
International Journal of Computer Applications (0975 – 8887)

Volume 29– No.3, September 2011

50

Recursive Prefix Suffix Pattern Detection Approach

for Mining Sequential Patterns

Dr. P.Padmaja
Associate professor

Department of IT
GITAM University

Visakhapatnam, INDIA

P.Naga Jyothi
Assistant professor
Department of IT
GITAM University

Visakhapatnam, INDIA

M.Bhargava
Department of IT
GITAM University

Visakhapatnam, INDIA

ABSTRACT
The need for real-time data mining has long been recognized

in various application domains. Some of the applications like

customer shopping sequences, medical treatments, natural

disasters, telephone calling patterns, Weblog click streams,

DNA sequences and gene structures require sequential pattern

mining techniques. These techniques find the complete set of

frequent subsequences for the given set of sequences and

support threshold. Traditional pattern growth based

approaches for sequential pattern mining derive length (n+1)

pattern based on projected databases of length n-patterns

recursively. As result lot of recursions occur which may lead

to certain complexities. Thus, in order to reduce the number of

iterations, an efficient bidirectional sequential pattern mining

approach namely Recursive Prefix Suffix Pattern detection,

RPSP algorithm is proposed. The RPSP algorithm first finds

all Frequent Itemsets (FI‟s) according to the given minimum

support and transforms the database such that each transaction

is replaced by all the FI‟s it contains and then finds the

patterns. The pattern further is detected based on ith projected

databases, and constructs suffix and prefix databases based on

the apriori property. RPSP will increase the number of

frequent patterns by reducing the minimum support and vice

versa. Recursion is terminated when the detected FI set of

prefix or suffix projected database of parent database is null.

All the patterns that correspond to a particular ith projected

database of transformed database are formed into a set, which

is disjoint from all other sets. The union of all the disjoint

subsets is the resultant set of frequent patterns. The proposed

algorithm was tested on the hypothetical data and results

obtained were found satisfactory. Thus, RPSP algorithm can

be applicable to many real world sequential data sets.

Keywords - Sequential patterns, Frequent itemsets, Prefix and

Suffix databases, Projected database, Transformed database.

1. INTRODUCTION
Data mining , is a powerful tool for extraction of hidden

predictive information from large databases. Data mining

tools predict future trends and behaviours, allowing

businesses to make proactive, knowledge-driven decisions. It

is the collection of concepts and techniques for uncovering the

interesting data patterns hidden in large data sets. One of the

popular data mining techniques is Association rule mining, is

a process of identifying the dependency of one item with

respect to the occurrence of the other item. Finding frequent

patterns, associations, correlations, or causal structures among

sets of items or objects in transaction databases, relational

databases, and other information repositories.Some of the

applications like, Basket data analysis, cross-marketing,

catalog design, loss-leader analysis, clustering and

classification etc.

Sequential pattern mining is more difficult than association

rule mining because the patterns are formed not only by

combining items but also by permuting item-sets. Enormous

patterns can be formed as the length of a sequence is not

limited and the items in a sequence are not necessarily

distinct. Owing to the challenge posed by exponential possible

combinations, improving the efficiency of sequential pattern

mining has been the focus of recent research in data mining.

Sequential pattern mining is an important Data Mining

problem which detects frequent sub- sequences in a sequence

database [1][2]. In this proposed approach certain frequent

Sequential Patterns at faster pattern growth by recursively

determining the prefix-projected database and suffix-projected

database for every ith database and determine the frequent

patterns containing i. The final set of frequent sequential

patterns is the union of the disjoint subsets[8]. Sequential

pattern mining problem can be widely used in different areas,

such as mining user access patterns for the web sites, using the

history of symptoms to predict certain kind of disease, also by

using sequential pattern mining, the retailers can make their

inventory control more efficient[5].Which results efficient

mining and better scale up property than conventional

algorithms.

The rest of the paper is organised as follows section II

presents proposed approach and its algorithm, experimental

study, performance evaluation and time complexity are

presented in Section III. Finally, conclusion and future work

in section IV.

2. PROPOSED APPROACH
In this section the proposed Recursive Prefix Suffix Pattern

based detection algorithm (RPSP) is discussed. The RPSP

algorithm has two major steps. In the first step the database is

transformed by finding the frequent items with the support

larger than the minimum support as per the apriori principle

[3][4]. In the second step the algorithm partitions the patterns

into prefix and suffixes of the each frequent item. The

algorithm proceeds by constructing the prefix and suffixes of

the projected databases, without the construction of

DAG(Directed Acyclic Graph) [8]. The proposed approach

finally detects patterns of each subset by recursively calling

prefix and suffix subroutines.

2.1 RPSP Algorithm
1. Start

2. Read the Sequence Database (DB) and Minimum

Support(MS)

3. FI= Find_FI (DB, MS, true)

4. Assign indexes to frequent itemsets after they are being

arranged in lexicographic order.

International Journal of Computer Applications (0975 – 8887)

Volume 29– No.3, September 2011

51

5. Transform the DB into Transform DataBase(TDB)

6. P= Ø

7. For each „x‟ in FI do

 Px= Ø

xDB = call get_iDB(x,TDB,true)

PPx = call Prefix (xDB, MS, x)

SPx = call Suffix(xDB, MS, x)

PSPx= call Combination_of (x,PPx,SPx,TDB,MS)

Px= union of (PPx, SPx, PSPx, x)

End of for

8. P=Union of (P, Px)

9. Stop.

The RPSP algorithm finds Frequent Items (FI‟s) in the

transaction database with given minimum support(MS) and

transforms the DataBase(DB) by assigning unique

Identification numbers (Id‟s) to the corresponding FI‟s .The

algorithm further proceeds by finding the projected databases

for each FI.

2.1.1 Find_FI(String tempDB[][], int ms, Boolean
ismultiple)

1. tempFI[] = Get all the single items that have count greater

than the ms .

2. if (ismultiple)

3. tempFI2[]=Get all the multiple item itemsets whose count

is greater than the ms support value4. tempFI[] = tempFI[] +

tempFI2[] (concatenation)

5.Perform String Sort on the tempFI[]

6. Return tempFI.

The subroutine Find_FI() finds the frequent itemsets in the

input database. It takes the database from which FI‟s are to be

found, minimum support and a Boolean Ismultiple as

parameters and returns the set of frequent itemsets. If the

ismultiple value is true then even number of itemsets are

considered as candidates for frequent itemsets. If the value is

false then they are not considered as candidates for frequent

itemsets[11]. Therefore, with the candidates obtained for each
corresponding FI‟s, the subroutine proceeds with detection of
prefix and suffix projected databases[12].

2.1.2 Prefix(tempDB,MS,temp)

1.TDB = call get_iDB(tempDB,temp,false)

2.PDB = get all the itemsets before to last occurance of temp,

and form them into a database

3.FI= call Find_FI(PDB,MS,false)

4.Repeat until FI=Ø

Py=Ø

For each „y‟ in FI

yBD= call get_iDB(y,PDB,false)

PPy= call Prefix(yDB,MS,y)

SPy= call Suffix(yDB,MS,y)

PSPy= call Combination_Of(x,PPy,SPy,PDB,MS)

Py= union of(PPy, SPy, PSPy, y)

End of for

5. Return Py

2.1.3 Suffix(tempdDB, MS ,temp)

1.call Suffix(tempdDB, MS ,temp)

2TDB = call get_iDB(tempDB,temp,false)

3.SDB = {form a Database where all the tuples correspond the

respective tuples in Step7.4.3: TDB such that each tuple

contains the itemset that occur after „temp‟ in TDB tuple

4.FI = call Find_FI(SDB,Ms,false)

5.Repeat till FI=Ø

Py=Ø

For each „y‟ in FI do

yDB= call get_iDB(y,SDB,false)

PPy= call Prefix(yDB, Ms,y)

SPy= call Suffix(yDB,MS,y)

PSPy=call Combination_Of(y,PPy,SPy,PDB,MS)

 Py= union of(PPy, SPy, PSPy, y)

End of for

6. Return Py.

The subroutine Prefix(tempDB,MS,temp) detects all FI‟s

which are prefixes to the ith projected databases .Similarly

Suffix(tempdDB, MS ,temp) [10]detects all patterns which are

suffixes to the ith projected databases. The prefix and suffix

pattern construction process continues until database becomes

empty and FI reaches to null set of all itemsets.

2.1.4 get_idB(String temp,String[][] tempDB,
Boolean isGre)

1.Temp1dB = {get all the tuples that contain atleast one item

‟temp‟From tempDB}

2.If (isGre)

Temp1dB = { set of tuples which is resultant after

removing all the itemsets that are numerically

greater than „temp‟ in Temp1dB}

Return Temp1dB.

The subroutine get_iDB() takes the database, the root value

for which the ith Database is to be constructed and a Boolean

variable isGre as Parameters and returns the corresponding

ith database. If isGre value is true then all the items that are

greater than the root value are ignored in the resultant ith

database otherwise, the items are included.

2.1.5 Combination_Of(String root, String a[],
String b[], String tempDB[][], int MS)

1. Let x, y represent an item in a[], b[] respectively.

2. String abc[]<-- get all possible combinations of x and y for

all possible values of x and y. The retrieved combination

should be like x + root + y

3. abc[]<--get all the patterns(entries) from abc[] whose count

in tempDB[] is greater than the given MS value

Return abc.

The subroutine Combination_Of () takes the root element,

prefixes patterns, suffix patterns, parent database and the

minimum support value as parameters and returns the

bidirectional patterns. It forms all the possible combinations

for every possible value in prefix patterns and the suffix

International Journal of Computer Applications (0975 – 8887)

Volume 29– No.3, September 2011

52

patterns along with the root element. The concatenation of

Prefix Pattern root and Suffix Pattern root along with the root

(PProot + root + PSroot) is checked with the count and

minimum support in the parent database. If the count is

greater than minimum support the final pattern set is returned

as a bidirectional frequent pattern otherwise rejected.

3. EXPERIMENTAL STUDY AND

ANALYSIS

To evaluate the effectiveness of RPSP algorithm, it is tested

on hypothetical and real world data sets. The results were

found satisfactory.

3.1 Experimental Study on hypothetical data:

 Input hypothetical Data Base

Seq Id Sequence

1 <(1) (1,2,3) (4) (7,8) (3)>

2 <(3) (5,8,9) (1,2) (2,3)>

3 <(5) (1,2) (3,5,6) (1,2) (6)>

For the above given sequence database the detected Frequent

Itemsets (FIs) are (1), (1,2), (2), (3). Unique Id is assigned to

each FI as follows :- (1)-1, (1,2)-2, (2)-3, (3)-4[7]. The

algorithm consists of two major steps.

 3.1.1 Transformation of Database: In this step the

detected FI‟s with their assigned id‟s are transformed and

infrequent items are eliminated. Thus, the transformed

database is 1: < (1) (1,2,3,4) (4) > ; 2: < (4) (1,2,3) (3,4) > ;

3: < (1,2,3) (4) (1,2,3) >.

3.1.2 Pattern Partitioning: With the detected FI‟s the

number patterns are chosen, and then algorithm proceeds in

finding their prefix and suffixes of each projected database.

In the mentioned example the number of detected FIs are 4,

and thus the required final Patternset (P) consists of 4 disjoint

subsets i.e., from P1, P2,P3 and P4, where Pi includes „ith‟

element and element less than „ith‟ element .[6]

1) Finding subsets of patterns

a) The construction of pattern set P starts with subset P4 and

ends up with the subset P1. In the process of finding the 4th

projected database(P4) the transformed 4th DB is {1 :

<(1)(1,2,3,4)(4)> ;2 :<(4),(1,2,3)(3,4)>;3 <(1,2,3)(4)(1,2,3)>

}. Prefix of 4th DB is {1: < (1) (1,2,3,4) >; 2: < (4) (1,2,3) > ;

3: < (1,2,3) >} and Suffix of 4th DB is {1: <(4)> ;2: <(1,2,3)

(3,4)> ;3: <(1,2,3)>} . Thus, FI set contains {3} as there are

no frequent patterns for suffix of the 4th projected data base.

But, the prefix of the 4th projected database is having frequent

items in 3db,2db and 1db. Therefore, the FI‟s for 3db {i.e 1:

<(1)(1,2,3)>; 2: <(1,2,3)(3)>; 3 :<(1,2,3)(1,2,3)>;} has

prefixes and suffixes as follows : pre(3pre (4D)) is 1: <(1)>

;2: <4>; suf (3pre (4D)).Frequent patterns are not found

further as there are no databases to process 3db [9][11] .

For pre(2pre (4D)) as 1:<(1)> ;2:<(4)> : suf (2pre (4D)) no

suffix items for 1db with (1pre(4D) are pre(1pre (4D)) 1:

<(1)> ;2- <4> ;suf (1pre (4D)) 1:<(1,2,3,4).Thus, P4:<1 4> <2

4> <3 4> <4>;

b) Similarly patterns for P3, P2, P1 are found as P3 : <1 3> <3>

; P2:<2> ;P1 <1> .

Thus, the final pattern set P is the union of all disjoint subsets

(P4, P3, P2, P1)of FI set.

P: {<1 3> ,<1 4> ,<1> ,<2 4> ,<2> ,<3 4>, <3> ,<4>} .

3.2 Performance Evaluation and Time

complexity:

This subsection deals with impact of different parameters in

the dataset on the performance of the algorithm .The actual

data is from MSNBC (an anonymous web data) dataset for

RPSP algorithm, with many experimental proofs the

parameters are evaluated. The experimental parameters are

minimum support, number of frequent items, time, memory

and number of transaction in a sequence. The experiments

shows that RPSP algorithm can find all frequent item sets

with given minimum support value. If the value of minimum

support increases, the average number frequent items sets

tends to decrease as shown in the figure 3.2.1. The time for

finding the number frequent itemsets increases with the

number of sequences which is shown in figure 3.2.2. It is

observed that, more memory is required as the number

transactions in sequence on the dataset increases as shown in

figure 3.2.3.

Figure: 3.2.1 Average number of frequent items for the

different minimum support values

Figure: 3.2.2 Performance with time varying for the

number of transactions in a sequence

0

2

4

6

8

10

12

14

0 5 10 15 20Minimum Support(%)

N
o
.
o
f
F
r
e
q
u
e
n
t
i
t
e
m
s

0

5000

10000

0 100 150 200 250
Number of transactions in a sequence

T

i

m

e

International Journal of Computer Applications (0975 – 8887)

Volume 29– No.3, September 2011

53

Figure: 3.2.3 Memory usage for the MSNBSC data set

The time complexity of the RPSP algorithm is proportional to

the total time of checking items in projected databases. For the

given a sequence, if the longest pattern in the sequence is M,

then the maximal level of projections that may occur on the

sequence will be M. This means each item in the sequence is

checked at most M times. Given a database, the total number

of items is T. Let L be the average length of detected patterns,

then on average an item is checked at most L times, and the

total instances of items checked is at most LT times.

Practically it is close to O((logL)T)) because the minimal

levels of projections to detect a pattern with length M is about

log2M+1.

4. CONCLUSION
With the increase of large data, it is difficult to maintain and

access the information in real life situations. Due to that,

there is need of various mining techniques especially designed

for different types of data. Moreover, frequent itemset mining
plays an essential role in the mining of various patterns and

useful in many applications. In this paper a new approach is

proposed for sequential pattern mining namely Recursive

Prefix Suffix Patterns pattern based detection (RPSP)

algorithm. RPSP algorithm requires simpler steps for finding

the FI‟s with the given minimum support. The algorithm

constructs Prefix and suffix projected databases and then

detects frequent patterns hierarchically by pattern partitioning,

thus it is an improvement in terms of levels of recursion. The

time of execution decreases for large datasets and by

increasing the minimum support level. Our approach can be

extended to other type of sequential pattern mining problems,

like mining with constraints, maximal pattern mining and

domain specific pattern mining etc. The implementation of

RPSP approach is done with java swings environment.

5. REFERENCES
[1] R.Agarwal and R.Srikanth, “Mining Sequential Patterns”

ICDE‟95, Pg 3-14,1995.

[2] R. Agrawal, and R. Srikant, Fast algorithms for mining

association rules, Proc. of 20th Intl. Conf. on VLDB, pp.

487-499, 1994.

[3] G. Grahne and J. Zhu., "Efficiently Using Prefix-trees in

Mining Frequent Itemsets," Prof.FIMI'03 Workshop on

Frequent Itemset Mining Implementations, 2003.

[4] J. Chen, T. Cook. Mining Contiguous Sequential Patterns

from Web Logs. In Proc. Of WWW2007 Poster session,

May 8-12, 2007, Banff, Alberta, Canada.

[5] C. Antunes and A. L. Oliveira, “Sequential Pattern

Mining Algorithms: Trade-offs between Speed and

Memory,” Proc. 2nd Intl. Workshop on Mining Graphs,

Trees and Sequences, 2004.

[6] M.Y. Lin and S.Y. Lee, “Fast Discovery of Sequential

Patterns through Memory Indexing and Database

Partitioning,” J. of Information Science and Engineering,

vol. 21,2005.

[7] M. Zaki, “Spade: An Efficient Algorithm for Mining

Frequent Sequences,” Machine Learning, vol. 40,

pp.31-60, 2001.

[8] Jinlin Chen, “An UpDown Directed Acyclic Graph

Approach for Sequential Pattern Mining”, IEEE 2009,

vol-ll, Pg 1-16.

[9] D.Y. Chiu, Y.H. Wu and A.L.P. Chen, “An Efficient

Algorithm for Mining Frequent Sequences by a New

Strategy without Support Counting,” Proc. ICDE 2004,

pp. 375, 2004.

[10] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U.

Dayal, and M.C. Hsu,“PrefixSpan: Mining Sequential

Patterns Efficiently by Prefix-Projected Pattern Growth,”

Proc. 2001 Int‟l Conf. Data Eng. (ICDE ‟01), pp. 215-

224, 2001.

[11] Z. Zhang, Y. Wang, and M. Kitsuregawa,

“EffectiveSequential Pattern Mining Algorithms for

Dense Database,” Proc. Japanese National Data

Engineering WorkShop (DEWS'06). 2006.

[12] Chen, T. Cook. Mining Contiguous Sequential Patterns

from Web Logs. In Proc. of WWW2007 Poster session,

May 8-12,2007, Banff, Alberta, Canada.

0

5

10

15

20

25

30

35

40

45

50 100 150 200 250

Number of Sequences

M

e

m

o
r

y

