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ABSTRACT 
The need for real-time data mining has long been recognized 

in various application domains. Some of the applications like 

customer shopping sequences, medical treatments, natural 

disasters, telephone calling patterns, Weblog click streams, 

DNA sequences and gene structures require sequential pattern 

mining techniques. These techniques find the complete set of 

frequent subsequences for the given set of sequences and 

support threshold. Traditional pattern growth based 

approaches for sequential pattern mining derive length (n+1) 

pattern based on projected databases of length n-patterns 

recursively. As result lot of recursions occur which may lead 

to certain complexities. Thus, in order to reduce the number of 

iterations, an efficient bidirectional sequential pattern mining 

approach namely Recursive Prefix Suffix Pattern detection, 

RPSP algorithm is proposed. The RPSP algorithm first finds 

all Frequent Itemsets (FI‟s) according to the given minimum 

support and transforms the database such that each transaction 

is replaced by all the FI‟s it contains and then finds the 

patterns. The pattern further is detected based on ith projected 

databases, and constructs suffix and prefix databases based on 

the   apriori  property. RPSP will increase the number of 

frequent patterns by reducing the minimum support and vice 

versa. Recursion is terminated when the detected FI set of 

prefix or suffix projected database of parent database is null. 

All the patterns that correspond to a particular ith   projected 

database of transformed database are formed into a set, which 

is disjoint from all other sets. The union of all the disjoint 

subsets is the resultant set of frequent patterns. The proposed 

algorithm was tested on the hypothetical data and results 

obtained were found satisfactory. Thus, RPSP algorithm can 

be applicable to many real world sequential data sets.  

 

Keywords - Sequential patterns, Frequent itemsets, Prefix and 

Suffix databases, Projected database, Transformed database.   

1.  INTRODUCTION 
Data mining , is a powerful tool for extraction of hidden 

predictive information from large databases. Data mining 

tools predict future trends and behaviours, allowing 

businesses to make proactive, knowledge-driven decisions. It 

is the collection of concepts and techniques for uncovering the 

interesting data patterns hidden in large data sets. One of the 

popular data mining techniques is Association rule mining, is 

a process of identifying the dependency of one item with 

respect to the occurrence of the other item. Finding frequent 

patterns, associations, correlations, or causal structures among 

sets of items or objects in transaction databases, relational 

databases, and other information repositories.Some of the 

applications like, Basket data analysis, cross-marketing, 

catalog design, loss-leader analysis, clustering and 

classification etc. 

Sequential pattern mining is more difficult than association 

rule mining because the patterns are formed not only by 

combining items but also by permuting item-sets. Enormous 

patterns can be formed as the length of a sequence is not 

limited and the items in a sequence are not necessarily 

distinct. Owing to the challenge posed by exponential possible 

combinations, improving the efficiency of sequential pattern 

mining has been the focus of recent research in data mining. 

Sequential pattern mining is an important Data Mining 

problem which detects frequent sub- sequences in a sequence 

database [1][2]. In this proposed approach certain frequent 

Sequential Patterns at faster pattern growth by recursively 

determining the prefix-projected database and suffix-projected 

database for every ith database and determine the frequent 

patterns containing i. The final set of frequent sequential 

patterns is the union of the disjoint subsets[8]. Sequential 

pattern mining problem  can be widely used in different areas, 

such as mining user access patterns for the web sites, using the 

history of symptoms to predict certain kind of disease, also by 

using sequential pattern mining, the retailers can make their 

inventory control more efficient[5].Which results efficient 

mining and better scale up property than conventional 

algorithms.  

 

The rest of the paper is organised as follows section II 

presents proposed approach and its algorithm, experimental 

study, performance evaluation and time complexity are 

presented in Section III. Finally, conclusion and future work 

in section IV. 

 

2.  PROPOSED APPROACH 
In this section the proposed Recursive Prefix Suffix Pattern 

based detection algorithm (RPSP) is discussed. The RPSP 

algorithm has two major steps. In the first step the database is 

transformed by finding the frequent items with the support 

larger than the minimum support as per the apriori principle 

[3][4]. In the second step the algorithm partitions the patterns 

into prefix and suffixes of the each frequent item. The 

algorithm proceeds by constructing the prefix and suffixes of 

the projected databases, without the construction of 

DAG(Directed Acyclic Graph) [8]. The proposed approach 

finally detects patterns of each subset by recursively calling 

prefix and suffix subroutines. 

2.1  RPSP Algorithm  
1. Start 

2. Read the Sequence Database (DB) and Minimum    

Support(MS) 

3.  FI= Find_FI (DB, MS, true) 

4. Assign indexes to frequent itemsets after they are being 

arranged in lexicographic order. 
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5. Transform the DB into Transform DataBase(TDB) 

6. P= Ø 

7. For  each „x‟ in FI do  

 Px= Ø 

xDB = call get_iDB(x,TDB,true) 

PPx = call Prefix (xDB, MS, x) 

SPx = call Suffix(xDB, MS, x) 

PSPx= call Combination_of (x,PPx,SPx,TDB,MS) 

Px= union of (PPx, SPx, PSPx, x)    

End of for   

8. P=Union of (P, Px) 

9. Stop. 

 

The RPSP algorithm finds Frequent Items (FI‟s) in  the 

transaction database with given minimum support(MS) and 

transforms the DataBase(DB) by assigning unique 

Identification numbers (Id‟s) to the corresponding  FI‟s .The 

algorithm further proceeds by finding the projected databases 

for each FI.  

2.1.1  Find_FI(String tempDB[][], int ms, Boolean 
ismultiple) 
 

1. tempFI[] = Get all the single items that have count greater 

than the ms . 

2. if (ismultiple) 

3. tempFI2[]=Get all the multiple item itemsets whose count 

is greater than the ms support value4. tempFI[] = tempFI[] + 

tempFI2[]  (concatenation) 

5.Perform String Sort on the tempFI[] 

6. Return tempFI. 

The subroutine Find_FI() finds the frequent itemsets in the 

input database. It takes the database from which FI‟s are to be 

found, minimum support and a Boolean Ismultiple as 

parameters and returns the set of frequent itemsets. If the 

ismultiple value is true then even number of  itemsets are 

considered as candidates for frequent itemsets. If  the value is 

false then they are not considered as candidates for frequent 

itemsets[11]. Therefore, with the candidates  obtained for each 
corresponding FI‟s, the subroutine proceeds with detection of  
prefix and suffix projected databases[12].  

2.1.2  Prefix(tempDB,MS,temp) 
 

1.TDB = call get_iDB(tempDB,temp,false) 

2.PDB = get all the itemsets before to last occurance of temp, 

and form them into a database 

3.FI= call Find_FI(PDB,MS,false) 

4.Repeat until FI=Ø 

Py=Ø 

For each „y‟ in FI 

yBD= call get_iDB(y,PDB,false) 

PPy= call Prefix(yDB,MS,y) 

SPy= call Suffix(yDB,MS,y) 

PSPy= call Combination_Of(x,PPy,SPy,PDB,MS) 

Py= union of(PPy, SPy, PSPy, y) 

End of for 

5. Return Py 

 

2.1.3 Suffix(tempdDB, MS ,temp) 
 

1.call Suffix(tempdDB, MS ,temp) 

2TDB = call get_iDB(tempDB,temp,false)   

3.SDB = {form a Database where all the tuples correspond the 

respective tuples in Step7.4.3: TDB such that each tuple 

contains the itemset that  occur after „temp‟ in TDB tuple 

4.FI = call Find_FI(SDB,Ms,false) 

5.Repeat till FI=Ø 

Py=Ø 

For each „y‟ in FI do 

yDB= call get_iDB(y,SDB,false) 

PPy= call Prefix(yDB, Ms,y) 

SPy= call Suffix(yDB,MS,y) 

PSPy=call Combination_Of(y,PPy,SPy,PDB,MS) 

 Py= union of(PPy, SPy, PSPy, y) 

End of for 

6. Return Py. 

The subroutine Prefix(tempDB,MS,temp) detects all FI‟s 

which are prefixes to the ith projected databases .Similarly 

Suffix(tempdDB, MS ,temp) [10]detects all patterns which are 

suffixes to the ith projected databases. The prefix and suffix 

pattern construction process continues until database becomes 

empty and FI reaches to null set of all itemsets.  

 

2.1.4  get_idB(String temp,String[][]  tempDB, 
Boolean isGre) 
 

1.Temp1dB = {get all the tuples that contain atleast one item 

‟temp‟From tempDB} 

2.If (isGre) 

Temp1dB = { set of tuples which is resultant after 

removing all the itemsets that are numerically  

greater than „temp‟ in Temp1dB} 

Return Temp1dB. 

 

The subroutine get_iDB() takes the database, the root value 

for which the ith Database is to be constructed and a Boolean 

variable isGre as Parameters and  returns the corresponding 

ith database. If  isGre value is true then all the items that are 

greater than the root value are ignored in the resultant ith 

database otherwise, the  items are included.  

2.1.5 Combination_Of(String root, String a[], 
String b[], String tempDB[][], int MS) 
 

1. Let x, y represent an item in a[], b[] respectively. 

2. String abc[]<-- get all possible combinations of x and y for 

all possible      values of x and y. The retrieved combination 

should be  like  x + root + y 

3. abc[]<--get all the patterns(entries) from abc[] whose count 

in tempDB[] is greater than  the given MS value 

Return abc. 

 

The subroutine  Combination_Of () takes the root element, 

prefixes patterns, suffix patterns, parent database and the 

minimum support value as parameters and returns the 

bidirectional patterns. It forms all the possible combinations 

for every possible value in prefix patterns and the suffix 
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patterns along with the root element. The concatenation of 

Prefix Pattern root and Suffix Pattern root along with the root 

(  PProot + root + PSroot )  is checked with the count and 

minimum support in the parent database. If the count is 

greater than minimum support the final pattern set  is returned 

as a bidirectional frequent pattern otherwise rejected. 

3.   EXPERIMENTAL STUDY AND 

ANALYSIS 

To evaluate the effectiveness of RPSP algorithm, it is tested 

on hypothetical and real world data sets. The results were 

found satisfactory. 

  

3.1 Experimental Study on hypothetical data: 
 

       Input hypothetical Data Base 

Seq Id                         Sequence 

1 <(1) (1,2,3) (4) (7,8) (3)> 

2 <(3) (5,8,9) (1,2) (2,3)> 

3 <(5) (1,2) (3,5,6) (1,2) (6)> 

 

For the above given sequence database the detected Frequent 

Itemsets (FIs) are (1), (1,2), (2), (3). Unique Id is assigned to 

each FI as follows :- (1)-1, (1,2)-2, (2)-3, (3)-4[7]. The 

algorithm consists of two major steps. 

 

 3.1.1 Transformation of Database: In this step the 

detected FI‟s with their assigned id‟s are  transformed and 

infrequent items are eliminated. Thus, the transformed 

database is 1: < (1) (1,2,3,4) (4) >   ; 2: < (4) (1,2,3) (3,4) >   ;  

3: < (1,2,3) (4) (1,2,3) >. 

 

3.1.2 Pattern Partitioning: With the detected FI‟s the 

number patterns are chosen, and then algorithm proceeds in 

finding their prefix and suffixes of  each projected database. 

In the mentioned example the number of detected FIs are 4, 

and thus the required final Patternset (P) consists of 4 disjoint 

subsets i.e., from P1, P2,P3 and P4, where  Pi includes „ith‟ 

element  and element less than „ith‟ element .[6] 

 

1) Finding subsets of patterns 

 

a) The construction of pattern set P starts with subset P4 and 

ends up with the subset P1. In the process of finding  the 4th 

projected database(P4) the transformed 4th DB is {1 : 

<(1)(1,2,3,4)(4)> ;2 :<(4),(1,2,3)(3,4)>;3 <(1,2,3)(4)(1,2,3)> 

}. Prefix of 4th DB is {1: < (1) (1,2,3,4) >; 2: < (4) (1,2,3) > ; 

3: < (1,2,3) >} and Suffix of 4th DB is {1: <(4)> ;2: <(1,2,3) 

(3,4)> ;3: <(1,2,3)>} . Thus, FI set contains {3} as there are 

no frequent patterns for suffix of the 4th projected data base. 

But, the prefix of the 4th projected database is having frequent 

items in 3db,2db and 1db. Therefore, the FI‟s for 3db {i.e 1: 

<(1)(1,2,3)>; 2: <(1,2,3)(3)>; 3 :<(1,2,3)(1,2,3)>;} has   

prefixes  and suffixes as follows : pre(3pre ( 4D)) is  1: <(1)> 

;2: <4>; suf (3pre ( 4D)).Frequent patterns are not found 

further as there are no databases to process 3db [9][11] . 

For pre(2pre ( 4D)) as 1:<(1)> ;2:<(4)> : suf (2pre ( 4D)) no 

suffix items for 1db with (1pre( 4D ) are  pre(1pre ( 4D)) 1: 

<(1)> ;2- <4> ;suf (1pre ( 4D)) 1:<(1,2,3,4).Thus, P4:<1 4> <2 

4> <3 4> <4>; 

b) Similarly patterns for  P3, P2, P1 are found as P3 : <1 3> <3> 

;  P2:<2>   ;P1 <1> . 

Thus, the final pattern set P is the union of all disjoint subsets 

(P4, P3, P2, P1 )of  FI set. 

P: {<1 3> ,<1 4> ,<1> ,<2 4> ,<2> ,<3 4>, <3> ,<4>} . 

 

3.2 Performance Evaluation and Time 

complexity:  
 

This subsection deals with impact of different parameters in 

the dataset on the performance of the algorithm .The actual 

data is from MSNBC (an anonymous web data) dataset for 

RPSP algorithm, with many experimental proofs the 

parameters are evaluated. The experimental parameters are 

minimum support, number of frequent items, time, memory 

and number of transaction in a sequence. The experiments 

shows that  RPSP algorithm can find all frequent item sets 

with given minimum support value. If the value of minimum 

support increases, the average number frequent items sets 

tends to decrease as shown in the figure 3.2.1. The time for 

finding the number frequent itemsets  increases with the 

number of sequences which is shown in figure 3.2.2. It is 

observed that, more memory is required as the number 

transactions in sequence on the dataset increases as shown in 

figure 3.2.3. 

 

Figure: 3.2.1 Average number of frequent items for the 

different minimum support values 

 

Figure: 3.2.2 Performance with time varying for the 

number of transactions in a sequence 
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Figure: 3.2.3 Memory usage for the MSNBSC data set 

The time complexity of the RPSP algorithm is proportional to 

the total time of checking items in projected databases. For the 

given a sequence, if the longest pattern in the sequence is M, 

then the maximal level of projections that may occur on the 

sequence will be M. This means each item in the sequence is 

checked at most M times. Given a database, the total number 

of items is T. Let L be the average length of detected patterns, 

then on average an item is checked at most L times, and the 

total instances of items checked is at most LT times. 

Practically it is close to O((logL)T)) because the minimal 

levels of projections to detect a pattern with length M is about 

log2M+1.  

 

4.   CONCLUSION 
With the increase of large data, it is difficult to maintain and 

access the information in real life situations.  Due to that, 

there is need of various mining techniques especially designed 

for different types of data.  Moreover, frequent itemset mining 
plays an essential role in the mining of various patterns and 

useful in many applications. In this paper a new approach is 

proposed for sequential pattern mining namely Recursive 

Prefix Suffix Patterns pattern based detection (RPSP) 

algorithm. RPSP algorithm requires simpler steps for finding 

the FI‟s with the given minimum support. The algorithm 

constructs Prefix and suffix projected databases and then 

detects frequent patterns hierarchically by pattern partitioning, 

thus it is an improvement in terms of levels of recursion. The 

time of execution decreases for large datasets and by 

increasing the minimum support level. Our approach can be 

extended to other type of sequential pattern mining problems, 

like mining with constraints, maximal pattern mining and 

domain specific pattern mining etc. The implementation of 

RPSP approach is done with java swings environment. 
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