
International Journal of Computer Applications (0975 – 8887)

Volume 29– No.5, September 2011

45

A DNA based Approach to find Closed Repetitive

Gapped Subsequences from a Sequence Database

B.Lavanya

Department of Computer Science
University of Madras

Chennai 600 005, INDIA

A.Murugan
Department of Computer Science
Dr.Ambedkar Government College

Chennai - 600 039. INDIA

ABSTRACT

In bioinformatics, the discovery of transcription factor binding

affinities is important. This is done by sequence analysis of

micro array data. The determination of continuous and gapped

motifs accurately from the given long sequence of data, say

genetic data is challenging and requires a detailed study. In this

paper, we propose an algorithm that can be used for finding

short continuous, short gapped, long continuous, long gapped

and negative existence of motifs. We propose a new DNA

algorithmic approach which solves the accurate determination of

motifs continuous and gapped, parallely with optimum time.

Using the proposed algorithm, firstly a modified Position

Weight Matrix is generated according to the searched motif

pattern, which contains the position of its appearance in the

given database, using DNA operations. Then, this Position

Weight Matrix is used for searching of continuous and gapped

subsequences. The proposed algorithm can be used to search

genetic, scientific as well as commercial databases.

Implementation results showed the correctness of the algorithm.

Finally, the validity of the algorithm is checked and its

complexity is analyzed.

General Terms

Sequence Mining, Pattern Recognition, Data Mining.

Keywords

DNA computation, DNA operations, Motifs, PWM.

1. INTRODUCTION
Extracting frequent subsequences from a database of sequences

[23], is an important data mining task with plenty of different

application domains, such as bioinformatics, web usage mining,

mobility data analysis, motif discovery, commercial database

analysis, program execution traces, sequences of words in a text,

DNA and protein sequence extraction. Motif discovery in

sequences, typically involves the discovery of binding sites,

conserved domains or otherwise discrimatory subsequences. In

bioinformatics, the two predominant applications of motif

discovery are sequence analysis and micro array data analysis.

Less common applications include discovering structural motifs

in proteins and RNA [8].

The task of discovering frequent subsequences as patterns in a

sequence data base has become an important topic in data

mining [22, 1, 12, 16, 28, 20, 7]. The proposed new approach

can be used for mining closed repetitive non overlapping gapped

subsequences from a sequence database apart from continuous

sequences using DNA operations. The majority of the tools can

be found at the extreme ends of the spectrum with tools that

exhaustively enumerate regular expressions at one end and

probabilistic tools, based on Position Weight Matrices(PWMs),

at the other [24, 5, 11, 26, 25]. This partitioning of tools is due

to a computational trade-off: more descriptive motif

representations such as PWMs frequently make exhaustive searches

computationally infeasible[11]. The definition of the search

problem, especially the formulation of objective functions,

leaves space for substantial improvement in the performance of

the motif discovery tool [27].

PWM are broadly used in computational biology to model

conserved sequence patterns. The most common application of

PWMs is about gene regulation: the transcription of a gene is

controlled by regulatory proteins that bind to transcription

factor binding sites (TFBSs) on DNA. A PWM specifies the

frequency distribution of nucleotides at each position of the

binding sites, and is considered to be related to the energy of

binding of the transcription factor to the DNA. The motif

finding problem is to find a PWM representing binding sites of

an unknown transcription factor, an initio from sequence data [24].

2. LITERATURE REVIEW
Our work is a variant of sequential pattern mining, first

introduced by Agarwal and Srikant [22] and further studied by

many, with different methods proposed, such as PrefixSpan by

Pei et al [12] and SPAM by Ayres et al[2]. There are studies on

mining only representative patterns, such as closed sequential

patterns by Yan et al [28] and Wang and Han [13]. However,

different from ours, sequential pattern mining ignores the

(possible frequent) repetitions of patterns within a sequence.

The support of a pattern is the number of sequences containing

the given pattern. Consider an example: in a database of 100

sequences, S1 ... S50 = CABABABABABD and S51... S100 =

ABCD. In sequential pattern mining, both AB and CD have

support 100. It is undesirable to consider AB and CD equally

frequent because AB appears more frequently than CD does in

the whole database, as it repeats more frequently in S51,. . . ,

S100, which is useful in the applications mentioned above. In

our repetitive support definition, we differentiate AB from CD:

sup(AB)=5*50+50=300 and sup(CD)=100[6].

DNA operations are simulated in [19], the proposed work uses

the DNA operations CUT and PCR found in [19]. Mining

Generalized Centre String using DNA operations, given a

sequential database is done in [18]. In DNA sequence mining,

Zhang et al [20] introduce gap requirement in mining periodic

patterns from sequences. In particular, all the occurrences (both

overlapping ones and non overlapping ones) of a pattern in a

sequence satisfying the gap requirement are captured, and the

International Journal of Computer Applications (0975 – 8887)

Volume 29– No.5, September 2011

46

support is the total number of such occurrences. El-Ramly et al

[16] study mining user-usage scenarios of GUI programs

composed of screen. Lo et al [7] proposed iterative pattern

mining, which captures occurrences in the semantics of Message

Sequence Chart, a standard in software modeling. PWMs are

widely used to represent TFBS in promoter regions of genes [26,

9, 25]. Various ways of building a PWM have been carried out,

some of them are found in [10, 24, 5, 11]. Similar works on PWM

have been done by Segal et al 2003, Jensen and Liu 2004.

Unfortunately many of these PWMs have low information

content and match a huge number of sequences in the genome.

However, most of these matches are likely to be false positives [17,

21]. There are also studies on mining repetition of patterns

within sequences [1, 16, 20, 7] and mining closed repetitive gapped

subsequences from a sequence database [6]. The time complexity of

algorithms INSgrow and GSgrow [6] are

O(|I|.logL)= O(sup(P).logL), and O(∑P Fɛre∑e Eɛ sup(P).logL)

= O(∑P sup(P).ElogL) respectively, where P is the pattern, E is

the additional factor and I is the left most support set.

3. PRELIMINARIES
In this paper, we study the continuous and gapped subsequences

mining problem. Here we propose a new approach to paralley

search for all models of any length, and also the positions of all

their gapped instances in input sequence, using Position Weight

Matrices (PWM). Our approach makes minimal (no)

assumptions about the background sequences model and the

mechanism by which elements affect gene expression. This

provides a versatile motif discovery method, across all data

types and genomes, with exceptional sensitivity and near-zero

false-positive rates. In this work, we describe an approach for

inferring motifs from gene expression data that aims at making as

few a priori assumptions as possible. Our algorithm does not use any

complex statistical models but rather involves directly

quantifying the dependency between the presence or absence of a

given motif in a regulatory region and the expression of the

corresponding gene.

The exponential nature of some PWM problems is a limiting

factor for using matrices of medium or large length. Score

threshold computations for matrices whose length is greater than

15 usually require several seconds, and hours or days for

matrices of length greater than 20 [10]. The JASPAR [4] and

TRANSFAC [15] databases already contain almost 200 matrices

of length 15 to 30 that is 20 of their total number of matrices.

Moreover, the new techniques using data from next-generation

sequencers should produce longer matrices [10]. Thus we need

an efficient way to store the larger databases and access it

parallel. Here we use DNA strands to store large data and DNA

operations to access them parallely [18]. These experiments [4,

15, 3, 14] provide an opportunity to computationally improve

the accuracy of existing position-specific matrices. It is this

important problem that we address in the proposed study.

Let ϵ be a set of distinct events. A sequence S is an ordered list

of events, denoted by S = 〈e1,e2,...elength〉, where ei ∈ ϵ is

an event. For brevity, a sequence is also written as S = e1, e2,

...elength. We refer the ith event ei in the sequences, denoted by

SeqDB = S1, S2, ..., Sn.

Definition 1 (Subsequence and Landmark): Sequence S = e1, e2,

...em is a subsequence of another sequence S′ = e’1, e’2, ...e’n

(m ≤ n), denoted by S ⊆ S′ (or S′ is a super sequence of S) 1 ≤

l1 ≤ l2 ≤ ... ≤ lm ≤ n such that S[i] = S′[li] (i.e., ei = e’li) for i =

1, 2, ..., m. Such a sequence of integers 〈l1, l2, ...lm〉is called

a landmark of S in S′.

Note that there may be more than one landmark of S in S′. By

gapped subsequence we mean a subsequence, which appears in a

sequence in the database, possibly with gaps between two

successive events.

A pattern P = e1, e2, ...em is also a sequence. For two patterns P

and P ′, if P is a subsequence of P ′, then P is said to be a

subpattern of P ′, and P ′ a super-pattern of P. Definition 2

(Instances of Pattern): For a pattern P in a sequence database

SeqDB = S1, S2, ..., Sn, if 〈l1, e2, ...lm〉 is a landmark of

pattern P = e1, e2, ...em in Si ∈ SeqDB, pair (i, 〈l1, e2, ...lm〉)

is said to be an instance of P in SeqDB, and in particular, an

instance of P in sequence Si.

Definition 3 (Overlapping Instances): Two instances of pattern P

= e1, e2, ...em in SeqDB = S1, S2, ..., Sn,(i, 〈l1, e2, ...lm〉) and (i′,

〈l1, e2, ...l’m〉), are overlapping if (i) i = i′, AND (ii) ∃1 ≤ j ≤

m; lj = l’j. Equivalently, (i, 〈l1, e2, ...lm〉) and (i′, 〈l’1, e’2,

...l’m〉) are non-overlapping if (i′) i = i′, OR (ii′) ∀1 ≤ j ≤ m : lj

= l’j .

Definition 4 (Repetitive Support and Support Set): The

repetitive support of a pattern P in SeqDB is defined to be

sup(P) = max (I) where I Ɛ SeqDB(P) is non-redundant. The

non-redundant instance set I with I = sup(P) is called a support

set of P in SeqDB.

Definition 5 (Position Weight Matrix): Given a finite alphabet Σ

and a positive integer m, a PWM M is a matrix with ||Σ|| rows

and m columns. The coefficient M, (p, x) gives the score at

position p for the letter x in Σ. The PWM defines a function

from σm to ʀ, that associates a score to each word u = u1u2...up of

σm :

ScoreM (u)=Σmp−1 M (p, up),

Let α be a score threshold. We say that M has an occurrence in a

text T at position k if ScoreM (Tk ...Tk+m−1) ≥ α.

The most recurrent task is to predict binding sites in a large

DNA sequence, that is to look for occurrences of a PWM, given

a text.

4. DNA-BASED-ALGORITHM
The algorithm is a new approach to find motifs of short

continuous, short gapped, long continuous, long gapped and

negative existence of motifs.

Algorithm 1: DNA-based-algorithm

Input: S1, S2

Output: PWM strands, INST strand

International Journal of Computer Applications (0975 – 8887)

Volume 29– No.5, September 2011

47

Begin

let L ← length(S2) ;

 foreach element of S2 do

 Create threads for each element of S2

 parallely ;

 foreach thread do

 let S3 ← pcr(S1) ;

 PWM1[]...PWML[]←

 cut(S3, S2[element1...L]) ;

 End

 End

 Check for instances of S2 such that S2[1] <

 S2[2] < ... S2[L] in PWM ;

foreach PWM1[i1] PWM2[i2] PWM3[i3]

... PWML[iL] do

for(i1, i2, i3, ..., iL ranges from 0 to L)

and (no PWM strand is empty) ;

if PWM1[i1] < PWM2[i2] ... <

 PWML[iL] then

INST[1..N]←PWM1[i1],

PWM2[i2]...,PWML[iL];

 i1 + +, i2 + +, ..., iL ++;

end

end

end

Inputs for Algorithm 1 are S1 (the DNA strand which contains

the encoded sequence, for example A can be encoded as AT and

B can be encoded as CG, as shown in Figure 2) and S2 (the

subsequence for which the instances are to be searched for in

S1). The algorithm outputs the Position Weight Matrix (PWM)

strands and the INST strand that is, the positions at which the S2

is found in S1.

Step 2 gets the length, L, of S2, that is the number of elements in

the subsequence. Steps 3-8 performs the task of PCR and CUT

operations [19], for each of the element in S2. Parallely for

every element of S2 a thread is generated, S1 is multiplied and

stored in S3, the CUT operation is performed on S3 for the

given S2[element] and the positions are stored in the respective

PWM strands, that is, PWM1, PWM2, PWM3, ..., PWML, one

for each element of S2, thus generating L PWM strands. In

Steps 10-18, the entries in the PWM strands are checked for the

order of presence of S2[elements], with respect to the positions

in which they appear in S1. The entries in PWM are checked for

their instances, such that the position of S2[1] < position of

S2[2] etc till S2[L], thus we obtain the instances of S2 in S1 as

shown in Figure 1.

Figure 1: Illustration of Algorithm 1

The PWM used in the Algorithm 1, stores the positions of

presence of elements in the subsequence S2, such that positions

of presence of each element is stored in a DNA strand, by

checking for PWM1[i1] < PWM1[i2] < ... < PWM1[iL] until any

of the PWM strand is empty, then the positions,(instances) are

stored in INST strand. Since DNA operations are used for

generation of PWM strands and DNA strands are used for the

storage and access of elements of PWM, the computational

difficulty of storage and retrieval of large data from large

databases are minimum, unlike discussed in [11, 4, 15, 3, 14].

Thus the Algorithm 1 discovers the gapped motifs of all patterns

parallely with optimum time complexity as discussed below.

Lemma: 1 Let n = |S1|, where n > 0 and L = |S2| where 0 ≤L≤n.

Then |INST| = ≤ n/L.

Figure2: Illustration of Algorithm 1 using nucleotides

Figure 3: Negative Existence of Given Sequence

 S 1 A B A B C A B C C A B A B C C C A A B B A
 [Given Sequence]

 S 2 A B C [Sequence to be searched]

 A 1 3 6 10 12 17 18 21

 B 2 4 7 11 13 19 20

 C 5 8 9 14 15 16

Positions of the gapped sequences are

(1,2,5) (3,4,8) (6,7,9) (10,11,14) (12,13,15)

The Given Encoded Sequence

S1 A T A T A T A T A T A T A T A T C G C G C G C

 G C G C G A T C G A T C G A T C G

S2 A T C G [Sequence to be searched]

AT 1 3 5 7 9 11 13 15 29 33 37

CG 17 19 21 23 25 27 31 35 39

Positions of the gapped sequences are

(1,17) (3,19) (5,21) (7,23) (9,25) (11,27) (13,31) (15,35) (29,39)

The Given Sequence A B C A B C A B C A A B B C C

Sequence to be searched A B C D

 A 1 4 7 10 11

 B 2 5 8 12 13

 C 3 6 9 14 15

 D

Since D is empty, we conclude that the subsequence ABCD does
not exists or negative existence of a subsequence.

International Journal of Computer Applications (0975 – 8887)

Volume 29– No.5, September 2011

48

Proof: If S2 occurs in equal probability in S1, where n =|S1|

and L = |S2| then |PWM1| == |PWM2| == |PWML| therefore

|INST | = n/L, otherwise |INST | < n/L .

From Figure 1, n = 21 and L = 3. If all elements of S2 occur

with equal probability in S1 then |INST | is 7 that is n/L.

4.1 Special Case: Negative existence of

subsequence
The Algorithm 1 can be used for finding the continuous

sequences and gapped sequences of any type. For example the

proposed work can be used for finding instances of the sort,

ABC, A-BC, A-B-C, AB-C and even the non existence of the

given sequence that is the negative existence of the subsequence

as shown in the Figure 3.

Theorem1: Algorithm 1 can be used to identify the non

existence of a subsequence.

Proof: From step 12 of Algorithm 1 for finding the instances, if

any one of the PWM strand is empty, it concludes the non

existence of the given subsequence. Figure 3, shows that strand

D is empty, hence algorithm 1 concludes that the subsequence

ABCD does not exists in the given sequence that is negative

existence of ABCD.

4.2 Time complexity
Let n be |S1| and L be |S2|. Time complexity for pcr and cut

operations, is O(1) at its best case, and O(n/M) at its average

case [19].

TC(Algorithm1)=max(O(max(PCR,CUT)),O(INST))

If PWM ɛØ, then

TC(INST)=(n/L) iff |INST|=n/L

TC(INST) = max(|PWMi|) where 1 ≤ i ≤ L iff

|INST| < (n/L)

Therefore at best case

TC(Algorithm1)=O(n/L) to O(max|PWMi|)

At average case

TC(Algorithm1) = (O(n/M) + O(n/L)) to (O(n/L)

+ O(max|PWMi|))

If PWM ∈ Ø, that is , for the negative existence of the given

subsequence, the

TC(Algorithm1) = O(PCR + CUT) that is O(n/M) at the

average case.

5. PERFORMANCE
Algorithm 1 has been implemented and tested with both

simulated and real database. The random DNA sequences of size

varying from 100 to 25000 are generated from

http://old.dnalc.org/bioinformatics/dnalcnulceotideanalyzer.htmr

andomizer and http://old.dnalc.org/bioinformatics.org/sms/

randdna.html. The real data is collected from EMBL database in

FASTA format. The genome sequences of 3021 viruses are

tested for the existence of all required gapped and continuous

patterns. The database is got from

http://www.ebi.ac.uk/genomes/virus.html.

Algorithm 1 proved to be efficient and accurate in finding all

positions of existence, of the given subsequence. Tested with

both randomly generated and real motifs our work could

discover all motifs present, with its positions of existence. All

implementations are performed on a dual core computer and 5

GB main memory using Java language. The operating system is

Windows XP. The proposed algorithm is a new approach for

solving the above problem. The resulted data of these

experiments are consistent with the complexity analysis given in

the previous section. The limitation of this algorithm is that the

maximum number of threads generated is dependent on the

system architecture.

6. APPLICATIONS
Since the proposed work uses DNA strands for its operations,

the storage and retrieval processes can be implemented easily

and parallely, whatever may be the size of the database. The

Algorithm 1 can be used for finding short continuous, short

gapped, long continuous, long gapped motifs for example ABC,

A-BC, A-B-C, AB-C and even the non existence of the given

subsequence i.e the negative existence of the subsequences.

Since the applications for searching, for the existence of

subsequences given a large database of commercial or genetic

information are unlimited, the searching for negative existence

has its importance in many industrial, research and scientific

applications. Especially in medical and genetics field the finding

of all patterns of motifs, can be used to predict, analyze and

conclude the existence or future liability of any disease or

abnormality present in the patient data. This work can also be

applied to analysis of rule based systems, expert systems, rule

mining, pattern mining, program execution traces, algorithm

behavioral patterns, credit card data analysis or any other

commercial data analysis, etc.

7. CONCLUSION
In this paper, we have designed a new approach and performed

the implementation to solve it in a highly parallel way, for

finding all subsequences, and can be extended to many other

data mining applications also. In the future, it is possible to

apply this approach for motifs search in multiple sequences

parallely and to solve more real time problems in molecular

biology.

8. REFERENCES
[1] H.M. Annila, H.Toivonen, and A.I.Verkamo, 1997,

Discovery of frequent episodes sequences. Data Mining

and Knowledge Discovery, 1(3):259-289.

[2] J. Ayres, J.Flannick, J.Gehrke, and T.Yiu.,2002, Sequential

Pattern mining using a bitmap representation. Int. Conf.

on Knowledge Discovery and Data Mining, pages 429-435

[3] C. M. Bergman, J.W. Carlson, and Celniker, 2005,

DNase I footprint database: A systematic genome

Annotation of Transcription Factor Binding sites in the

Fruitfly Bioinformatics, 21 : 1747 – 1749.

[4] J.C. Bryne, E. Valen, MH. Tang, T. Marstrand, O.Winther,

da Piedade, A. Krogh, B. Lenhard, and A. Sandelin., 2008,

JASPAR, the open access database of transcription factor-

binding profiles: new content and tools in the 2008 update.

Nucleic Acid Res, pages 102-6.

[5] Isabelle da Piedade, Man-Hung Eric Tang, and Olivier

Elemento., 2009, DISPARE: discriminative pattern

refinement for position weight matrices. BMC

Bioinformatics, 10(388):1471-2105.

International Journal of Computer Applications (0975 – 8887)

Volume 29– No.5, September 2011

49

[6] Bolin Ding, David Lo, Jiawei Han, and Siau-Cheng

Khoo., 2009, Efficient mining of closed repetitive gapped

subsequences from a sequence database. Int. Conf. on

Bioinformatics and Biomedical Engineering, pages 1024-

1035, june.

[7] D.Lo, S.C.Khoo, and C.Liu., 2007, Efficient mining of

iterative patterns for software specification discovery. Int.

Conf. on Knowledge Discovery and Data Mining, pages 460-

469.

[8] L. Holm et al., 1992, A database of protein structure

families with common folding motifs. Protein Science,

pages 1691-1698.

[9] G.Hertz and G.Stormo., 1999, Identifying DNA and protein

patterns with statistically significant alignments of multiple

sequences. Bioinformatics, 15(7-8):563-577.

[10] Mathieu Giraud and Jean-Stephane Varre. , 2009, Parallel

position weight matrices algorithms. International

Symposium on Parallel and Distributed Computing, pages

65-69.

[11] L.Kyle Jensen, P. Mark Styczynski, Isidore Rigoutsos,

and N. Gregory Stephanopoulos, 2006, A generic motif

discovery algorithm for sequential data. Bioinformatics,

22(1):21-28.

[12] J.Pei, J.Han, B.Mortazavi-Asl, H.Pinto, Q.Chen,

U.Dayal, and M.C.Hsu., 2001 Prefixspan: Mining

sequential patterns efficiently by prefix projected pattern

growth. Int. Conf. Data Engineering, (215-224).

[13] J.Wang and J.Han, 2004, BIDE: efficient mining of frequent

closed sequences. Int. Conf. on Data Engineering, pages 79-

90, Aug.

[14] M.H. Kuo and C.D Allis., 1999, In vivo cross-linking and

immunoprecipitation for studying dynamic protein:DNA

associations in a chromatin environment. Methods, 19:425-

433.

[15] V. Matys, E. Fricke, R. Geffers, E. Gossling, M. Haubrock,

R. Hehl, K. Hornischer, D. Karas, A. Kel, O. Kel-Margoulis,

D. Kloos, B. Lewicki-Potapov, H. Michael, R.Munch, I.

Reuter, S. Rotert, H. Saxel, M. Scheer, S. Thiele, and E.

Wingender, 2003, TRANSFAC: transcriptional regulation

from patterns to profiles. Nucleic Acid Res, 31:374-378.

[16] M.El-Ramly, E.stroulia, and P.Sorenson, 2002, From run-

time behavior to usage scenarios: an interaction -pattern

mining approach. Knowledge Discovery and Data Mining,

pages 315-324.

[17] M.Tompa, N.Li, TL.Bailey, GM.Church, B.De Moor, E.

Eskin, AV.Favorov, MC.Frith, Y.Fu, WJ.Kent,

VJ.Makeev, AA.Mironov, WS.Noble, G.Pavesi,

G.Pesole, M.Rgnier, N.Simonis, S.Sinha, G.Thijs, J.Van

Helden, M.Vandenbogaert, Z.Weng, C.Workman, C.Ye, and

Z.Zhu,2005, Assessing computational tools for the discovery

of transcription factor binding sites. Nat Biotechnology,

23:137-144.

[18] A. Murugan and B.Lavanya.,2010, DNA algorithmic

approach to solve GCS problem. Journal of Computational

Intelligence in Bioinformatics, 3(2):239-247.

[19] A. Murugan, B.Lavanya, and K. Shyamala, 2011, A novel

programming approach for DNA computing, International

Journal of Computational Intelligence Research, 7(2):199-

209.

[20] M.Zhang, B.Kao, D.Cheung, and K.Yip., 2005, Mining

periodic patterns with gap requirement from sequences.

SIGMOD Int. Conf. on Management of Data,. pages 623-

633.

[21] Li N and M.Tompa., 2006, Analysis of computational

approaches for motif discovery. Algorithms Mol Biol, pages

1-8.

[22] R.Agarwal and R.Srikant., 1995, Mining sequential

patterns. Int.Conf. on Data Engineering.

[23] R.Agarwal and R.Srikant., 1996, Mining sequential

patterns: Generalizations and performance improvements

Extending Data Base Technology, pages 3-17.

[24] Saurabh Sinha, 2006,. On counting position weight matrix

matches in a sequence, with application to discriminative

motif finding. Bioinformatics, 22(14):454-463.

[25] R. Staden, 1984, Computer methods to locate signals in

nucleic acid sequences. Nucleic Acids Res, 12:505-519.

[26] G. Stormo, 2000, DNA binding sites: representation and

discovery. Bioinformatics, 16:16-23.

[27] M. Tompa., 1999, An exact method for finding short motifs

in sequences with application to ribosome binding site

problem. Proc. Seventh Int’l Conf Intelligent Systems for

Molecular Biology, pages 262-271.

[28] X.Yan, J.Han, and R.Afhar., 2003, Colspan: Mining

closed sequential patterns in large datasets. SIAM Int. Conf.

Data Mining, pages 166-177.

