Knowledge Acquisition under Imprecision through Neighborhood Approximation Operators

Dr.D.Mohanty
Deptt of Mathematics
Seemanta
Mahavidyalaya
Jharpokhoria, Orissa, India

Dr.J.K.Mantri
Deptt of Comp. Sc \&
Applications
North Orissa
University
Orissa, India

Dr.N.Kalia
Deptt of
Mathematics
U.N.College,
Nalagaja,
Orissa, India

B.B.Nayak
Sr. Dy. General Manager
Tele-Com. Division
Hyderabad, India

Abstract

The notion of rough sets, introduced by Z. Pawlak in 1982, is to capture impreciseness and indiscernibility of objects. The basic assumption of rough set theory is that human knowledge about a universe depends upon their capability to classify its objects. Classifications (or partitions) of a universe and equivalence relations defined on it are known to be interchangeable notions. So, for mathematical reasons, equivalence relations were considered by Pawlak to define rough sets. But in practice, we can get non-equivalence relations, rather than equivalence relations for the study of approximations. In this paper, we find notion of neighborhood systems instead of equivalence relations, proposed by Lin (1988), Chu (1992) and Lin \& Yao (1996), for the study of approximation and also we study some properties of 1 -neighborhood systems.

General Terms

Expert Systems, Rough Set Theory

Keywords

Rough sets, classifications, Neighborhood systems, approximation operators, Definability, Dependency.

1. INTRODUCTION

Uncertainty is an important part and is found a lot in our daily life. Theories to handle uncertainty are very before. Probability theory in statistics, the Dempster-Shafer theory of evidence [12] or the theory of belief functions, the fuzzy set theory, the rough set theory and their combinations are the main tool to deal with uncertainty. Recently rough set theory attracts not only the researcher of Artificial Intelligence but also the researcher of medical science, industry and business management etc. It has been successfully implemented in knowledge based systems in medicine $[3,10]$ and industry $[1,8]$.
Z. Pawlak [9] introduced the notion of rough set theory in 1982. It is an excellent tool to capture indiscernibility of objects. Vagueness, Impreciseness, inexactness of a set (concept) are manipulated, by two exact sets, known as, lower approximation and upper approximation of the set. For the finite universe U, the lower approximation of a rough set comprises of those elements of the universe, which can be said to belong to it certainly with the available knowledge (information) and on the other hand the upper approximation comprises of those elements which are possible in the set with respect to the available information.

Moreover, let U be a non-empty finite set, called universe of discourse. Let R be an equivalence relation on U, called an indiscernibility relation, and U / R be the family of all equivalence classes of R on U. An ordered pair $A=(U, R)$ is called an approximation space.

For any subset X of U, the lower approximation of X in A under the indiscernibility relation R be defined by

$$
\begin{equation*}
\underline{R}(X)=\left\{x \in U \mid[x]_{R} \subseteq X\right\} \tag{i}
\end{equation*}
$$

and an upper approximation of X in A be defined by

$$
\begin{equation*}
\bar{R}(X)=\left\{x \in U \mid[x]_{R} \cap X \neq \phi\right\} \tag{ii}
\end{equation*}
$$

where $[x]_{R} \in \mathrm{U} / \mathrm{R}$ that is, $[x]_{R}$ be an equivalence class of R containing $\mathrm{x}, x \in U$.

Definition 1.1 : A set $X \subset U$ is called rough with respect to the knowledge R (the equivalence relation R) if and only if $\underline{R}(X) \neq \bar{R}(X)$.

The set X is called definable with respect to knowledge R if and only if $\underline{R}(X)=\bar{R}(X)$.
$\bar{R}(X) \sim \underline{R}(X)$ is called the border line region of X with respect to the knowledge R and is denoted by $B N_{R}(X)$

Thus $(\underline{R}(X), \bar{R}(X))$ is a rough set for X under the available knowledge R (an equivalence relation R) for any subset X of the universe U.

Lower and upper approximations in A have the following properties:
$1.1 \quad \underline{R}(X) \subseteq X \subseteq \bar{R}(X)$
$1.2 \quad \underline{R}(U)=\bar{R}(U)=U, \quad \underline{R}(\phi)=\bar{R}(\phi)=\phi$
$1.3 \quad \bar{R}(X \cup Y)=\bar{R}(X) \bigcup \bar{R}(Y)$ and
$\underline{R}(X \bigcap Y)=\underline{R}(X) \bigcap \underline{R}(Y)$
1.4

$$
\begin{aligned}
& \bar{R}(X \cap Y) \subseteq \bar{R}(X) \cap \bar{R}(Y) \text { and } \\
& \underline{R}(X \cup Y) \supseteq \underline{R}(X) \cup \underline{R}(Y)
\end{aligned}
$$

$1.5 \bar{R}(\sim X)=\sim \underline{R}(X), \underline{R}(\sim X)=\sim \bar{R}(X)$
$1.6 \underline{R}(\underline{R}(X))=\bar{R}(\underline{R}(X))=\underline{R}(X)$ and

$$
\bar{R}(\bar{R}(X))=\underline{R}(\bar{R}(X))=\bar{R}(X)
$$

For an element $x \in U$, we say that x is certainly in X under the equivalence relation R (knowledge R) if and only if $x \in \underline{R}(X)$ and that x is possibly in X under R if and only if $x \in \bar{R}(X)$.

From property 1.4, according to Pawlak ([11]), the knowledge included in a distributed knowledge base is less than in the integrated one, in other words, dividing the knowledge base into smaller units in general, causes loss of information. In this article we find the conditions for which, there is no loss of information.

In the next section we study some properties of neighborhood operators. The objective of this paper is to extend the results of J.W. Grzymala - Busse [4] and other properties in the neighborhood systems.

2. NEIGHBORHOOD OPERATORS

let U be the universe of discourse, U be non-empty and finite and x be an element in U.

A neighborhood of x , denoted by $\mathrm{n}(\mathrm{x})$, is a non-empty subset of U which may or may not contain x . A neighborhood system of an element x, denoted by $\operatorname{NS}(x)$, is the maximal family of neighborhoods of x. If x has no neighborhood, then $\operatorname{NS}(x)$ is an empty family, in this case, we simply say that x has no neighborhood.

In this paper we consider only 1-neighborhood systems, that is, each object $x \in U$ has exactly one neighborhood in U.

A neighborhood system of U, denoted by $\operatorname{NS}(\mathrm{U})$, is the collection of $\mathrm{NS}(\mathrm{x})$ for all $x \in U$. The system (U, NS (U)) is called neighborhood system space or simply neighborhood system.

A neighborhood operator $n: U \rightarrow 2^{U}$ assigns a unique neighborhood $\mathrm{n}(\mathrm{x})$ to each element $x \in U$. We find the following properties of 1- neighborhood operator n . (Yao [14]).
2.1: A neighborhood operator n is serial if for all $x \in U$, these exists a $y \in U$ such that $y \in n(x)$, that is, for all $x \in U . n(x) \neq \phi$
2.2: The neighborhood operator n is inverse serial if for all $x \in U$, there exists $y \in U$ such that $x \in n(y)$, $\cup_{x \in U}^{\cup} n(x)=U$
2.3: The neighborhood operator n is reflexive if for all $x \in U, x \in n(x)$.
2.4: The neighborhood operator n is symmetric if for all $x, y \in U$

$$
x \in n(y) \Rightarrow y \in n(x)
$$

2.5: The neighborhood operator n is transitive if for all $x, y, z \in U$

$$
y \in n(x), z \in n(y) \Rightarrow z \in n(x)
$$

A reflexive neighborhood operator is both serial and inverse serial. The family of neighborhoods $\{n(x) \mid x \in U\}$ of an 'inverse serial neighbourhood operator' n forms a covering of the universe.

Let n denote an arbitrary neighbourhood operator and $\mathrm{n}(\mathrm{x})$ be the corresponding neighborhood of $x \in U$ Then we define a pair of approximation operators [6, 14], for any subset X of U .

$$
\begin{align*}
& \underline{R}_{n}(X)=\{x \in U \mid n(x) \subseteq X\} \tag{iii}\\
& \quad=\{x \in U \mid \forall y[y \in n(x) \Rightarrow y \in X]\} \\
& \bar{R}_{n}(X)=\{x \in U \mid n(x) \cap X \neq \phi\} \tag{iv}\\
& \quad=\{x \in U \mid \exists y[y \in n(x), y \in X]\}
\end{align*}
$$

For an equivalence relation R on U, the equivalence class $[\mathrm{x}]_{\mathrm{R}}$ may be considered as a neighborhood of. $x \in U$ Let n denote an arbitrary 1-neighborhood operator and $\mathrm{n}(\mathrm{x})$ be the corresponding neighborhood of $x \in U$ By substituting $[x]_{R}$ instead of $\mathrm{n}(\mathrm{x})$ we get the approximation operators (i) \& (ii). Thus the approximation operators (iii) and (iv) are the generalization of (i) \& (ii). The system ($2^{U}, \cap, \cup, \sim, \underline{R}_{n}, \bar{R}_{n}$) is called the rough set algebra. The subscript n indicates that the approximation operators are defined and based on a particular neighborhood operator n.

Thus under the information available on U with respect to the neighborhood operator $\mathrm{n},\left(\underline{R_{n}}(X), \overline{R_{n}}(X)\right)$ is a rough set for $\mathrm{X}, \quad X \subset U$ The border line region of X be give by $B N_{n}(x)=\bar{R}_{n}(x) \sim \underline{R}_{n}(x)$

Theorem : 2.1 (Yao, [14]) For an arbitrary neighborhood operator n, the pair of approximation operators satisfies the properties:
(a) $\quad \underline{R}_{n}(X)=\sim\left(\bar{R}_{n}(\sim X)\right)$
(b) $\quad \bar{R}_{n}(X)=\sim\left(\underline{R}_{n}(\sim X)\right)$
(c) $\quad \underline{R}_{n}(U)=U, \bar{R}_{n}(\phi)=\phi$
(d) $\quad \underline{R}_{n}(X \cap Y)=\underline{R}_{n}(X) \cap \underline{R}_{n}(Y)$
(e) $\quad \bar{R}_{n}(X \cup Y)=\bar{R}_{n}(X) \cup \bar{R}_{n}(Y)$
where X and Y are two subsets of U. These properties also imply the following properties of approximation operators.
(f) $\quad \underline{R}_{n}(X \cup Y) \supseteq \underline{R}_{n}(X) \cup \underline{R}_{n}(Y)$
(g) $\quad \bar{R}_{n}(X \cap Y) \subseteq \bar{R}_{n}(X) \cap \bar{R}_{n}(Y)$
(h) $\quad X \subseteq Y \Rightarrow \underline{R}_{n}(X) \subseteq \underline{R}_{n}(Y)$
(i) $\quad X \subseteq Y \Rightarrow \bar{R}_{n}(X) \subseteq \bar{R}_{n}(Y)$
(j) $\quad \underline{R}_{n}(X)=\bigcup_{x \in X} \bar{R}_{n}(\sim\{x\})$
(k) $\quad \bar{R}_{n}(X)=\bigcup_{x \in X} \bar{R}_{n}(\{x\})$

Properties (a) and (b) show that approximation operators \underline{R}_{n} \& $\overline{\mathrm{R}}_{\mathrm{n}}$ are dual to each other. Properties (h) and (i) state that approximation operators are monotonic with respect to set inclusion. Inclusions in the properties (f) and (g) are of great interest, according to Pawlak ([11]), dividing the knowledge base into smaller units causes loss of information. These can be proved for equalities.

Additional properties of approximation operators are given below.

Theorem 2.2: (Yao [14]) Suppose $n: U \rightarrow 2^{U}$ is 1neighborhood operator. If the neighborhood operator is serial then
(1) $\begin{array}{ll}\underline{R}_{n}(\phi)=\phi, \quad \bar{R}_{n}(U)=U \quad \text { and } \\ \underline{R}_{n}(X) \subseteq \bar{R}_{n}(X)\end{array}$

The operator n is inverse serial then.
(m) for \quad all $x \in U, \quad \underline{R}_{n}(\sim(\{x\}) \neq U$ and

$$
\bar{R}_{n}(\{x\}) \neq \phi
$$

The operator n is reflexive then.
(n) $\quad \underline{R}_{n}(X) \subseteq X \subseteq \bar{R}_{n}(X)$

Now we will prove the following theorem.
Theorem 2.3: Let $n: U \rightarrow 2^{U}$ be a serial and inverse serial 1-neighborhood operator and $U=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots . ., \mathrm{x}_{\mathrm{n}}\right\}$ be the finite universe. Then for any two subsets $X_{1}, X_{2} \subset U$ we have
(o) $\bar{R}_{n}\left(X_{1} \cap X_{2}\right) \subset \bar{R}_{n}\left(X_{1}\right) \cap \bar{R}_{n}\left(X_{2}\right)$
if and only if these exists at least one neighborhood $n\left(x_{j}\right)$, for $x_{j} \in U$, such that
(p) $X_{1} \cap n\left(x_{j}\right) \neq \phi, X_{2} \cap n\left(x_{j}\right) \neq \phi$
and
(q) $\left(X_{1} \cap X_{2}\right) \cap n\left(x_{j}\right)=\phi$ for $1 \leq \mathrm{j} \leq \mathrm{n}$

Proof. (Sufficient Part)

$$
\begin{aligned}
& \text { We have, for } x_{j} \in U \\
& \qquad X_{1} \cap n\left(x_{j}\right) \neq \phi \Rightarrow x_{j} \in \bar{R}_{n}\left(X_{1}\right) \text { and } \\
& X_{2} \cap n\left(x_{j}\right) \neq \phi \Rightarrow x_{j} \in \bar{R}_{n}\left(X_{2}\right) \\
& \text { so that } x_{j} \in \bar{R}_{n}\left(X_{1}\right) \cap \bar{R}_{n}\left(X_{2}\right)
\end{aligned}
$$

But from hypothesis $\left(X_{1} \cap X_{2}\right) \cap n\left(x_{j}\right) \neq \phi$. This implies $x_{j} \notin \bar{R}_{n}\left(X_{1} \cap X_{2}\right)$

Hence $\bar{R}_{n}\left(X_{1} \cap X_{2}\right) \subset \bar{R}_{n}\left(X_{1}\right) \cap\left(X_{2}\right)$
Conversely from hypothesis there exists one neighborhood $n\left(x_{k}\right)$ for $x_{k} \in U$ such that
$n\left(x_{k}\right) \subset \bar{R}_{n}\left(X_{1}\right) \cap \bar{R}_{n}\left(X_{2}\right)$, but
$n\left(x_{k}\right) \not \subset \bar{R}_{n}\left(X_{1} \cap X_{2}\right)$
that is, $n\left(x_{k}\right) \subseteq \bar{R}_{n}\left(X_{1}\right)$ and $n\left(x_{k}\right) \subseteq \bar{R}_{n}\left(X_{2}\right)$, but $n\left(x_{k}\right) \cap\left(X_{1} \cap X_{2}\right) \neq \phi$

This implies $\quad X_{1} \cap n\left(x_{k}\right)=\phi, X_{2} \cap n\left(x_{k}\right)=\phi \quad$ and $\left(X_{1} \cap X_{2}\right) \cap n\left(x_{k}\right)=\phi$.

This completes the proof:
The following theorem comes immediately.
Theorem 2.4 : Let $U=\left\{x_{1}, x_{2}\right.$, \qquad $\left.x_{n}\right\}$ be an finite universe and let $n: U \rightarrow 2^{U}$ be a 1- neighborhood operator having serial and inverse serial property. Then for any two subsets X_{1}, X_{2} of U,

$$
\bar{R}_{n}\left(X_{1} \cap X_{2}\right)=\bar{R}_{n}\left(X_{1}\right) \cap \bar{R}_{n}\left(X_{2}\right)
$$

if and only if these exists no $x\left(x_{j}\right)$ such that the properties (P) and (q) hold both.

Example 1: Let $U=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right\}$ be a universe, and a neighbourhood operator n on U be given by $n\left(x_{1}\right)=\left\{x_{1}, x_{2}\right\}$, $n\left(x_{2}\right)=\left\{x_{3}\right\}, \quad n\left(x_{3}\right)=\left\{x_{2}\right\}, \quad n\left(x_{4}\right)=\left\{x_{2}, x_{4}\right\}$

Let $\quad X_{I}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}\right\}, \quad X_{2}=\left\{\mathrm{x}_{2}, \mathrm{x} 3\right\}$ then

$$
\begin{aligned}
& X_{1} \cap n\left(x_{1}\right) \neq \phi, X_{2} \cap n\left(x_{1}\right) \neq \phi, \\
& \text { but }\left(X_{1} \cap X_{2}\right) \cap n\left(x_{1}\right) \neq \phi .
\end{aligned}
$$

Now
$\bar{R}_{n}\left(X_{1}\right)=\left\{x_{1}, x_{3}, x_{4}\right\}, \bar{R}_{n}\left(X_{2}\right)=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$
\& as $X_{1} \cap X_{2}=\left\{x_{2}\right\}, \bar{R}_{n}\left(X_{1} \cap X_{2}\right)=\left\{x_{1}, x_{3}, x_{4}\right\}=$ $\bar{R}_{n}\left(X_{1}\right) \cap \bar{R}_{n}\left(X_{2}\right)$.

Also, taking another neighbourhood $\mathrm{n}\left(\mathrm{x}_{2}\right)$,
$X_{1} \cap n\left(x_{2}\right)=\phi, \quad X_{2} \cap n\left(x_{2}\right) \neq \phi \quad$ and $\left(X_{1} \cap X_{2}\right) \cap n\left(x_{2}\right)=\phi$ and hence
$\bar{R}_{n}\left(X_{1} \cap X_{2}\right)=\bar{R}_{n}\left(X_{1}\right) \cap \bar{R}_{n}\left(X_{2}\right)$.
Next, Let us consider two subsets of $U, \quad Y_{I}=\left\{\mathrm{x}_{1}, \mathrm{x}_{3}\right\}$, $Y_{2}=\left\{\mathrm{x}_{2}\right\}$;

Then $\quad Y_{1} \cap n\left(x_{1}\right) \neq \phi, \quad Y_{2} \cap n\left(x_{1}\right) \neq \phi \quad$ but $\left(Y_{1} \cap Y_{2}\right) \cap n\left(x_{1}\right)=\phi$
$\stackrel{\text { Now }}{R_{n}}\left(Y_{1}\right)=\left\{x_{1}, x_{2}\right\}$ and $\bar{R}_{n}\left(Y_{2}\right)=\left\{x_{1}, x_{3}, x_{4}\right\}$,

So that

$$
\phi=\bar{R}_{n}\left(Y_{1} \cap Y_{2}\right) \subset \bar{R}_{n}\left(Y_{1}\right) \cap \bar{R}_{n}\left(Y_{2}\right)=\left\{x_{1}\right\} \text { and }
$$ hence Theorem 2.3.

Corollary 2.1 Let $R: U \rightarrow U$ be an equivalence relation and $\left\{Y_{1}, Y_{2}, \ldots Y_{n}\right\}$ be a classification of U under R. Then for any two subsets X_{1}, X_{2} of U.
$\bar{R}\left(X_{1} \cap X_{2}\right) \underset{\nexists}{\subset}\left(X_{1}\right) \cap \bar{R}\left(X_{2}\right)$ if and only if there exist at least one Y_{j} such that
$X_{1} \cap Y_{j} \neq \phi, X_{2} \cap Y_{j} \neq \phi, 1 \leq j \leq n$ and $\left(X_{1} \cap X_{2}\right) \cap Y_{j}=\phi$. for $1 \leq j \leq n$.

Corollary 2.2: Let $R: U \rightarrow U$ be an equivalence relation and $\left\{Y_{1}, Y_{2}, \ldots Y_{n}\right\}$ be a classification of U under R. Then for any two subnets X_{1}, X_{2} of U.

$$
\bar{R}\left(X_{1} \cap X_{2}\right)=\bar{R}\left(X_{1}\right) \cap \bar{R}\left(X_{2}\right) \quad \text { if and only if }
$$ there exists no Y_{j} such that

$$
\begin{gathered}
X_{1} \cap Y_{j} \neq \phi, \quad X_{2} \cap Y_{j} \neq \phi \\
\left(X_{1} \cap X_{2}\right) \cap Y_{j}=\phi \text { hold ; for each } \mathrm{j}=1,2, \ldots . . \mathrm{n} .
\end{gathered}
$$

and

Proof : It can be proved directly by taking R instead of R_{n} in Theorem 2.3 and 2.4.

We note here that there is no loss of information even if we divide the knowledge base into the smaller units.

In similar manner we can prove the following theorems.
Theorem 2.5:Let $U=\left\{\mathrm{x}_{1}, \mathrm{x}_{2} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \mathrm{x}_{\mathrm{p}}\right\}$ be a finite universe and let $n: U \rightarrow 2^{U}$ be a serial and inverse serial neighborhood operator.

Then for any two subsets X_{1}, X_{2} of U,
(r) $\quad \underline{R}_{n}\left(X_{1}\right) \cup \underline{R}_{n}\left(X_{2}\right) \not{\underset{R}{R}}_{n}\left(X_{1} \cup X_{2}\right)$ if and only if there exists at least one neighborhood $n\left(x_{j}\right)$ for $x_{j} \in U$ such that

$$
\begin{equation*}
X_{1} \cap n\left(x_{j}\right) \subset\left(\neq n\left(x_{j}\right), \quad X_{2} \cap n\left(x_{j}\right) \subset n\left(x_{j}\right)\right. \tag{s}
\end{equation*}
$$

and
(t) $\quad X_{1} \cup X_{2} \supseteq n\left(x_{j}\right), \quad 1 \leq j \leq p$.

Proof: (Sufficient part)
From Hypothesis (s) and (t),
$n\left(x_{j}\right) \not \subset \underline{R}_{n}\left(X_{1}\right)$ and $n\left(x_{j}\right) \not \subset \underline{R}_{n}\left(X_{2}\right)$ but $n\left(x_{j}\right) \subset \underline{R}_{n}\left(X_{1} \cup X_{2}\right), 1 \leq j \leq p$

This implies $\underline{R}_{n}\left(X_{1}\right) \cup \underline{R}_{n}\left(X_{2}\right) \subset_{\neq}^{R_{n}}\left(X_{1} \cup X_{2}\right)$
(Necessary part)
Suppose that $\underline{R}_{n}\left(X_{1}\right) \cup \underline{R}_{n}\left(X_{2}\right) \subset_{\neq} \underline{R}_{n}\left(X_{1} \cup X_{2}\right)$

That is, there exists one $n\left(x_{j}\right)$ for $x_{j} \in U$ such that $\mathrm{n}\left(\mathrm{x}_{\mathrm{k}}\right) \subset \underline{\mathrm{R}}_{\mathrm{n}}\left(\mathrm{X}_{1} \cup \mathrm{X}_{2}\right)$ but
$n\left(x_{k}\right) \not \subset \underline{R}_{n}\left(X_{1}\right) \cup \underline{R}_{n}\left(X_{2}\right)$
that is, $n\left(x_{k}\right) \subseteq X_{1} \cup X_{2}$ and $n\left(x_{k}\right) \not \subset \underline{R}_{n}\left(X_{1}\right)$,

$$
n\left(x_{k}\right) \not \subset \underline{R}_{n}\left(X_{2}\right)
$$

This implies $\quad X_{1} \cup X_{2} \supseteq n\left(x_{k}\right) \quad$ and $X_{1} \cap n\left(x_{k}\right) \subset n\left(x_{k}\right)$ and $X_{2} \cap n\left(x_{k}\right) \subset n\left(x_{k}\right)$
for $\mathrm{k}=1,2, \ldots \ldots, \mathrm{p}$.
Hence the theorem.
Theorem 2.6: Let $U=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots . . \mathrm{x}_{\mathrm{n}}\right\}$ be a finite universe and $n: U \rightarrow 2^{U}$ be a serial and inverse serial neighbourhood operator. Then for any two subset X_{1}, X_{2} of U.

$$
\underline{R}_{n}\left(X_{1}\right) \cup \underline{R}_{n}\left(X_{2}\right)=\underline{R}_{n}\left(X_{1} \cup X_{2}\right)
$$

if and only if these exists no $\mathrm{n}\left(\mathrm{x}_{\mathrm{j}}\right)$ for $x_{j} \in U$, such that the properties (s) and (t) hold.

Corollary 2.3: Let $R: U \rightarrow U$ be an equivalence relation and $\left\{Y_{1}, Y_{2}, \ldots . . Y_{n}\right\}$ be a classification of U under R. Then for any two subsets X_{1}, X_{2} of U.

$$
\underline{R}\left(X_{1}\right) \cup \underline{R}\left(X_{2}\right)=\underline{R}\left(X_{1} \cup X_{2}\right)
$$

if and only if there exists no Y_{j} such that

$$
\begin{aligned}
& X_{1} \cap Y_{j} \subset_{\neq} Y_{j}, X_{2} \cap Y_{j} \subset Y_{j} \\
& \text { and } X_{1} \cup X_{2} \supseteq Y_{j} \quad, \mathrm{j}=1,2,3 \ldots \ldots . \mathrm{n}
\end{aligned}
$$

In this case there is no loss of information in the distributed knowledge base. We find a theorem for general case as.

Theorem 2.7: Let $U=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots . \mathrm{x}_{\mathrm{p}}\right\}$ be a finite universe and $n: U \rightarrow 2^{U}$ be a serial and inverse serial neighbourhood operator. Then for a finite number of subsets $X_{1}, X_{2}, \ldots \ldots . ., X_{k}$ of U.

$$
\bar{R}_{n}\left(\bigcap_{i=1}^{k} X_{i}\right)=\bigcap_{i=1}^{k} \bar{R}_{n}\left(X_{i}\right)
$$

if and only if there exists no $\mathrm{n}\left(\mathrm{x}_{\mathrm{j}}\right)$, for $x_{j} \in U, 1 \leq \mathrm{j} \leq \mathrm{p}$ such that $X_{i} \cap n\left(x_{j}\right)=\phi$ and

$$
\left(\bigcap_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{X}_{\mathrm{i}}\right) \cap \mathrm{n}\left(\mathrm{x}_{\mathrm{j}}\right)=\phi \text { for each } \mathrm{i}=1,2,3 \ldots . . \mathrm{k} \text {, and } \mathrm{j}=1,2 \text {, }
$$, p hold.

Suppose we are given an information system $\mathrm{S}=(\mathrm{U}, \mathrm{Q}, \mathrm{V}, \mathrm{d})$, where U is a nonempty finite universe, $Q=C \cup D$ is a set of attributes, C is a non-empty finite set called conditions of S and D is also a non-empty finite set called decision of S and $\mathrm{C} \cap \mathrm{D}=\phi, V=U_{q \in Q} V_{q}$ is a non-empty finite set called values of attributes, Vq is the set of values of attribute q , called domain of q and d is a function of $U \times Q$ onto V , called description function of S such that $d(x, q) \in V_{q} \quad$ for all $x \in U \quad$ and $q \in Q$.

Let $P \subset Q, P$ is nonempty, the two elements x, y of U are indiscernible by P in S if and only if $d(x, a)=d(y, a)$ for each $a \in P$.

3. APPROXIMATION CLASSIFICATION

OF

Classifications of universes play important roles in basic rough set theory. We define below a classification formally.

Definition 3.1 : Let $F=\left\{X_{1}, X_{2}, \ldots \ldots . X_{k}\right\}$ be a classification of U, that is $X_{i} \cap X_{j}=\phi$ for $\mathrm{i} \neq \mathrm{j}$ and $\cup_{i=1}^{k} X_{i}=U$. Let R be an equivalence relation over U. Then \bar{R} Fand $\underline{R} F$ denote respectively the R-upper and R-lower approximations of the classification F and are defined as

$$
\begin{aligned}
& \left.\bar{R}(F)=\left\{\overline{R(} X_{1}\right), \bar{R}\left(X_{2}\right), \ldots \ldots, \bar{R}\left(X_{k}\right)\right\} \\
& \underline{R}(F)=\left\{\underline{R}\left(X_{1}\right), \underline{R}\left(X_{2}\right) \underline{R}\left(X_{3}\right) \ldots \ldots \ldots . ., \underline{R}\left(X_{k}\right)\right\}
\end{aligned}
$$

Properties of approximation of classifications established by Grzymala-Busse (1988 [4]) establish that the two concepts, approximation of sets and approximation of classifications are two different issues and that the equivalence classes of approximate classifications can not be arbitrary sets. These results of Busse are irreversible. It was observed by Pawlak [11] that, from the results of Busse "If we have positive example of each category in the approximate classification then we must have also negative examples of each category". In this article, we further analyze this aspect.

For the approximation operation $\overline{\mathrm{R}}_{\mathrm{n}}$ and $\underline{\mathrm{R}}_{\mathrm{n}}$, we have $\bar{R}_{n}(F)=\left\{\bar{R}_{n}\left(X_{1}\right), \bar{R}_{n}\left(\begin{array}{ll} & 2), \ldots \ldots \ldots \\ R_{n} & \left.\left(X_{k}\right)\right\}\end{array}\right.\right.$ and

$$
\underline{R}_{n}(F)=\left\{\underline{R}_{n}\left(X_{1}\right), \underline{R}_{n}\left(X_{2}\right), \ldots \ldots \ldots \ldots \ldots \ldots ., \underline{R}_{n}\left(X_{k}\right)\right\}
$$

We use the following notation for the following theorems :
Let $N_{k}=\{1,2,3, \ldots ., \mathrm{k}\}$. for any subset $I \subset N_{k}, I^{c}$ is the complement of I in N_{k}.

Theorem 3.1: Let $F=\left\{X_{1}, X_{2}, \ldots \ldots . . X_{k}\right\} \quad$ be a classification of a finite universe $U=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots . . \mathrm{x}_{\mathrm{p}}\right\}$ and let $n: U \rightarrow 2^{U}$ be a serial and inverse serial 1-neighborhood operator. Then

$$
\underline{R}_{n}\left(\cup_{i \in I} X_{i}\right) \neq \phi \text { if and only if } \underline{R}_{n}\left(\cup_{i \in I^{c}} X_{i}\right) \neq U
$$

In particular, for any set $B \subset U$,

$$
\bar{R}_{n}(B) \neq \phi \text { if and only if } \bar{R}_{n}\left(B^{c}\right) \neq U ; \text { where } B^{c} \text { is }
$$ the complement of B in U.

Also we note here that, for any subset B of U , $\underline{R}_{n}(B)=Y \neq \phi$ if and only if $\bar{R}_{n}\left(B^{c}\right)=Y^{c}=U \sim Y$.

Proof: (Necessary)Suppose that $\underline{R}_{n}\left(\cup_{i \in I} X_{i}\right) \neq \phi$, then there exists one $x_{j} \in U$ such that $n\left(x_{j}\right) \subset \bigcup_{i \in I} X_{i}$ so that

(Sufficiency)
Let us suppose $\bar{R}_{n}\left(\underset{j \in I^{c}}{\cup} X_{j}\right) \neq U$
This implies, $U_{j \in I^{c}}\left(\bar{R}_{n} X_{j}\right) \neq U$.
then there exists one $x_{j} \in U$ such that $n\left(x_{j}\right) \cap\left(\underset{j \in I^{\mathrm{c}}}{\cup} X_{j}\right)=\phi$

That is $n\left(x_{j}\right) \subset \cup_{i \in I}^{\cup} X_{i}$.
Hence $\bar{R}_{n}\left(\bigcup_{i \in I} X_{i}\right) \neq \phi$. Hence the theorem.

Corollary 3.1 : [13] Let $F=\left\{X_{1}, X_{2}, \ldots \ldots . X_{k}\right\}$ be a classification of U and R be an equivalence relation on U and $I \subset N_{k}$. Then

$$
\underline{R}\left(U_{i \in I} X_{i}\right) \neq \phi \text { if and only if } U_{j \in I^{c}} \bar{R} X_{j} \neq U
$$

Proof : This can be proved directly from Theorem 3.1. We prove this corollary for clarity.

Let us suppose that

So there exists $[\mathrm{x}]_{\mathrm{R}}$ for some $x \in U$ such that $[x]_{R} \cap\left(\underset{j \in I^{c}}{\cup} X_{j}\right)=\phi$

That is, $[x]_{R} \subset \bigcup_{j \in I} X_{i}$, and hence $\underline{R}\left(\cup_{j \in I} X_{i}\right) \neq \phi$.
Conversely, suppose $\underline{R}\left(\bigcup_{j \in I} X_{i}\right) \neq \phi$.
Then there exists $x \in U \quad$ such that $[x]_{R} \subseteq \cup_{j \in I} X_{i}$. Thus $[x]_{R} \cap X_{j}=\phi$ for
$j \in I^{c}$. So, $x \notin \bar{R} X_{j}$ for all $j \in I^{c}$.
Hence $\underset{j \in I^{c}}{\cup} \bar{R} X_{j} \neq U$.
Corollary 3.2 : (Proposition 2.5 of Pawlak [11], Busse [4])
Let $F=\left\{X_{1}, X_{2}, \ldots \ldots X_{k}\right\}$ be a classification of U and R be an equivalence relation on U. If

$$
\begin{aligned}
& \underline{R} X_{i} \neq \phi \text { for } i \in N_{k} \\
& \text { then for each } j \in N_{k}(j \neq i), \bar{R} X_{j} \neq U .
\end{aligned}
$$

Corollary 3.3 : (Proposition 2.7 of Pawlak [11], Busse [4])

Let F and R are defined on U as above. If $\underline{R} X_{i} \neq \phi$ holds then $\bar{R} X_{i} \neq U$ for all $i \in N_{k}$

Now we will prove another theorem for neighborhood operator.
Theorem 3.2: Let $F=\left\{X_{1}, X_{2}, \ldots \ldots \ldots . ., X_{k}\right\}$ be a classification of a finite universe $U=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots \ldots . \mathrm{x}_{\mathrm{p}}\right\}$ and let $n: U \rightarrow 2^{U}$ be a serial and inverse serial neighborhood operator. Then for $I \subset N_{k}$,
$\underline{R}_{n}\left(\cup_{i \in I} X_{i}\right)=\phi$ if and only if $\bar{R}_{n}\left(\bigcup_{j \in I^{c}} X_{j}\right)=U$.
Proof: The proof follows from the following equivalences.

$$
\begin{aligned}
& \quad \underline{\mathrm{R}}_{\mathrm{n}}\left(\cup_{\mathrm{i} \in \mathrm{I}} \mathrm{X}_{\mathrm{i}}\right)=\phi \\
& \Leftrightarrow \\
& \text { for all } x_{j} \in U, \text { we have } n\left(x_{j}\right) \not \subset \cup_{i \in I} X_{i} \\
& \Leftrightarrow \\
& \text { for all } x_{j} \in U, \quad n\left(x_{j}\right) \cap\left(\cup_{j \in I^{c}} X_{j}\right) \neq \phi \\
& \Leftrightarrow \\
& \bar{R}_{n}\left(\cup_{j \in I^{c}} X_{j}\right)=U .
\end{aligned}
$$

Corollary 3.4 : [13] Let $F=\left\{X_{l}, X_{2}, \ldots \ldots . ., X_{k}\right\}$ be a classification of an universe U and R be an equivalence redaction on U. for any $I \subset N_{k}$

$$
\underline{R}\left(\bigcup_{i \in I} X_{i}\right)=\phi \text { if and only if } \bar{R}\left(\cup_{j \in I^{c}} X_{j}\right)=U
$$

Corollary 3.5 : (Proposition 2.6 or Pawlak [11], Busse [4]).
Let $F=\left\{X_{1}, X_{2}, \ldots \ldots . X_{k}\right\}$ be a classification of U and R be an equivalence relation on U. If there exists $i \in N_{k}$ such that $\bar{R} X_{i}=U$ then for each $j \in N_{k}, j \neq i, \quad \underline{R} X_{j}=\phi$ (The apposite is not true).

Corollary 3.6 : (Proposition 2.8 of Pawlak [11], Busse [4])
Let $F=\left\{X_{1}, X_{2}, \ldots \ldots . X_{k}\right\}$ be a classification of U and R be an equivalence relation on U . if $\bar{R} X_{i}=U$ for all $i \in N_{k}$ than $\underline{R} X_{i}=\phi$ for all $i \in N_{k}$. (The opposite is not true).

4. DEPENDENCY

Let U be a non-empty, finite Universe, $n, k: U \rightarrow 2^{U}$ be two 1- neighborhood operators. Then union, denotes $n \cup k$, be a neighborhood operator, $n \cup k: U \rightarrow 2^{U}$ be defined by $(n \cup k)\left(x_{j}\right)=n\left(x_{j}\right) \cup k\left(x_{j}\right) \quad$ for \quad each $\quad x_{j} \in U$. Similarly a neighborhood operator, intersection, $n \cap k: U \rightarrow 2^{U}$ be defined by $(n \cap k)\left(x_{j}\right)=n\left(x_{j}\right) \cap k\left(x_{j}\right)$ for each $\quad x_{j} \in U$.

Definition 4.1 : Let U be finite universe, $n, k: U \rightarrow 2^{U}$ be two 1-neighborhood operators and R_{n}, R_{k} be their corresponding approximation operators. The approximation operator R_{n} depends upon the approximation operator R_{k}, denoted by $R_{k} \Rightarrow R_{n}$, if and only if $k\left(x_{j}\right) \subseteq n\left(x_{j}\right)$ for every element $x_{j} \in U$.

We note here that $k\left(x_{j}\right) \subseteq n\left(x_{j}\right)$ for each $x_{j} \in U$ if and only if $\underline{R}_{k}(X) \supseteq \underline{R}_{n}(X)$ for any set $X \subset U$ and $\bar{R}_{k}(X) \subseteq \bar{R}_{n}(X)$. This is equivalent to
$B N_{k}(X)=\bar{R}_{k}(X)-\underline{R}_{k}(X) \subseteq \bar{R}_{n}(X)-\underline{R}_{n}(X)=B N_{n}(X)$ for $X \subset U$.

Note: $K=(U, \boldsymbol{R})$ be a knowledge base when \boldsymbol{R} be the family of all equivalence relations defined on U. Let \boldsymbol{P} be a family of equivalence relations defined on U and \boldsymbol{Q} be another family of equivalence relations on U and $\boldsymbol{P}, \boldsymbol{Q} \subset \boldsymbol{R}$. According to Powlak ([11]), Knowledge \boldsymbol{Q} depends upon knowledge \boldsymbol{P}, denotes $\boldsymbol{P} \Rightarrow \boldsymbol{Q} \quad$ if and only if $I N D(\boldsymbol{P}) \subset I N D(\boldsymbol{Q})$, which is equivalent to, for any subset $X \subset \subset U$, the borderline region of X under the equivalence relation $I N D(\boldsymbol{P})$ is contained in the borderline region of X under the relation $I N D(\mathbb{Q})$ that is,

$$
B N_{\text {IND(P) })}(X) \subseteq B N_{I N D(Q)}(X) \text { for } X \subseteq U .
$$

Taking this point of view, we get the Definition 4.1 the dependency on the neighborhood operator.

Definition 4.2 : Let U be a finite universe, $n, k: U \rightarrow 2^{U}$ be two 1 - neighborhood operators. The approximation operators R_{n} and R_{k} are equivalent, denoted as $R_{n} \equiv R_{k}$ if and only if $R_{k} \Rightarrow R_{n}$ and $R_{n} \Rightarrow R_{k}$ also R_{n} and R_{k} are independent,
denoted as $R_{n} \neq R_{k}$ if and only if neither $R_{k} \Rightarrow R_{n}$ and $R_{n} \Rightarrow R_{k}$ hold.

Proposition 4.1: Let U be a finite universe, $n, k, p: U \rightarrow 2^{U}$ be the 1-neighborhood operators with serial and inverse serial property, and $R_{n}, R_{k} R_{p}$ be their corresponding approximation operators Then.
(i) $\quad R_{k} \Rightarrow R_{n} \quad$ and $\quad R_{n} \Rightarrow R_{p} \quad$ implies $R_{k} \Rightarrow R_{p}$
(ii) $\quad R_{k} \Rightarrow R_{k \cup n}, R_{n} \Rightarrow R_{k \cup n}$
(iii) $\quad R_{k \cap n} \Rightarrow R_{k} \quad$ and $\quad R_{k \cap n} \Rightarrow R_{n} \quad$ provided $k \cap n$ is an inverse serial operator.

$$
\begin{align*}
& R_{k} \Rightarrow R_{n}, \quad R_{p} \Rightarrow R_{n} \quad \text { implies } \tag{iv}\\
& R_{k \cup p} \Rightarrow R_{n}
\end{align*}
$$

(v) $\quad R_{k} \Rightarrow R_{n} \quad, \quad R_{k} \Rightarrow R_{p} \quad$ implies $R_{k} \Rightarrow R_{n \cap p} \quad$ provided $n \cap p$ is an inverse serial operators.
(vi) $\quad R_{k} \Rightarrow R_{n}$ if and only if $R_{k} \equiv R_{k \cup n}$.

Proof: For $R_{k} \Rightarrow R_{n}$ we get $k\left(x_{j}\right) \subseteq n\left(x_{j}\right)$ for all $x_{j} \in U . \quad$ and \quad for $\quad R_{n} \Rightarrow R_{p} \quad$ we have $n\left(x_{j}\right) \subseteq p\left(x_{j}\right)$ for each $x_{j} \in U$.

Hence $\mathrm{k}\left(\mathrm{x}_{\mathrm{j}}\right) \subseteq \mathrm{n}\left(\mathrm{x}_{\mathrm{j}}\right) \subseteq \mathrm{p}\left(\mathrm{x}_{\mathrm{j}}\right)$ for each $x_{j} \in U$. that is, $R_{k} \Rightarrow R_{p}$, (i) is proved; similarly others can be proved.

Definition 4.3: Let $U=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots \ldots . \mathrm{x}_{\mathrm{n}}\right\}$ be a finite universe and $k, p: U \rightarrow 2^{U} \quad$ be two serial and inverse serial neighborhood operators. Now we say that the approximation operator R_{k} depends on the approximation operator R_{p} in a degree d, denotes $R_{p} \Rightarrow{ }_{d} R_{k}$, if and only if
$d=\gamma_{p}(k)=\frac{\operatorname{card} M}{\operatorname{card} U}$ where
$M=\left\{x_{j} \in U \mid p\left(x_{j}\right) \subseteq k\left(x_{j}\right)\right\}$

If $\mathrm{d}=1$, we say that R_{k} depends totally on R_{p} and if $\mathrm{d}=0$, we say that R_{k} is independent to R_{p} and at that time $M=\phi$

If $\mathrm{o}<\mathrm{d}<1$, we say that R_{k} depends partially on R_{p} with degree d .

Example 2 : Let $U=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}, \mathrm{x}_{5}\right\}$ Let $k: U \rightarrow 2^{U}$ be an serial and inverse serial neighborhood operator.
$k\left(x_{1}\right)=\left\{x_{2}\right\}, \quad k\left(x_{2}\right)=\left\{x_{2}, x_{4}\right\}, \quad k\left(x_{3}\right)=\left(x_{2}\right)$,
$k\left(x_{4}\right)=\left\{x_{1}, x_{2}\right\}, \quad k\left(x_{5}\right)=\left\{x_{3}, x_{5}\right\}$

Let $n: U \rightarrow 2^{U} \quad$ be another serial of inverse serial neighborhood operator such that

$$
\begin{aligned}
& n\left(x_{1}\right)=\left\{x_{2}, x_{3}\right\}, n\left(x_{2}\right)=\left\{x_{2}, x_{4}\right\}, n\left(x_{3}\right)=\left\{x_{2}, x_{4}\right\} \\
& , n\left(x_{4}\right)=\left\{x_{1}, x_{2}, x_{5}\right\}, n\left(x_{5}\right)=\left\{x_{2}, x_{3}, x_{5}\right\}
\end{aligned}
$$

Let $\quad X=\left\{x_{1}, x_{3}, x_{5}\right\} \subset U$

Then $\quad \underline{R}_{k}(X)=\left\{x_{5}\right\}, \bar{R}_{k}(X)=\left\{x_{4}, x_{5}\right\} \quad$ and

$$
\underline{R}_{n}(X)=\phi, \bar{R}_{n}(X)=\left\{x_{1}, x_{4}, x_{5}\right\}
$$

Now, $\quad B N_{k}(x)=\bar{R}_{k}(X)-\underline{R}_{k}(X)=\left\{x_{4}\right\}$ and $B N_{n}(x)=\bar{R}_{n}(X)-\underline{R}_{n}(X)=\left\{x_{1}, x_{4}, x_{5}\right\}$

Thus as $B N_{k}(x) \subset B N_{n}(x), R_{k} \Rightarrow R_{n}$, Also, here $k\left(x_{j}\right) \subseteq n\left(x_{j}\right)$ for each $x_{j} \in U$.

Let $p: U \rightarrow 2^{U}$ be a serial and inverse serial neighborhood operator such that

$$
\begin{aligned}
& p\left(x_{1}\right)=\left\{x_{3}\right\}, p\left(x_{2}\right)=\left\{x_{2}, x_{4}\right\}, p\left(x_{3}\right)=\left\{x_{4}\right\} \\
& p\left(x_{4}\right)=\left(x_{1}\right), p\left(x_{5}\right)=\left\{x_{3}, x_{5}\right\}
\end{aligned}
$$

$$
\text { Now } k \cup p\left(x_{1}\right)=\left\{x_{2}, x_{3}\right\}, k \cup p\left(x_{2}\right)=\left\{x_{2}, x_{4}\right\}
$$

$$
k \cup p\left(x_{3}\right)=\left\{x_{2} x_{4}\right\}, k \cup p\left(x_{4}\right)=\left\{x_{1}, x_{2}\right\}, k \cup p\left(x_{5}\right)=\left\{x_{3}, x_{5}\right\}
$$

Thus
$R_{p} \Rightarrow R_{n}$ and $\quad R_{k} \Rightarrow R_{n} \quad$ implies $\quad R_{k u p} \Rightarrow R_{n,}$
as. $k \cup p\left(x_{j}\right) \subseteq n\left(x_{j}\right)$ for each $\quad x_{j} \in U$
Next. $M=\left\{x_{j} \in U \mid \quad p\left(x_{j}\right) \subseteq k\left(x_{j}\right)\right\}=\left\{x_{2}, x_{4}, x_{5}\right\}$
Then
$d=\gamma_{p}(k)=\frac{\operatorname{card} M}{\operatorname{card} U}=\frac{3}{5} \quad:$ that is, degree of dependency of R_{k} on R_{p} be 0.6.

5. CONCLUSION

In computing world a notion of partitioned rough set (Pawlak rough set) is too restrictive, for that, we propose a generalized notion, namely, neighborhood systems which may be an effective notion in expressing some complex uncertainty. In this article the class of 1-neighborhood system, that is, each element has exactly one neighborhood are studied and we find the condition for which there is no loss of information in a distributed knowledge base by dividing the knowledge base into smaller fragments. Also we extended the result of Busse [1988] to obtain properties of approximations of classifications which are necessary and sufficient type. Dependency through the neighborhood operator be defined and a proposition is established.

6. REFERENCES

[1] Arciszewski, T. and Ziarko, W., 1986. "Adaptive expert system for preliminary engineering design", Proceedings of $6^{\text {th }}$ international workshop on Expert system and their Applications, Avignon, France, Vol. 1, 696-712
[2] Chu, W.W., 1992. "Neighborhood and associative query answering", Journal of Intelligent Information systems, Vol. 1, 355-382.
[3] Fibak, J., Slowinski, K., and Slowinski, R. 1986. "The application of rough set theory to the verification of indication for treatment of duodenal ulcer by HSV", Proceedings of $6^{\text {th }}$ International workshop on Expert systems and their Applications, Avignon, France, Vol. 1, 463-478
[4] Grzymala-Busse, J. 1988. "Knowledge acquisition under uncertainty - a rough set approach", Journal of Intelligent and Robotic systems, Vol. 1, 3-16
[5] Lin, T.Y. 1988. "Neighborhood systems and relational database", Proceedings of CSC' 88 , February - 1988
[6] Lin, T.Y. 1997. "Neighborhood Systems : A qualitative theory for fuzzy and rough set", Advances in Machine Intelligence and soft computing, Vol. IV, Ed. Paul Wang, 1997, 132-155
[7] Lin, T.Y. and Yao, Y.Y. 1996. "Mining soft rules using rough sets and neighborhoods", Proceedings of the symposium on Modeling Analysis and Simulation, Computational Engineering in Systems Application (CESA' 96), IMASCS Multi conference, Lille, France, July 9-12, 1996
[8] Mrozek, A. 1987. "Rough sets and some aspects of expert systems realization", Proceedings of $7^{\text {th }}$ international workshop on Expert systems and their applications, Avignon, France, 597-611
[9] Pawlak, Z. 1982. "Rough Sets", International Journal of computer and Information Science, II. 341-356.
[10] Pawlak, Z 1984. "Rough classification", International Journal of Man-Machine studies, 20, 469-483.
[11] Pawlak, Z. 1991. "Rough sets, Theoretical Aspects of Reasoning about data", Kluwer Academic Publication. Dordrecht
[12] Shafer, G. 1976. "Mathematical Theory of Evidence" Princeton University Press.
[13] Tripathy, B.K., Ojha, J. and Mohanty, D. 2009. "On Rough Definability and Types of Approximation of Classifications", IEEE International Advance Computing Conference, 6-7 March 2009, Patiala, India
[14] Yao,Y.Y.1998. "Relational Interpretations of neighborhood operations and Rough set approximation Operators", Information Sciences, III,239-259

