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ABSTRACT 
In 1999, Ozbakir and Coker [23] introduced the concept 

intuitionistic fuzzy multifunctions and studied their lower and 

upper intuitionistic fuzzy semi continuity from a topological 

space to an intuitionistic fuzzy topological space.                     

The  present  paper  introduces  the concept of  -continuous 

intuitionistic fuzzy multifunctions. An Intuitionistic fuzzy 

multifunction F from a topological spaces   to an 

intuitionistic fuzzy  toplogical spaces ( is said to be 

Intuitionistic fuzzy -continuous at a point Xx0  if for 

any  such that  and  

there exists   containing  such that  

and   F is called Intuitionistic fuzzy -

continuous if it has this property at each point of X. Several 

properties and characterizations of Intuitionistic fuzzy -

continuous 
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1. INTRODUCTION  
After the introduction of fuzzy sets by Zadeh [29] in 1965 and 

fuzzy topology by Chang [6] in 1967, several researches were 

conducted on the generalizations of the notions of fuzzy sets 

and fuzzy topology. The concept of intuitionistic fuzzy sets 

was introduced by Atanassov [2,3,4] as a generalization of 

fuzzy sets. In the last 27 years various concepts of fuzzy 

mathematics have been extended for intuitionistic fuzzy sets. 

In 1997 Coker [7] introduced the concept of intuitionistic 

fuzzy topological spaces as a generalization of fuzzy 

topological spaces. In 1999, Ozbakir and Coker [23] 

introduced the concept intuitionistic fuzzy multifunctions and 

studied their lower and upper intuitionistic fuzzy semi 

continuity from a topological space to an intuitionistic fuzzy 

topological space. In the present paper we introduce the 

concepts of intuitionistic fuzzy -continuous multifunctions 

and obtain some of their characterizations and properties. 

2. PRELIMINARIES 
Throughout this paper  and (Y,  ) represents  a 

topological space and  an intuitionistic fuzzy topological space 

respectively. A subset A of a topological space ) is called 

Semi open [11] (resp. -open[19]) if 

A (resp.A  The complement 

of a semi open (resp. -open) set is called semi closed 

(resp. -closed). Every open (resp. closed) set is -open 

(resp. -closed) and every -open (resp. -closed) set is semi 

open ( resp. semi closed) ,but the converses may not be 

true..The family of all -open (resp. -closed) subsets of 

topological space  is denoted by (X) (resp. C(X)). 

The intersection of all -closed (resp. semi closed) sets of X 

containing a set A of X is called the -closure [14 ] (resp. 

semi closure ) of A. It is denoted by Cl(A) ( resp. sCl(A)). 

The union of all -open (resp. semi open) sub sets of A of X 

is called the -interior [14] (resp. semi interior) of A .It is 

denoted by Int(A) ( resp. sInt(A)) . A subset A of X is -

closed (resp. semi closed) if and only if 

A   A subset N of a 

topological space ) is called a -neighborhood [14] of a 

point x of X if there exists a -open set O of X such that 

x N.  A is a  -open in X if and only if it is a  -

neighborhood of each of its points. A subset V of X is called 

a  -neighborhood of a subset A of X if there exists  

O(X) such that . A mapping f from a topological 

space (X,  to another topological space (X*,   is said to 

be -continuous [15, 16] if the inverse image of every open 

set of X* is  -open in X.  Every continuous mapping is -

continuous but the converse may not be true [15]. A 

multifunction F from a topological space (X,  to another 

topological space (X*,   is said to be lower   -continuous 

[18] (resp. upper  -continuous[18]) at a point   if for 

every -neighborhood U of  and for any open set W of X* 

such that F(  (resp. F( ) there is a -

neighborhood U of   such that F(  (resp. 

F( ) for every x . 

Lemma 2.1[25]: Let A be a subset of a topological space 

(X, Then: 

(a) A is -closed in X sInt(Cl(A)  A; 

(b) sInt(Cl(A)) = Cl(Int(Cl(A))); 

(c) Cl(A) = A Cl(Int(Cl(A))). 

Lemma 2.2[25]: Let A be a subset of a topological space 

(X, Then the following conditions are equivalent : 

(a) A (X) 

(a)  for some open set U. 

(b)  for some open set U. 

(c) . 

Definition 2.1 [2, 3, 4]: Let Y be a nonempty fixed set. An 

intuitionistic fuzzy set   in Y is an object having the form  

  = { y Y } 
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where the functions :Y I and :Y I denotes the  degree 

of membership (namely ~ (y)) and the degree of non 

membership (namely υ ~ (y)) of each element y Y to the set 

  respectively, and  0     1 for each y Y.  

Definition 2.2 [2, 3, 4]: Let Y be a nonempty set and the 

intuitionistic fuzzy sets   and  be in the form  

 = {  : y Y}, 

 = {  : y  Y} and let  

  be an arbitrary family of intuitionistic fuzzy 

sets in Y. Then: 

(a)   if y  Y  and ];  

(b)  = if    and  ; 

(c)  = {   : y  Y}; 

(d)  ={ y, 0,1 :y Y} and ={ y,1,0 :y Y} 

(e)   = {  : y Y}; 

(f)    = { : y  Y};    

 

Definition 2.3 [8] :Two Intuitionistic Fuzzy Sets   and  of 

Y are said to be quasi coincident    ( q   for short)  if 

such that 

       (y)   or   . 

Lemma 2.3[8]: For any two intuitionistic fuzzy sets 

  and   of Y,  ( ) c. 

Definition 2.4 [7]: An intuitionistic fuzzy topology on 

a non empty set Y is a family  of intuitionistic fuzzy 

sets in Y  which satisfy the following axioms: 

(O1).   , 

(O2).  , for any  , 

(O3).   for any family   . 

In this case the pair (Y, ) is called an intuitionistic fuzzy 

topological space and each intuitionistic fuzzy set in , is 

known as an intuitionistic fuzzy open set in Y. The 

complement of an intuitionistic fuzzy open set   is called 

an intuitionistic fuzzy closed set in Y. 

Definition 2.5 [7]:  Let (Y,   be an intuitionistic fuzzy 

topological space and  be an intuitionistic fuzzy set in Y. 

Then the interior and closure of   are defined by: 

 cl(  ) = {  :  is an intuitionistic fuzzy closed 

set in Y and   }, 

int(  ) = {  :  is an intuitionistic fuzzy open set 

in Y and   }. 

Definition 2.6 [23]: Let X and Y are two non empty sets. A 

function F: X→Y is called intuitionistic fuzzy multifunction if 

F(x) is an intuitionistic fuzzy set in Y,  x X.  

Definition 2.7 [27]: Let F: X→Y is an intuitionistic fuzzy 

multifunction and A be a subset of X. Then   F(A) = 

 . 

Definition 2.8 [23]:  Let F :X→Y be an intuitionistic fuzzy 

multifunction. Then the upper inverse F (  ) and lower 

inverse F (  )  of an intuitionistic fuzzy set   in Y are 

defined as follows: 

      F (  ) ={x X : F(x)   } 

      F (  ) = { x X  : F(x)q  }. 

Definition 2.9 [23]:  An Intuitionistic fuzzy multifunction 

F:  →( is said to be: 

(a) Intuitionistic fuzzy upper -continuous [28] 

(Intuitionistic fuzzy upper semi continuous[23] ) at a 

point   if for any intuitionistic  fuzzy open 

set such that  there exists an 

 (resp. open set  ) containing  such that 

. 

(b) Intuitionistic fuzzy lower -continuous ( resp. 

Intuitionistic fuzzy lower semi continuous) at a point 

 if for any intuitionistic  fuzzy  open set 

such that there exists an  (resp. 

open set ) containing  such that 

. 

(c) Intuitionistic fuzzy upper -continuous (resp. 

intuitionistic fuzzy lower -continuous Intuitionistic 

fuzzy upper semi-continuous, intuitionistic fuzzy lower 

semi-continuous) if it is intuitionistic fuzzy upper -

continuous (resp. intuitionistic fuzzy lower -continuous 

intuitionistic fuzzy upper semi-continuous, intuitionistic 

fuzzy lower semi-continuous) at each point of X. 

 

3. -COONTINUOUS INTUITIONISTIC 

FUZZY MULTIFUNCTIONS 

Definition 3.1: An Intuitionistic fuzzy multifunction 

F: →( is said to be:  

(a) Intuitionistic fuzzy -continuous at a point Xx0  if 

for any  such that  

and  there exists  containing  

such that  and  

(b) Intuitionistic fuzzy -continuous if it has this property at 

each point of X. 

Theorem 3.1: If F: →( is intuitionistic fuzzy -

continuous then F is intuitionistic fuzzy upper -continuous 

and intuitionistic fuzzy lower -continuous . 

Proof: Obvious. 

Theorem 3.2: Let F:  → (  be an intuitionistic 

fuzzy multifunction, Then the following statements are 

equivalent: 

(a) F is intuitionistic fuzzy -continuous at a point ; 

(b) for any    such that  and  

 ,there result the relation 

. 

(c) for every   such that  and 

 , and for any semi-open set U of  X containing 

x, there exists a non-empty open set  GU U, such that 

 and . 

Proof. (a) (b): Let  with  and 

, O(X) containing x such that  and 

. Thus,  and 

. Therefore  . 

Since . By Lemma 2.2 we have 

. 

(b) (c): Let  with  and . 

Then   . Let be any semi-
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open subset of X containing x. Then U

 Put , 

then , GU U, 

GU  and  

GU .And thus  and 

. 

(c)  (a): Let  be the family of semi-open sets of X 

containing x. For any semi-open set  containing x and 

for every  with  and , 

there exists a non-empty open set GU U such that 

 and  . Let W= }. Then W 

is open in X, x  sCl(W), F(w)  and F(w)q , for every 

w W. Put S=W x}, then thus 

,  and . Hence F is 

intuitionistic fuzzy -continuous at x. 

Definition 3.2: Let be an intuitionistic fuzzy set of an 

intuitionistic fuzzy topological space ( ). Then  is said to 

be a neighbourhood of  in Y if there exists an intuitionistic 

fuzzy open set   such that . 

Defination 3.3: Let (  be an intuitionistic fuzzy 

topological space, an intuitionistic fuzzy set  is called a semi 

q-neighbourhood of an intuitionistic fuzzy set  of Y if 

 such that . 

Theorem 3.3: Let F:  → (  be an intuitionistic 

fuzzy multifunction, Then the following statements are 

equivalent: 

(a) F is intuitionistic fuzzy -continuous. 

(b)  

(c) . 

(d) 

for any pair of intuitionistic fuzzy sets 

. 

(e) for 

any pair of intuitionistic fuzzy sets . 

(f) 

, for any pair of intuitionistic fuzzy sets 

. 

(g) For each point x of X for each neighbourhood  of F(x) 

and for each q-neighbourhood of F(x),

 is a -neighbourhood of x. 

Proof: (a) (b). Let any  and

, thus  and , Since F being 

intuitionistic fuzzy -continuous according to the theorem 3.2 

(b).There follows that . And 

as x is chosen arbitrarily in                      , 

we have  

and thus  by Lemma 2.2.  

(b) (c). It follows from Theorem 3.2 [27] (c) and (d).  

(c) (d). Suppose that (c) holds and let  

 . Then 

and thus by (c)

. Hence by 

Lemma2.1(a),

. Now  and 

By Theorem 3.2 [27] (e) and (f)  

 and . Consequently, 

. 

(e). Suppose (d) hold. Since  

 for each subset A of X, it followsthat, 

 

. 

(e) (f).

 

 

                                  

 . 

And thus 

. 

(a) (g). Let  is a neighbourhood of F(x) and  

is a q-neighbourhood of F(x). Then  

such that   

Therefore,           . Therefore, by 

hypothesis 

  

 

 

                         ). 

It follows that  is -neighbourhood of 

x. 

(g) (a).  Obvious.  

Definition 3.4: An intuitionistic fuzzy multifunction F:  

→ (  is called :  

(a) intuitionistic fuzzy strongly lower semi- continuous 

 is a open set in X if for each intuitionistic fuzzy 

set  . 

(b) intuitionistic fuzzy strongly upper semi-continuous  if  

 is a open set in X if for each intuitionistic fuzzy 

set  . 

Theorem 3.4: Let F:  → ( be an intuitionistic 

fuzzy upper -continuous and  intuitionistic fuzzy strongly 

lower semi-continuous intuitionistic fuzzy multifunction then 

F is intuitionistic fuzzy -continuous. 

Proof: Let   Now F being intuitionistic fuzzy 

upper continuous, and ,  by 

theorem 4.1[28]. Again F being intuitionistic fuzzy strongly 

lower semi-continuous, ) is an open set in X. Hence 

) and by Theorem 3.3, F is 

intuitionistic fuzzy  continuous. 
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Theorem 3.5: Let F:  → ( be an intuitionistic 

fuzzy lower -continuous and  intuitionistic fuzzy strongly 

upper semi-continuous intuitionistic fuzzy multifunction then 

F is intuitionistic fuzzy -continuous. 

Proof: Obvious. 
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