figure 1, n = 21 and L = 3. If all elements of S2 occur 

with equal probability in S1 then |INST | is 7 that is n/L. 

4.1 Special Case: Negative existence of 

subsequence 
The Algorithm 1 can be used for finding the continuous 

sequences and gapped sequences of any type. For example the 

proposed work can be used for finding instances of the sort, 

ABC, A-BC, A-B-C, AB-C and even the non existence of the 

given sequence that is the negative existence of the subsequence 

as shown in the Figure 3. 

Theorem1: Algorithm 1 can be used to identify the non 

existence of a subsequence. 

Proof: From step 12 of Algorithm 1 for finding the instances, if 

any one of the PWM strand is empty, it concludes the non 

existence of the given subsequence. Figure 3, shows that strand 

D is empty, hence algorithm 1 concludes that the subsequence 

ABCD does not exists in the given sequence that is negative 

existence of ABCD. 

4.2 Time complexity 
Let n be |S1| and L be |S2|. Time complexity for pcr and cut 

operations, is O(1) at its best case, and O(n/M ) at its average 

case [19]. 

TC(Algorithm1)=max(O(max(PCR,CUT)),O(INST)) 

If PWM  ɛØ, then 

TC(INST)=(n/L) iff |INST|=n/L 

TC(INST) = max(|PWMi|)                                where 1 ≤ i ≤ L iff 

|INST| < (n/L) 

Therefore at best case 

TC(Algorithm1)=O(n/L) to O(max|PWMi|) 

At average case 

TC(Algorithm1) = (O(n/M) + O(n/L)) to (O(n/L) 

+ O(max|PWMi|)) 

If PWM ∈ Ø, that is , for the negative existence of the given 

subsequence, the 

TC(Algorithm1) = O(PCR + CUT) that is O(n/M ) at the 

average case. 

5. PERFORMANCE 
Algorithm 1 has been implemented and tested with both 

simulated and real database. The random DNA sequences of size 

varying from 100 to 25000 are generated from 

http://old.dnalc.org/bioinformatics/dnalcnulceotideanalyzer.htmr

andomizer and http://old.dnalc.org/bioinformatics.org/sms/ 

randdna.html. The real data is collected from EMBL database in 

FASTA format. The genome sequences of 3021 viruses are 

tested for the existence of all required gapped and continuous 

patterns. The database is got from 

http://www.ebi.ac.uk/genomes/virus.html. 

Algorithm 1 proved to be efficient and accurate in finding all 

positions of existence, of the given subsequence. Tested with 

both randomly generated and real motifs our work could 

discover all motifs present, with its positions of existence. All 

implementations are performed on a dual core computer and 5 

GB main memory using Java language. The operating system is 

Windows XP. The proposed algorithm is a new approach for 

solving the above problem. The resulted data of these 

experiments are consistent with the complexity analysis given in 

the previous section. The limitation of this algorithm is that the 

maximum number of threads generated is dependent on the 

system architecture. 

6. APPLICATIONS 
Since the proposed work uses DNA strands for its operations, 

the storage and retrieval processes can be implemented easily 

and parallely, whatever may be the size of the database. The 

Algorithm 1 can be used for finding short continuous, short 

gapped, long continuous, long gapped motifs for example ABC, 

A-BC, A-B-C, AB-C and even the non existence of the given 

subsequence i.e the negative existence of the subsequences. 

Since the applications for searching, for the existence of 

subsequences given a large database of commercial or genetic 

information are unlimited, the searching for negative existence 

has its importance in many industrial, research and scientific 

applications. Especially in medical and genetics field the finding 

of all patterns of motifs, can be used to predict, analyze and 

conclude the existence or future liability of any disease or 

abnormality present in the patient data. This work can also be 

applied to analysis of rule based systems, expert systems, rule 

mining, pattern mining, program execution traces, algorithm 

behavioral patterns, credit card data analysis or any other 

commercial data analysis, etc.  

7. CONCLUSION 
In this paper, we have designed a new approach and performed 

the implementation to solve it in a highly parallel way, for 

finding all subsequences, and can be extended to many other 

data mining applications also. In the future, it is possible to 

apply this approach for motifs search in multiple sequences 

parallely and to solve more real time problems in molecular 

biology. 
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