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ABSTRACT 

Particle filters are an alternative to approximate the Kalman filter 

for nonlinear problems. This paper intends to assess the potential 

of Particle Filter (PF) and its variants in the context of the state 

estimation problem of a three phase induction motor. The 

conventional Particle Filter (SIR-PF), and particle filters that 

employ importance sampling through proposal distributions such 

as Particle Filter with Extended Kalman Filter (PF-EKF) and 

Particle Filter with Unscented Kalman Filter (PF-UKF), which are 

proposed in the literature within the particle filtering framework 

that takes into account of the latest observational information to 

reduce the risk of weight degeneracy is described and the error 

behaviour is analyzed through Monte Carlo simulations with 

regard to three scenarios Viz., low speed operation, step changes 

in load torque and reversal of speed. Simulation results 

demonstrate the superior tracking performance of PF-EKF at the 

expense of higher computational effort over the other approaches 

and can be determined to be a good substitute for the UKF in 

terms of accuracy of the state vector estimation. 

Keywords   
Unscented Kalman Filter (UKF), Particle Filter with EKF as 

Proposal Distribution [PF-EKF], Particle Filter with UKF as 

Proposal Distribution [PF-UKF], Sampling Importance Re-

sampling Particle Filter [SIR-PF], Bayesian State Estimation, 

Three Phase Induction motor [IM].  

Nomenclature 

Pp   No. of pole pairs  

σ sL =σL
   

Stator transient inductance (H) 

σ   Leakage or Coupling factor 

Ls  Stator inductance (H) 

Rs  Stator resistance (Ω) 
'

rL   Rotor inductance referred to the stator side 

(Ω)  
'

rR   Rotor resistance referred to the stator side (Ω) 

sα sβV ,V   Stator stationary axis components of stator 

  currents (V) 

rα rβψ ,ψ   Rotor stationary axis components of stator 

  flux (V-s) 

LJ   Total inertia of the IM (Kg.m2) 

mω   Angular velocity (rad-s) 

1. INTRODUCTION 
State estimation can be considered as an optimal solution within a 

Bayesian framework. The pioneering work of Kalman (1960) 

provides an exact solution to the problem of state estimation for 

linear systems with Gaussian additive noises. Later, Kalman Filter 

(KF) was modified to give the Extended Kalman Filter (EKF) to 

accommodate lightly nonlinear systems, and this is basically the 

dominant Bayesian state estimation algorithm for nonlinear 

systems and non-Gaussian uncertainties over the past four decades 

[2-7]. The covariance propagation step in the EKF requires 

linearization of nonlinear system dynamics around the mean. 

When the system dimension is large, computing derivatives of 

nonlinear state transition and measurement functions at each time 

step can prove to be a computationally demanding exercise [8], 

[9]. 

Alleviating difficulties arising due to the computation of the 

Jacobian has been the main motivation behind a new class of 

derivative free Kalman filter, such as the Unscented Kalman Filter 

(UKF) proposed by Julier and Uhlmann (2000) that have recently 

appeared in the literature. When compared to the EKF, the 

derivative free filters can be used for state estimation in a much 

wider class of nonlinear systems. For inputs with non-Gaussian 

distributions, Julier and Uhlmann (2004) have shown that the 

UKF results in approximations that are accurate to at least the 

second-order; while the third and the higher order moments can 

also be approximated with good accuracy by appropriately 

choosing the tuning parameters. 

Literature concerning the implementation of UKF for the 

estimation of hidden states from noisy data for a three phase 

induction motor is rather limited and there have been a very few 

papers published in the literature [10-12]. The advantage of using 

the unscented transform as a nonlinear approximation by showing 

faster convergence of the UKF against the EKF using the example 

of the induction machine with poor initial estimates is very well 

demonstrated in [12].The reason for enhanced performance of 

UKF is attributed to better nonlinear approximation at each step 

[13]. The UKF as a tool for state estimation seems to be a 

promising alternative for process control applications.  However, 

the UKF algorithm is computationally more intensive than EKF 

[12]. 
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Another alternative to approximate Kalman filtering problem for 

nonlinear problems is to use sequential Monte Carlo methods also 

known as particle filters. Essentially, Particle Filter (PF) is a 

method of recursive Bayesian filtering by Monte Carlo 

simulations. It is based on the Sequential Importance Sampling 

(SIS) algorithm; the key idea is to represent the posterior 

probability density function (PDF), by a set of random samples 

with associated weights. Particle filters use a number of particles 

to represent the PDF of the system states. The estimates are 

computed based on those samples and weights. With large number 

of samples, this Monte Carlo characterization becomes an 

equivalent representation to the usual description of the posterior 

PDF, and the SIS filter approaches the optimal Bayesian 

estimation. An authoritative and lucid survey of PF’s can be seen 

in [14] and [15], as well as cautionary tales and the state-of-the-art 

theory on the issue of high dimensional problems with regard to 

particle filters in [16].  

An increase in the use of particle filtering schemes was seen with 

the introduction of the re-sampling technique by Gordon et al., 

(1993). A common problem that is associated with the 

implementation of particle filter is the sample attrition problem 

[17]. To circumvent this effect, a brute-force approach is to 

increase the number of particles, but this makes the analysis of 

particle filters computationally expensive. Empirically, the 

requirement of number of samples can be estimated, although this 

bound in practice is loose and usually data/problem dependent. On 

the contrary, there are two ad-hoc approaches to alleviate the 

sample dispersion problem: (1) re-sampling the particles and (2) a 

good choice of proposal distribution. It should be noted that re-

sampling does not really prevent the weight degeneracy problem; 

it just saves the calculation time by discarding the particles 

associated with insignificant weights. What really it does is 

artificially concealing the impoverishment by replacing the high 

important weights with many replicates of particles, thereby 

introducing high correlation between particles. A complete survey 

on the various re-sampling techniques can be found in [18], but it 

is beyond the scope of this work. In [19], for the accurate 

reconstruction of the state vector of a DC motor, the ascendancy 

of the particle filter at the cost of larger computational effort 

against the Kalman Filter, which assumes Gaussian measurement 

noise, is exposed.  

As stated above, particle filters can also be cast in the framework 

of importance sampling [15], which allows the designer to freely 

choose the proposal distribution from which the particles are 

drawn. The selection of a suitable form of importance function to 

replace the true posterior density is a crucial step in the particle 

filter. In general, it is very difficult to design such proposal 

distributions and the choice is highly problem dependent. One of 

the most popular realizations of this approach uses the ‘transition 

prior’ as the importance proposal. But this deceptively simple 

approach, sometimes results in a higher uncertainty, because it 

fails to incorporate the latest available information from the most 

recent measurement. As pointed out in [16], in almost all 

successful implementations of PF, the proposal density is obtained 

from an EKF or UKF. Within the particle filter framework, the 

EKF and UKF can be utilized for the proposal distribution that not 

only incorporate the latest observation, but also generate 

proposals which tend to overlap with the true posterior, more 

consistently. Employing the EKF and UKF to approximate the 

mean and the covariance of the proposal distribution for each 

particle is the central idea of PF-EKF and PF-UKF proposed by 

Van Der Merwe, (2000). The inherent difference between the 

SIR-PF, PF-EKF and the PF-UKF is the proposal distribution. 

Results in [20], indicate that the particle filters with a proposal 

distribution obtained using the EKF and UKF outperform the 

other existing filters, both theoretically and empirically for scalar 

estimation problem. Recently, a novel approach is presented for 

generating the proposal distributions using the Constrained 

Extended Kalman Filter (C-EKF), Constrained Unscented Kalman 

Filter (C-UKF) and Constrained Ensemble Kalman Filter (C-

EnKF) and the simulation studies underline the crucial role played 

by the choice of proposal distribution in formulation of particle 

filters [21]. The interest in this problem is in fact, motivated by 

the encouraging results developed in this paper.   

This paper aims to evaluate the use of various particle filtering 

schemes on the simulated model of a three phase induction motor 

through extensive Monte Carlo simulation studies, and hence to 

determine the state estimation scheme that is suitable for AC drive 

applications amongst the four variants. The SIR-PF, PF-EKF, PF-

UKF, UKF algorithms were designed, analyzed, implemented and 

their effectiveness is evaluated under three different 

circumstances viz., step changes in load torque, speed reversal and 

low speed operation. Computer simulations have been carried out 

in the presence of additive state and measurement uncertainties. 

The organisation of the paper is as follows:- After the 

introduction in Section-1, Section-2 discusses in detail the 

formulation of SIR-PF, PF-EKF and PF-UKF algorithms for the 

state estimation of a three phase IM. Three phase induction motor 

model is described in Section-3. Simulation studies are reported in 

Section-4 and the main concluding remarks drawn from the 

analysis of the simulation results are discussed in Section-5.UKF 

algorithm is provided in the Appendix-A.  

2. STATE ESTIMATION 
Consider a nonlinear system represented by the following 

nonlinear differential equations: 

 
[ ]dx

= F x(t), u(t)
dt

                      (1)        

 
[ ]y=G x(t),u(t)                    (2) 

 

Equation (1) is a state equation and equation (2) describes the 

relation between state and measurement variables. In order to 

describe a discrete nonlinear system, equations (1) and (2) can be 

functionally represented in discrete form as: 

 
 [ ]x(k)=f x(k-1),u(k-1) +w(k)

                                       
(3) 

 [ ]y(k) =H x(k-1),u(k-1) +v(k)
                                      

(4) 

  

where nx(k) R∈  is the system state vector, mu(k) R∈ is the known 

system input, pw(k) R∈ is the state noise, ry(k) R∈  is the 

measured variable and rv(k) R∈  is the measurement noise .The 

parameter k represents the sampling instant and the symbol f is a 

(possibly non-linear) state transition function and g is a (possibly 

non-linear) measurement function.  

 

The objective of the recursive Bayesian state estimation problem 

is to find the mean and variance of a random variable x(k)
 
using 

the conditional probability density function (k)p (k)|  x Y .
(k)Y  

denotes the set of all the available measurements, 
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i.e. }....1),(ky{y(k), − .  As reported in [14], the 

posterior density k
p (k) |  x Y is estimated in two steps: (a) 

prediction step, which is computed before obtaining an 

observation, and, (b) update step, which is computed after 

obtaining an observation. In the prediction step, the posterior 

density k 1p (k 1) | − − x Y at the previous time step is propagated 

into the next time step through the transition density 

{ [ ]p (k) | (k 1)−x x } as follows: 

[ ]k 1 k 1p (k) | p (k) | (k 1) p (k 1) | d (k 1)− −   = − − −   ∫x Y x x x Y x
  

 
(5) 

The update stage involves the application of Bayes’ rule: 

 

[ ]k k 1

k 1

p (k) | (k)
p (k) | p (k) |

p (k) |

−

−
   = ×     

y x
x Y x Y

y Y
 

(6)  

Where,
 

[ ]k 1 k 1p (k) | p y(k) | x(k) p (k) | d (k)− −   =   ∫y Y x Y x

  

(7) 

Combining 5, 6 and 7  

[ ] [ ]
[ ]

k 1

k

k 1

p (k) | (k) p (k) | (k 1) p (k 1) | d (k 1)
p (k) |

p y(k) | x(k) p (k) | d (k)

−

−

  − − −    =    

∫
∫

y x x x x Y x
x Y

x Y x

            

(8) 

Equation (8) describes how the conditional posterior density 

function propagates from k 1p (k 1) | − − x Y  to kp (k) |  x Y . The 

properties of the state transition equation (3) are accounted 

through the transition density function [ ]p (k) | (k 1)−x x  while  

[ ]p (k) | (k)y x  reflects the non-linear measurement function. The 

prediction and update strategy provides an optimal solution to the 

state estimation, which unfortunately involves high-dimensional 

integration. The exact analytical solution to the recursive 

propagation of the posterior density is very difficult to obtain. 

  
2.1 Particle Filter Algorithm with EKF and 
UKF as Proposal Distribution 
 

The PF is a numerical method for implementing an optimal 

recursive Bayesian filter by Monte-Carlo simulation. Classical 

particle filters can be used to approximate the 

distribution kp x(k) | Y   , using a set of random samples 

{ ix (k), i 1.....N= } with associated weights { N......1i(k),w
i

= }: 

N
k (i) (i)

i

p x(k) | Y w (k) x(k) x (k)   ≈ δ −   ∑                         (9) 

 The weights are normalized such that the weights sum 

to unity. In the above equation 
ix(k) x (k) δ −  is Dirac’s delta 

function, ix(k) x (k) 1 δ − =   
if ix(k) x (k)=  

and 

ix(k) x (k) 0 δ − =   otherwise. It should be noted that drawing 

samples from the posterior density is not possible, although the 

posterior density can be easily evaluated at discrete points in the 

state space. For this reason a proposal density is used, and at each 

sampling instant, the samples are drawn from the proposal 

distribution. Further weights are computed to compensate for the 

difference between the proposal density and the true posterior 

density [14], and are defined as follows: 

 

  
]Y|k):(1[xq

]Y|k):(1[xp
(k)ω~

k(i)

k(i)

i
=

 

               

1)-(kω~

]Y1),(kx|(k)[xq

1)](kx|(k)[xp(k)]x|[y(k)p
ik(i)(i)

(i)(i)(i)

−
−

=  

    

∑
=

=

N

1
j

i

i

j
k)ω~

(k)ω~

(k)ω

(

        (10) 

 

The above equation provides a mechanism to sequentially update 

the weights.  The updated state estimates k)|(kX̂  at the kth 

sampling instant are given by  

       

∑=
=

N

1i

(i)
i

k (k)x(k)ω)]Y|[x(k)E

                

(11)                                              

The computational steps involved are as follows [14]: 

 
2.1.1 Initialization  

At k = 0, N samples are drawn from the given distribution of 

initial state )0|0(x̂ . For example, if the initial state has 

multivariate normal distribution [ ]x̂(0 | 0), (0)N P , then the 

samples are drawn as follows:  

            

[ ]1/ 2(i) (i)

(i)

ˆ ˆ(0 | 0) (0 | 0) P 0 | 0

N(0, I)

= + ϒ

ϒ ∼

x x

         

        

(12) 

and its associated weights are initialized as 
i

1

N
ω = .  In the above 

equation ( )N ,µ Σ , is a multivariate Gaussian density with 

argument mean µ and covarianceΣ, i.e.  

[ ] ( ) ( ) ( )N / 2 T1/ 2 1N µ 2 | | exp 0.5 x µ x µ
− − − ,∑ = Π ∑ − − ∑ − 

 

 

2.2.2 Importance Sampling 

At the k’th time step, after obtaining measurement y(k), N 

observers (EKF, UKF) are used in parallel to compute means and 

covariance of the proposal distributions, i.e. 

k)}|(kPk),|(kx{
(i)(i)

 
for each propagated particle 

1)k|1(kX̂
(i)

−− . The importance density is then approximated 

as k)|(kPk),|(kx[N]Y1),(kx|(k)[xq
(i)(i)k(i)(i) ≈−

 
and used to draw a 

sample around each particle as follows:   
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I)N(0,~

k)|(k
(i)

Pk)|(kxk)|(kx̂

(i)

(i)

γ

γ 
(i)(i)





+=

 

 

2.1.3 Computation of weights   

The weights associated with each particle are now computed as 

follows:   
(i) (i) (i)

i (i ) (i) k

p (k) | (k) p (k) | (k 1) 1
(k)

Mq (k) | (k 1),

   −     =   −   

y x x x

x x Y
%ω

      (13)

 

 

These 
i (k)ω% weights are then normalized to obtain {

i
(k)ω } as 

given by equation (10). In the special case when state and 

measurement noise signals are additive zero mean Gaussian white 

noise, the numerator can be computed as follows:  

     

(i) i

(i) (i)

ˆp (k) | (k) N H (k | k) ,R

p (k) | (k 1) N (k | k 1),Q

    =    

   − = −   
i

y x x

x x x
 

 
2.1.4 Re-sampling     

This step involves discarding samples that have low importance 

and reassigning weights to the remaining particles. Various 

approaches have been suggested in the literature for carrying out 

this step. Arulampalam et al., have recommended the use of 

residual systematic re-sampling algorithm (RSR) and the re-

sampling algorithm has been reported in [14]. At the end of this 

step, the sample set typically contains multiple replicas of 

important samples, thereby effectively increasing weight of these 

samples in the ensemble. It may be noted that, at the end of the re-

sampling step, all samples are assigned equal weights, i.e. 

i (k 1) 1 / Nω − =% .The updated state estimate is next constructed as 

kE (k) | )  x Y
 

∑=
=

N

1i

(i)
k)|(kx̂

N

1
                                        (14) 

Remark – 1  

For SIR-PF, in the importance sampling step the state transition 

function is used as the proposal distribution/importance function, 

i.e. (i) (i ) kq (k) | (k 1), − x x Y ≈ (i) (i)p (k) | (k 1) − x x , and 

samples are drawn from the above importance function.   
 

3. INDUCTION MOTOR MODEL 
The model of the three phase induction motor used for simulation 

is the rotor flux based extended model represented in stationary 

reference frame. The machine specifications used in this work is 

listed in Table 1. Differential equations for components of stator 

current, rotor fluxes and angular velocity of the induction motor in 

the frame of references connected to the stator are given as below 

[2]: 

 
' 2 '.

sα s r m r m m
1 sα rα p m rβ sα' 2 ' 2 '

σ σr σ r σ σ r

di R R L R L L 1
= X =- + i + ψ + P ω ψ + V

dt L LL L L L L L

 
 
 

               

(15) 

' 2 '.
sβ s r m r m m

2 sβ rβ p m rα sβ' 2 ' 2 '

σ σr σ r σ σ r

di R R L R L L 1
=X =- + i + ψ - P ω ψ + V

dt L LL L L L L L

 
 
 

                                      

(16) 
' '.

rα r r
3 m sα rα p m rβ' '

r r

dψ R R
= X = L i - ψ -P ω ψ

dt L L
                                                                        

(17) 
' '.

rβ r r
4 m sβ rβ p m r' '

r r

dψ R R
= X = L i - ψ +P ω ψ

dt L L
α                                                                                

(18) 

.
p pm m m

5 rβ sα rα sβ L' '

L L Lr r

P Pdω L L3 3 1
= X =- ψ i + ψ i - t

dt 2 J 2 J JL L
                                                               

(19) 

The measurement equation is given by:  

  

[ ]Tsβsα iiY =         (20) 

 

The values of state variables were initialized as below: 

 

0]0;0;0;[0;0)|(0X =  

The evolution of true state variables is computed by solving the 

non-linear differential equations, using the differential equation 

solver in MATLAB 7.7. The sampling time is chosen to be as 

0.01 seconds and the length of all the simulation trials as 2000, 

besides, the state and measurement noises are added in an additive 

fashion. 

 

3.1 Design of Particle Filtering Schemes 
The algorithm reported in Section 2.1, and in Appendix-A  have 

been used to estimate the state variables of the IM and it may be 

noted that the filter models used for one step ahead prediction has 

load torque as an additional state variable which is of the form:  

                         
.

L
6

dt
= X =0

dt
                                                       (21) 

              

Equation (21) implies that the load torque can vary only in a step-

like fashion.  The afore-said equation, together with the 

differential equations 15 to 19, listed in the preceding sub-section 

have been used for generating one step ahead predicted state 

estimates. The state and measurement noise covariance matrices 

listed below in equations (22) and (23) were initialized as 

specified in [2]. However the variance linked with the augmented 

state variable is changed, to attain good responses. 
 

Q UKF,PF-EKF,SIR-PF, PF-UKF    =   diag   {1.5x10-11A2  1.5x10-11A2                     

                   10-15(V-s)2  10-15(V-s)2  10-15(rad/s) 2 10-6(N-m) 2} 

 (22) 

RUKF,PF-EKF,SIR-PF, PF-UKF    =  diag { 1.5e-7 A2    1.5e-7 A2}                                      

(23)          

It is to be noted from equations (22) and (23) that test conditions 

for all the nonlinear filters are maintained identical during 

simulation. It has been assumed that the random errors were 

present in the noise covariance matrices and the estimation is 

started with the initial value as shown below: 
 

 0]0;0;0;[0;0)|(0X =  

The initial error covariance matrices reported in [2], has been 

fixed and is as follows: 
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P= diag{ 1A2 1A2 1(V-s)2 1(V-s)2 1(rad-s)2 1 (N-m)2} 

 

For all the scenarios tested in our simulation analysis, the 

ensemble size for a single run of different particle filters is taken 

as 100 in order to get reasonable responses. 

 

4. SIMULATION RESULTS AND 
    DISCUSSION 
 

4.1 Test Results  
In order to elucidate the superior tracking performance of the 

sample based filtering schemes against the UKF, which is 

relatively a new member in the Kalman filter family, simulation 

studies have been performed with regard to three different 

scenarios reported in [2] and the simulation analysis is carried out 

in MATLAB7.7-R 2008(b) program on an Intel core 2 Duo 

Processor with 1.8GHz CPU and 2 GB RAM.  The result of 

running (single run) of the particle filter and its variants (i.e. the 

true and estimated state variables) for the low speed operation 

scenario, which is possible by constantly maintaining v/f ratio and 

was documented as a serious challenge in the arena of IM drives 

is shown in Figure 1. Figure 2 gives the estimation performance of 

the nonlinear filters taken for comparative study, when the motor 

is subjected to step changes in load torque. Figure 3 illustrates the 

tracking performance of the derivative free filters for the speed 

reversal case, which is realized by changing the input frequency 

from +50 Hz to -50Hz. As a result of the problem of particle 

collapse, which is significantly reported in the literature of various 

research fields, the deceptively simple approach SIR-PF which 

uses transition prior as the proposal distribution, fails to track the 

augmented state variable that can be clearly visible from Figures 

1, 2 and 3. From the simulation results depicted in the figures, it 

can be deduced that the tendency for collapse of weights is 

virtually eliminated in the newer versions of the particle filter. 

Moreover, the estimation of the augmented state variable is found 

to be very precise for PF-EKF. The most worthy being paid 

attention to is that the PF-EKF is the best one over the other 

competing algorithms of its class.  
 

 

4.2 Performance Assessment 
The justification of the superiority of certain algorithms over the 

others even on a specific problem is also unfair without Monte 

Carlo simulations. The sum of squares of the estimation errors 

(SSEE) is chosen as the performance index, since it is commonly 

used in literatures and it facilitates quantitative comparison. In 

order to reduce the influences that the random error brings, 10 

independent simulations are carried out to calculate the mean 

value of SSEE [13]. The required sample size depends strongly on 

the design of the particle filter and the problem addressed. For 

especially high dimensional systems, an enormous, infeasible 

number of samples are required to obtain satisfactory results. The 

ensemble or particle numbers of the PF-EKF, the SIR-PF and the 

PF-UKF were set to 50 and 75 respectively; for our simulations, it 

is found that 75 particles were enough to obtain good results. 

Increasing the number of particles additionally hardly made any 

sense. Table 2 summarizes the simulation results obtained for 

UKF. Tables 3, 4 and 5 exhibit the results for PF-EKF, PF-UKF 

and SIR-PF respectively. From the view point of the SSEE, the 

PF-EKF is superior to the PF-UKF and UKF. Table 4 clearly 

illustrates the larger time complexity of PF-UKF, which prevents 

from being applied in practice. From the tables, it can be inferred 

that there is a reduction in the SSEE, when the particle size is 

increased.  For the estimation of hidden states of a three phase IM, 

UKF is restricted by its computational demand in the covariance 

propagation. The simulation results shown in figures indicate that 

the UKF and PF-EKF yield quite similar results for the scenarios 

tested, but the magnitude of error in the estimates of UKF is larger 

than that of PF-EKF which has led to a conclusion that it is a 

robust estimator than other approaches.  
 
 

5. CONCLUDING REMARKS 
The use of importance or proposal distributions is known to 

reduce the particle size and improve the estimation accuracy of 

the particle filter. Thus, the choice of appropriate nonlinear filter 

to generate the importance distribution is a crucial step in a PF 

formulation. There is no general choice and it is highly problem 

dependent. In this work, the feasibility of using unconstrained 

EKF and UKF as proposals for the estimation of hidden states of a 

three phase induction motor is established. The performances of 

the proposed particle filter formulations have been evaluated with 

regard to three scenarios and the results are compared with the 

UKF. Simulation results reveal that PF-EKF generates unbiased 

state estimates even with the modest number of particles and can 

be regarded as a better alternative for the state estimation problem 

of a three phase IM. The UKF is used as the surrogate of the EKF, 

which avoids costly calculation of the Jacobian matrices, but due 

to the non-linearity in the dynamic model of the system, the 

accuracy of UKF is said to be relatively poor than its counterpart. 

However, for systems with poor micro processing unit UKF is 

recommended. The time complexity excludes PF-UKF from being 

applied in practice. The main challenge in the PF implementation 

is the reduction in computation time which needs to be addressed.  
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Fig.1 Emergence of true and estimated state variables for low speed operation 
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Fig. 2 Evolution of true and estimated state variables for step changes in load torque 

 

  Fig. 3 Emergence of true and estimated state variables for speed reversal 
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a) isα [A]  - Stator stationary axis components of stator currents. b) isβ [A] - Stator stationary axis  components of stator currents. 

c) rαψ [V-s] - Rotor stationary axis components  of stator flux. d) rβψ [V-s]  - Rotor stationary axis components of stator  flux.  e) 

ωm [rad-s]  - Angularvelocity. f) TL  [N-m]  - Load torque.   

   
 

Table 1. Rated values and parameters of the IM used for simulation study 

P 

(KW) 

f 
(Hz) 

JL  
(Kg.m2) 

Pp 

V 

(V) 

I 

(A) 

Rs 
(Ω) 

Rr 
(Ω) 

Ls 
(H) 

Lr 
(H) 

Lm 
(H) 

Nm 

(rpm) 

TL 

(Nm) 

3 50 0.05 2 380 6.9 2.283 2.133 0.23 0.23 0.22 1430 20 

 

Table 2. Sum of Squares of the Estimation Error (SSEE) values of UKF  

STATE 
VARIABLES 

SCENARIO  I SCENARIO  II SCENARIO  III 

isα 2.0954e-1 7.9398e-2 1.0726e-1 

isβ 2.0538e-1 7.9392e-2 1.0722e-1 

Ψrα 4.3640e-4 3.8271e-5 5.1687e-5 

Ψrβ 4.4223e-4 3.8269e-5 5.1663e-5 

ωm 5.8509e-1 2.6402e-1 6.6195e-1 

TL 1.8080e 0 1.6652e 0 2.1619e 0 

Comp.Time Per 

Samp.Instant 
6.8575e-2 7.1817e-2 7.2578e-2 

 
 
 

Table 3. Sum of Squares of the Estimation Error (SSEE) values of PF-EKF for different ensemble sizes  
 

PARTICLE SIZE STATE VARIABLES SCENARIO  I SCENARIO  II SCENARIO  III 

50 

isα 2.0195e-5 5.8401e-5 5.7817e-5 

isβ 3.8251e-5 5.9075e-5 5.8615e-5 

Ψrα 5.6519e-6 5.6808e-6 5.7025e-6 

Ψrβ 6.6786e-6 6.5854e-6 6.2762e-6 

ωm 3.5731e-3 3.6262e-3 3.5891e-3 

TL 2.8859e-1 3.7828e-1 3.7695e-1 

Comp.Time Per 

Samp.Instant 

1.1856e-2 1.2303e-2 1.2305e-2 

75 

isα 2.0162e-5 5.8375e-5 5.7512e-5 

isβ 3.8018e-5 5.9054e-5 5.8310e-5 

Ψrα 3.3528e-6 4.0986e-6 3.7562e-6 

Ψrβ 3.5083e-6 3.5298e-6 3.4806e-6 

ωm 3.5443e-3 3.5784e-3 3.5719e-3 

TL 2.8827e-1 3.7774e-1 3.7631e-1 

Comp.Time Per 

Samp.Instant 

1.1939e-2 1.2347e-2 1.2309e-2 
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Table 4. Sum of Squares of the Estimation Error (SSEE) values of PF-UKF for different ensemble sizes 

PARTICLE SIZE 
STATE 

VARIABLES 
SCENARIO  I SCENARIO  II SCENARIO  III 

50 

isα 3.9745e-3 2.5150e-3 1.6473e-3 

isβ 3.7955e-3 2.5097e-3 1.6126e-3 

Ψrα 9.6121e-4 4.0498e-4 2.0880e-4 

Ψrβ 9.5744e-4 4.9944e-4 4.1732e-4 

ωm 2.7727e -2 2.8790e-2 9.9504e-2 

TL 3.5775e -1 3.5831e -1 1.5864e -1 

Comp.Time Per 

Samp.Instant 
1.2839e  0 1.3758e  0 1.8468e  0 

75 

isα 3.6726e-3 2.2866e-3 1.3457e-3 

isβ 3.3922e-3 2.2300e-3 1.3391e-3 

Ψrα 1.0190e-4 3.5115e-4 1.2513e-4 

Ψrβ 1.1570e-4 2.9552e-4 1.5862e-4 

ωm 1.8412e -2 1.9143e-2 1.0469e-2 

TL 3.0370e -1 3.0121e -1 1.5837e -1 

Comp.Time Per 

Samp.Instant 

2.5539e  0 2.8319e  0 2.7562e  0 

 

Table 5. Sum of Squares of the Estimation Error (SSEE) values of SIR-PF for different ensemble sizes  

PARTICLE 
SIZE 

STATE VARIABLES SCENARIO  I SCENARIO  II SCENARIO  III 

50 

isα 2.7780e 0 1.2192e 0 1.7196e 0 

isβ 2.7832e 0 1.2211e 0 1.7194e 0 

Ψrα 4.6752e-4 7.1731e-4 9.5485e-4 

Ψrβ 4.7303e-4 6.8811e-4 9.0541e-4 

ωm 2.1904e 1 9.9611e 1 1.0577e 1 

TL 2.6255e 1 1.5261e 1 1.9468e 1 

Comp.Time Per 

Samp.Instant 

4.1971e-1 4.3773e-1 4.4191e-1 

75 

isα 2.9713e 0 1.5628e 0 1.3551e 0 

isβ 2.9810e 0 1.5667e 0 1.3570e 0 

Ψrα 4.7352e-4 8.3332e-4 7.4044e-4 

Ψrβ 4.8665e-4 8.3147e-4 7.1514e-4 

ωm 1.8679e 1 1.5831e 1 9.3100e 1 

TL 3.2397e 1 1.6619e 1 1.4669e 1 

Comp.Time Per 

Samp.Instant 

6.8773e-1 5.8599e -1 4.5738e-1 
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Appendix – A   
Unscented Kalman Filter Algorithm (Julier and Uhlmann, 
2000)   
The unscented transformation (UT) is a method for calculating 

the statistics of a random variable, which undergoes a nonlinear 

transformation. A set of 2L+1 sigma points (k 1| k 1,i)− −χ  

with the associated weights w(i)  are chosen symmetrically about 

x̂(k 1| k 1)− − as follows: 

0
ˆ(k 1| k 1, 0) x(k 1 | k 1) w

L
− − = − − =

+
κ

χ
κ

 

( )
i

1
ˆ(k 1| k 1,i) x(k 1| k 1) (L )P(k 1| k 1) w(i) i 1: L

2(L )
− − = − − + + − − = =

+
χ κ

κ

 

( )
i L

1
ˆ(k 1 | k 1, i) x(k 1 | k 1) (L )P(k 1 | k 1) w(i) ; i L 1.....2L

2(L )−
− − = − − − + − − = = +

+
χ κ

κ

 

 Where κ is a tuning parameter and for Gaussian 

distribution the tuning parameter can be obtained from the 

following relation 3 Lκ = − . The 2L+1 sigma points have been 

derived from the state ( x̂(k 1| k 1)− − ) and covariance of the 

state vector ( P(k 1| k 1)− − ), where L is the dimension of the 

state.  

 In the prediction step the sigma points are propagated 

through the nonlinear differential equations to obtain the 

predicted set of sigma points as  

[ ]
kT

*

(k 1)T

(k | k 1,i) (k 1| k 1,i) F ( ,i), (k 1) d ; i 0 : 2L
−

χ − = χ − − + χ τ − τ =∫ u

(A.1) 
 

The predicted state estimates ( x̂(k | k 1)− ) is obtained 

from the predicted sigma points as 
2L

*

i 0

x̂(k | k 1) w(i) (k | k 1, i)
=

− = −∑ χ
 

                (A.2) 

The error covariance matrix ( P(k | k 1)− ) is obtained from the 

predicted sigma points as  
2L

* * T

i 0

ˆ ˆP(k | k 1) w(i)[ (k | k 1, i) x(k / k 1)][[ (k | k 1, i) x(k / k 1)] Q
=

− = − − − − − − +∑ χ χ

(A.3) 

The sigma points have to be redrawn in order to incorporate the 

effect of the additive process noise 

0
ˆ(k | k 1,0) x(k | k 1) w

L
− = − =

+
κ

χ
κ

 

( )
i

1
ˆ(k | k 1, i) x(k | k 1) (L )P(k | k 1) w(i) i 1: L

2(L )
− = − + + − = =

+
χ κ

κ

( )
i L

1
ˆ(k | k 1, i) x(k | k 1) (L )P(k | k 1) w(i) ; i L 1.....2L

2(L )−
− = − − + − = = +

+
χ κ

κ  

 

The predicted sigma points are propagated through the nonlinear 

measurement equation to obtain the predicted measurement as 
 

 [ ]
2L

i 0

ŷ(k | k 1) w(i)* H (k | k 1,i)χ
=

− = −∑   

                     (A.4) 
 

The covariance matrix of the innovations (
eeP (k) ) and the cross 

covariance matrix between the predicted state estimate errors 

and innovations (
eP (k)ε

) are computed as: 

2L
T

ee

i 0

ˆ ˆP (k) w(i){H[ (k | k 1, i)] y(k | k 1)}*{H[ (k | k 1,i)] y(k | k 1)} R
=

 
= − − − − − − + 

 
∑ χ χ

         

(A.5) 

 
2L

T

e

i 0

ˆ ˆP (k) w(i)[ (k | k 1,i) x(k | k 1)]*{H[ (k | k 1,i)] y(k | k 1)}
=

= − − − − − −∑ε χ χ
                  

(A.6) 
 

ˆ(k | k 1) y(k) y(k | k 1)ϒ − = − −                                                                                           

(A.7) 

The Kalman gain matrix ( K(k) ) can be determined as follows: 

 1

e eeK(k) P (k)P (k)ε
−=                                 (A.8) 

 

 

The updated state estimates ( x̂(k | k) ) are obtained using the 

linear update equation as in the Kalman filter. 
 

         
ˆ ˆx(k | k) x(k | k -1) K(k) (k | k 1)= + ϒ −

 
                        

(A.9) 
 

The covariance matrix of error in the updated state estimates 

( P(k | k) ) is computed using 

 

T

ee
P(k | k) P(k | k -1) - K(k) * P (k)K (k)=      

(A.10) 
 

The UKF does not approximate the nonlinear functions of 

system and measurement models as required by the EKF. 

Instead, the nonlinear functions are applied to sigma points to 

yield transformed samples, and the propagated mean and 

covariance are calculated from the transformed samples.   

 
 
 
 

     


