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ABSTRACT

The notion of rough sets, introduced by Z. Pawlak in 1982, is to
capture impreciseness and indiscernibility of objects. The basic
assumption of rough set theory is that human knowledge about a
universe depends upon their capability to classify its objects.
Classifications (or partitions) of a universe and equivalence
relations defined on it are known to be interchangeable notions.
So, for mathematical reasons, equivalence relations were
considered by Pawlak to define rough sets. But in practice, we
can get non-equivalence relations, rather than equivalence
relations for the study of approximations. In this paper, we find
notion of neighborhood systems instead of equivalence relations,
proposed by Lin (1988), Chu (1992) and Lin & Yao (1996), for
the study of approximation and also we study some properties of
1-neighborhood systems.
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1. INTRODUCTION

Uncertainty is an important part and is found a lot in our daily
life. Theories to handle uncertainty are very before. Probability
theory in statistics, the Dempster-Shafer theory of evidence [12]
or the theory of belief functions, the fuzzy set theory, the rough
set theory and their combinations are the main tool to deal with
uncertainty. Recently rough set theory attracts not only the
researcher of Artificial Intelligence but also the researcher of
medical science, industry and business management etc. It has
been successfully implemented in knowledge based systems in
medicine [3, 10] and industry [1, 8].
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Z. Pawlak [9] introduced the notion of rough set theory in 1982.
It is an excellent tool to capture indiscernibility of objects.
Vagueness, Impreciseness, inexactness of a set (concept) are
manipulated, by two exact sets, known as, lower approximation
and upper approximation of the set. For the finite universe U,
the lower approximation of a rough set comprises of those
elements of the universe, which can be said to belong to it
certainly with the available knowledge (information) and on the
other hand the upper approximation comprises of those elements
which are possible in the set with respect to the available
information.

Moreover, let U be a non-empty finite set, called universe of
discourse. Let R be an equivalence relation on U, called an
indiscernibility relation, and U/R be the family of all
equivalence classes of R on U. An ordered pair 4 = (U, R) is
called an approximation space.

For any subset X of U, the lower approximation of X in 4 under
the indiscernibility relation R be defined by

»  RWX)={xeU|[x],c x}

and an upper approximation of X in A be defined by

i R(X)={reU|[x], N X = ¢}

where [x], € UR that is, [x], be an equivalence class of R
containing x, X € U .

Definition 1.1 : Aset X C U is called rough with respect to
the knowledge R (the equivalence relation R) if and only if

R(X)# R(X).



The set X is called definable with respect to knowledge R if and
only if R(X)=R(X).

R(X ) ~ E(X ) is called the border line region of X with
respect to the knowledge R and is denoted by BN R (X )

Thus (E(X ), R(X )) is a rough set for X under the available

knowledge R (an equivalence relation R) for any subset X of the
universe U.

Lower and upper approximations in 4 have the following
properties :

1 R(X)c X < R(X)

12 RU)=RU)=U, R(#)=R(¢)=¢

13 R(xUY)=R(X)UR(Y)and

14 R(XNY)c RX)NR(Y)and

16 R(R(X))=R(R(X))=R(X) and

For an element X € U , we say that x is certainly in X under
the equivalence relation R (knowledge R) if and only if

X € R(X')and that x is possibly in X under R if and only if
xeR(X),

From property 1.4, according to Pawlak ([11]), the knowledge
included in a distributed knowledge base is less than in the
integrated one, in other words, dividing the knowledge base into
smaller units in general, causes loss of information. In this
article we find the conditions for which, there is no loss of
information.
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In the next section we study some properties of neighborhood
operators. The objective of this paper is to extend the results of
J.W. Grzymala — Busse [4] and other properties in the
neighborhood systems.

2. NEIGHBORHOOD OPERATORS

let U be the universe of discourse, U be non-empty and finite
and x be an element in U.

A neighborhood of x, denoted by n (x), is a non-empty subset of
U which may or may not contain x. A neighborhood system of
an element x, denoted by NS(x), is the maximal family of
neighborhoods of x. If x has no neighborhood, then NS(x) is an
empty family, in this case, we simply say that x has no
neighborhood.

In this paper we consider only 1-neighborhood systems, that is,

each object X € U has exactly one neighborhood in U.

A neighborhood system of U, denoted by NS(U), is the

collection of NS(x) for allx € U . The system (U, NS (U)) is
called neighborhood system space or simply neighborhood
system.

A neighborhood operator 7 :U —2v assigns a unique

neighborhood n(x) to each element X € U . We find the
following properties of 1- neighborhood operator n. (Yao [14]).

2.1: A neighborhood operator n is serial if for all x € U ,
these exists a € U such that y € n(x), that is, for all

xeU n(x)#¢

2.2: The neighborhood operator n is inverse serial if for all

xeU, there exists y €U such that xen(y),
U n(x) =U

xeU

23: The neighborhood operator n is reflexive if for
alxe U, x € n(x).

24: The neighborhood operator n is symmetric if for all

x,yeU
xen(y) = yen(x)

25: The neighborhood operator n is transitive if for all

x,y,zelU

ven(x),zen(y) = zen(x).



A reflexive neighborhood operator is both serial and inverse
serial. The family of neighborhoods {n(x)| X EU} of an

‘inverse serial neighbourhood operator’ n forms a covering of
the universe.

Let n denote an arbitrary neighbourhood operator and n(x) be

the corresponding neighborhood of X € U Then we define a
pair of approximation operators [6, 14], for any subset X of U.

iy R, (X)={eU | n(x)c x|
=frev| when)=yex]
@iv) En(X):{er| n(x)mX¢¢}

~{reU [Byyen(x) yex]

For an equivalence relation R on U, the equivalence class [x]r

may be considered as a neighborhood of. X € U/ Let n denote
an arbitrary 1-neighborhood operator and n(x) be the

corresponding neighborhood of X € U By substituting [x] R

instead of n(x) we get the approximation operators (i) & (ii).
Thus the approximation operators (iii) and (iv) are the

generalization of (i) & (ii). The system (2Y, N, U ~ R, ,En )

is called the rough set algebra. The subscript n indicates that the
approximation operators are defined and based on a particular
neighborhood operator n.

Thus under the information available on U with respect to the
neighborhood operator n, (Rn (X ), R_n(X ))is a rough set for
X, X c U The border line region of X be give by
BN ,(x) = R,(x)~R,(x)
Theorem : 2.1 (Yao, [14]) For an arbitrary neighborhood
operator n, the pair of approximation operators satisfies the
properties :

@  R,(X)=(Ru(~ X))

(b) Ri(X) =~ (R,(~ X))

© R,U)=U,Ru(p)=¢

(d) R,(XnY)=R,(X)NR,(Y)

where X and Y are two subsets of U. These properties also imply
the following properties of approximation operators.
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(f) R,(XVUY)2R,(X)UR,(Y)
@  R(XNY)CSR.(X)NR.(Y)
(h) XcY=R,(X)cR,(Y)

(i) XY= R.(X)CR.(Y)

0 RX) =R~

xeX
®  Ra(X)=JR:({x})
xeX
Properties (a) and (b) show that approximation operators R, &

R are dual to each other. Properties (h) and (i) state that

n
approximation operators are monotonic with respect to set
inclusion. Inclusions in the properties (f) and (g) are of great
interest, according to Pawlak ([11]), dividing the knowledge
base into smaller units causes loss of information. These can be
proved for equalities.

Additional properties of approximation operators are given
below.

Theorem 2.2: (Yao [14]) Suppose I’lZU—>2U is 1-
neighborhood operator. If the neighborhood operator is serial
then

U] R,($)=9. R,(U)=U and

R,(X) < Ra(X)

The operator n is inverse serial then.

(m) for

Ru({x}) # ¢

The operator n is reflexive then.

alxeU, R (~({x})#Uand

™ R,(X)SX CRi(X)

Now we will prove the following theorem.

Theorem 2.3: Let n:U — 2U be a serial and inverse serial
1-neighborhood operator and U = {x;, X, X3 , ..... , X,} be the

finite universe. Then for any two subsets X, 15 X , & U we

have
(0) En(Xl sz)EEn(XJmEn(Xz)

if and only if these exists at least one neighborhood n(x;)),

for xj e U , such that

® X, Nn(x)# ¢, X, "n(x,)#¢



and
@ (Xv1 r\Xz)mn(xj):¢ for 1 < J <n
Proof. (Sufficient Part)

We have, for X; € U

X, nn(x,)#¢=x, €R, (X)) and
X,nn(x)#$=x, R (X,)

sothat X; € R, (X)) R, (X,)

But from hypothesis (Xl M Xz) M n(xj) # . This implies

X; R (X,NX,)
Hence En(Xl NX,) CE,,(XJG(Xz)

Conversely from hypothesis there exists one neighborhood

n(xk) for X, € U such that

n(x,) < R,(X,) "R, (X,) but
n(x,) ¢Eﬂ (XNX,)

that is, n(xk)gﬁn(Xl) and n(xk)gﬁn(Xz), but
n(xk)ﬂ(leXz);t(ﬁ

This implies X ,~n(x, )=¢, X,nn(x,)=¢ and
(leXz )m”(xk): 9.

This completes the proof:

The following theorem comes immediately.

Theorem 2.4 : Let U = {x;, X5, .evvnnnnnn , X} be an finite

universe and let 77 :U — 2Y beal- neighborhood operator
having serial and inverse serial property. Then for any two
subsets X, X, of U,

En(leXZ):En(Xl)mEn(XZ)

if and only if these exists no x(x;) such that the properties (P)
and (q) hold both.
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Example 1: Let U = {xj, X5, X3, X4} be a universe, and a
neighbourhood operator n on U be given by n (x;) = {x;, X3},
n(xy) = {x3}, n(x3) = {Xa}, n(xq) = {Xy, X4}

Let X; = {x1, %2},
le”(xl) # ¢, szn(xl)¢ 9,
but (X NX,)n(x,)= 4.

Now

En(Xl): {x1’x3, x4}, En(XZ): {x1’x27 X35 x4}

X2 = {Xz, X3} then

&as X NX = {xz}a En(leXZ):{xl’ X35 x4} =
R,(X,)nR,(X,)

Also, taking another neighbourhood n(x,),

len(xz):¢, szn(x2)¢¢ and
(XlﬂXz)ﬁ n(x2 ) = ¢ and hence

En (leXz)zﬁn (XI )mﬁn(XZ)'

Next, Let us consider two subsets of U, VY; = {xi, X3},
Y= {x};

Then Y]ﬁn(x1 );t @, Yzmn(x1 );t ¢  but
=¢

(Ylez)m”(xl)

Now

Rn(Yl):{xl’xz} and En(Yz):{xnxz.sxéx}a

So that

$=R,(Y,"Y,)cR, (Y,) AR, (Y,)=1{x, } and

hence Theorem 2.3.

Corollary 2.1 Let R:U — U be an equivalence relation
and {Y,, Y,, ...Y,} be a classification of U under R. Then for any
two subsets X;, X5 of U.

E(X NX,)c E(X N E(X , ) if and only if there
exist at least one Y; such that

XYz, XY #¢,1<j<nand (XNX,)NY =¢.
forl<j<nm.



Corollary 2.2: Let R:U — U be an equivalence relation
and {Y,, Y, ...Y,} be a classification of U under R. Then for any
two subnets X;, X; of U.

R(X NX,)=R(X,)NR(X,) if and only if
there exists no Y; such that
XY #4, XY #¢ and

(X{\Xz )ﬁYJ: ¢ hold ; foreachj=1,2, .....n.

Proof : It can be proved directly by taking R instead of R, in
Theorem 2.3 and 2.4.

We note here that there is no loss of information even if we
divide the knowledge base into the smaller units.

In similar manner we can prove the following theorems.

Theorem 2.5:Let U = {Xi, X3 evevvrriieneininininanannn , Xpy be a
finite universe and let n : U — 2Y be a serial and inverse
serial neighborhood operator.

Then for any two subsets X;, X of U,
) R (X,)UR, (X,)cR (X ,UX,) if and
#

only if there exists at least one neighborhood n(x;) for X ; € U

such that

(s) len(xj)g n(le szn(xj)g n(x )

J

and
® X uX, ;)n(xj), 1<j<p.

Proof : (Sufficient part)

From Hypothesis (s) and (t),

n(xj)¢ﬂn (X,) and n(xj)iﬂn()(2 )but
nlx, )R, (X WX, ) 1<j<p

This implies R (X, )UR (X,)cR, (X,0X,)

(Necessary part)

Suppose that Bn (Xl )Uﬁn (Xz )CBn (X1UX2)
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That is, there exists one n(x;) for X I €U  such that

n(x, )R, (X;UX;) but
n(xk )CZEn (Xl )Uﬁn (Xz )

that is, n(x,)cX,0X, and n(x,)zR, (X,),
nx, )R, (X,)

This implies X1UX22 n(xk ) and

X, nn(x,)cn(x,) and X, Nnn(x,)cn(x,)

fork=1,2,....... , p-
Hence the theorem.

Theorem 2.6: Let U = {Xi, Xy, ..... X,} be a finite universe and

n:U —> 2% be a serial and inverse serial neighbourhood
operator. Then for any two subset X, X, of U.

R,(X))VUR,(Xy)=R, (X, VX))
if and only if these exists no n(x;) for X; € U , such that the
properties (s) and (t) hold.

Corollary 2.3 : Let R:U — U be an equivalence relation
and {Y;, Y, ..... Y,} be a classification of U under R. Then for
any two subsets X;, X; of U.

R (X)VUR(X,)=R (X, VX,
if and only if there exists no Y; such that
X nY cY X,nY, c¥Y,

and X, VX, DY, ,j=123...n

In this case there is no loss of information in the distributed
knowledge base. We find a theorem for general case as.

Theorem 2.7: Let U= {X,X,........ Xp} be a finite universe and

n:U— 2Y be a serial and inverse serial neighbourhood

operator. Then for a finite number of subsets X;, X5, ........ , X; of
U.

— k k —
Rn(lej:an(Xl)



if and only if there exists no n(x;), for X ;€ U ,1<j<p such

that X, r\n(xj)=¢ and

k
(QlXiJﬁn(Xj) =¢ for each i=1,2,3.....k, and j =1, 2,
....., p hold.

Suppose we are given an information system S = (U,Q,V.,d),
where U is a nonempty finite universe, Q = C UD is a set of
attributes, C is a non-empty finite set called conditions of S and
D is also a non-empty finite set called decision of S and

CnD=¢, V =U Vq is a non-empty finite set called values
q€Q

of attributes, Vq is the set of values of attribute g, called domain

of q and d is a function of U X Q onto V, called description

function of § such that d(x,q) S Vq for allx €U and

qeQ .

Let PC Q, P is nonempty , the two elements x, y of U are
indiscernible by P in S if and only if d(x,a)=d(y,a) for

eachaelP.

3. APPROXIMATION OF
CLASSIFICATION

Classifications of universes play important roles in basic
rough set theory. We define below a classification formally.

Definition 3.1 : Let F' = { X, X, ........ X! be a classification of
k

U, that is Xl.ﬁXi=¢ for i#jand WX, =U.Let
- i=1

R be an equivalence relation over U. Then R Fand RF

denote respectively the R-upper and R-lower approximations of
the classification F and are defined as

R(F)={R(X ) R(X ) JR(X )} and
R(F)={R(X ), R(X,)R(X;3)errene. o> R(X )}

Properties of approximation of classifications established by
Grzymala-Busse (1988 [ 4]) establish that the two concepts,
approximation of sets and approximation of classifications are
two different issues and that the equivalence classes of
approximate classifications can not be arbitrary sets. These
results of Busse are irreversible. It was observed by Pawlak [11]
that, from the results of Busse “If we have positive example of
each category in the approximate classification then we must
have also negative examples of each category”. In this article,
we further analyze this aspect.
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For the approximation operation R, and R, we have

R,(F)={R, (X VR, (X2 ... R, (X))
and
R,(F)={R (X R, (X, )hiciirs e SR (X))

We use the following notation for the following theorems :

Let Ny = {1,2,3,....., k}. for any subset [ C Nk , I° is the
complement of / in N;.

Theorem 3.1 : Let F' = {X, X,,.......X}}  be a classification of

a finite universe U= {X|,X,........ Xpy and let 72 : U—> 2U be
a serial and inverse serial 1- neighborhood operator. Then

R, ( qu.);t ¢ ifandonlyif R ( ,.Z,{Xi)i U

iel
In particular, for any set B C U ,

En(B)¢¢ if and only if En(Bc)i U ; where B is

the complement of B in U.

Also we note here that, for any subset B of U,

R,(B)=Y #¢ itadonlyif R, (B )=Y* =U ~Y.

Proof: (Necessary)Suppose that B " ( uX ; )7& ¢, then there
iel
exists one X; € U  such that n(xj)c UXi so that

iel

nle )l 9 X )= g ol e 0 x, )

Henceﬁn( |\ XJ)?EU.

jel¢

(Sufficiency)

Let us suppose Rn ( |\ ij;tU

jel¢

This implies, U (R X .);t U.

]
jel® /

then  there  exists one X i eU such  that

H(Xj)“(uxjjzd’

jel®



That is n(xj)c U X.

iel

Hence Rn (U X i )75 @. Hence the theorem.
icl

Corollary 3.1 [13] Let F = {X;, X5 ... X} be a
classification of U and R be an equivalence relation on U and

[CNk.Then

EKU Xi)¢¢ ifand only if U EX/;& U.

el jel

Proof : This can be proved directly from Theorem 3.1. We
prove this corollary for clarity.

Let us suppose that

U EXJ;&U, so that E(u XJ#U

jel® jel®

So there exists [x]g for some x€U such that

[x]Rm(u ij=¢

jel€

Thatis, [x],c UX,, and hence B[uXi)¢¢.

jel jel

Conversely, suppose B( uX ij £ ¢

jel

Then there exists xeU such that
[x]l.c UX. Thus [x], NX =g for
jel

jelc.So,erXj for all jel°.

Hence U RX #U.
jel¢ J

Corollary 3.2 : (Proposition 2.5 of Pawlak [11], Busse [4])

Let F = {X}, X,,......X}} be a classification of U and R be an
equivalence relation on U. If

RX#4 for ieN,
then for each j eN, (j;ti), RXj;«tU.

Corollary 3.3 : (Proposition 2.7 of Pawlak [11], Busse [4])
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Let F and R are defined on U as above. If
RX #¢ holds then RX #U forall ieN,

Now we will prove another theorem for neighborhood operator.

Theorem 3.2 : Let F = {X;, X5, .......... , X3} be a classification
of a finite universe U = {X|, Xy.eeveron.. Xpy and let

n:U =2 be a serial and inverse serial neighborhood

operator. Then for / < N, ,

R, ku[Xl.)=¢ifandon1yifEn(u X.j:U.

jel¢ /

Proof: The proof follows from the following equivalences.

R, (Y X )=¢
iel
< forall X, €U, we have n(xj)CZu X,
iel
< forall x; €U, n(xj)m(u X].j;t(/ﬁ
: jae O
= Rn(u ij:U.
jel¢
Corollary 3.4 : [13] Let F = {X;, X5 ........ , Xi} be a

classification of an universe U and R be an equivalence

redaction on U. forany / < N k

Rkqu.)zgzﬁ if and only if R( v X ) =U.
el jel¢ /

Corollary 3.5 : (Proposition 2.6 or Pawlak [11], Busse [4]).

Let F = {X;, X5, ....... X! be a classification of U and R be an

equivalence relation on U. If there existsi €N ¢ such that
EX,: U then for each J ENk R BXJ: ¢ (The
apposite is not true).

Corollary 3.6 : (Proposition 2.8 of Pawlak [11], Busse [4])

Let F = {X;, X, ....... X} be a classification of U and R be an
equivalence relation on U. if EX = U forall ieN  than

BX = ¢5 for all I ENk (The opposite is not true).



4. DEPENDENCY

Let U be a non-empty, finite Universe, 71, k:U—> 2v be two
1- neighborhood operators. Then union, denotes 72\U Kk , be a
neighborhood operator, 7 k:U—> 2v be defined by
(nUk)(x;)=n(x,)Uk(x;)

Similarly a

for each X; € U.
intersection,
nnk:U—2Y be defined by
(nk)(x;)=n(x;)Nk(x;) for each x, €U.

neighborhood operator,

Definition 4.1 : Let U be finite universe, I’l,k U —> 2Y be

two l-neighborhood operators and R, , R, be their
corresponding approximation operators. The approximation
operator R, depends upon the approximation operator Ry,

denoted by R, = R, if and only if k(x;) S n(x,) for

every element X ;€ U.

We note here that k(xj) c n(xj) for each x; € U ifand
only if Ek(X)QEn(X) for any set X cU and
R,(X)<R,(X)

This is equivalent to
BN (X)=R,(X)-R,(X)cR,(X)-R,(X)=BN,(X)
for XU .

Note: K = (U, R) be a knowledge base when R be the family of
all equivalence relations defined on U. Let P be a family of
equivalence relations defined on U and Q be another family of
equivalence relations on U and P,Q C R. According to Powlak
([11]), Knowledge Q depends upon knowledge P, denotes
P = 0 if and only if IND (P) CIND (Q), which is
equivalent to, for any subset X C U, the borderline region of
X under the equivalence relation /ND (P) is contained in the
borderline region of X under the relation /ND (Q) that is,

BN]ND(P) (X) c BN[ND(Q) (X) for X c U .

Taking this point of view, we get the Definition 4.1 the
dependency on the neighborhood operator.

Definition 4.2 : Let U be a finite universe, n,k U—> 2v
be two 1- neighborhood operators. The approximation operators

R, and R, are equivalent, denoted as Rn = Rk if and only if

Rk = Rn and Rn = Rk also R, and Ry are independent,
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denoted as Rn ES Rk if and only if neither Rk = Rn and

R = R, hold.

Proposition 4.1: Let U be a finite universe,

n,k, p: U— 2Y  be the 1-neighborhood operators with

serial and inverse serial property, and R, R; R, be their
corresponding approximation operators Then.

1) Rk = Rn and Rn = Rp implies
R, =R,

(ii) Rk = Rkun > Rn = Rkun

(i) kan = Rk and ka = R” provided

k M nis an inverse serial operator.

(iv) Rk = Rn ) Rp = Rn implies
R,wp = R,
) Rk = Rn , Rk = Rp implies

Rk = Rnﬁp provided 72 M p is an inverse

serial operators.

(vi) R, = R, ifandonlyif R, = R

kon -

Proof: For Rk = Rn we get k(xj) c n(xj) for all
X; € U. and for Rn = Rp we have

n(xj)g p(xj) foreach x; € U.

Hence k(xj)gn(xj)gp(xj) for each xjeU. that is,

Rk =R po (i) is proved ; similarly others can be proved.

Definition 4.3: Let U = {xi, X5, X3, ....... X,} be a finite universe
and K, p: U—2Y

neighborhood operators. Now we say that the approximation
operator R, depends on the approximation operator R, in a

be two serial and inverse serial

degree d, denotes R » = de , if and only if

B card M
card U

where

d =y (k)



M= {xj eU ‘P(xj)‘;k(xj)}

If d = 1, we say that R, depends totally on R, and if d = 0, we
say that Ry is independent to R, and at that time M = ¢

If o<d<1, wesaythat R, depends partially on R, with
degree d.

Example 2 : Let U = {x), X, X3, X4, X5} Let k:U—> 2U be
an serial and inverse serial neighborhood operator.

k(x4): {xnxz}a k(xs):{x3,x5}

Let n:U — 2"
neighborhood operator such that

be another serial of inverse serial

”(xl): {xz,x3}, ”(xz):{xza)%}, n(x3): {xz,x4}

’n(x4): xlaxzaxs}’ n(xs):{xz’xz’xs}

Let X:{xl,x3,x5}CU

Then R, (X)={x.}, R, (X)={x,.x;}  and

Now, BNk(x):Ek(X)_Kk (X):{x4}and
BN n(x):En(X)_En(X): {xl’ X4 xs}

Thus as BNk(x)C BNH(X),Rk:>Rn, Also, here
k(xj)gn(xj) Jor each xeU.

Let p: U—> 2" be a serial and inverse serial neighborhood

operator such that

p(x1)={x3}, p(x2)={x2,x4}, p(x3)={x4},
p(x4):(xl), p(xs):{x3,x5}

Now kU plx,)={xy.x: } kU p(x, )= 1{x,.x, ),

kople) =t k)=o) ko) =l
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Thus

Rp:>Rn and R, =R, ,mp:>Rn’

implies R

as. kv p(x/.)g n(x/.)for each x . eU

J

NextAM:{xjeU‘ p(xj)gk(xj)}: {xz,x4,x5}
Then

d=)/ ( )=M=§ : that is, degree of
i card U 5

dependency of R on R, be 0.6.

5. CONCLUSION

In computing world a notion of partitioned rough set (Pawlak
rough set) is too restrictive, for that, we propose a generalized
notion, namely, neighborhood systems which may be an
effective notion in expressing some complex uncertainty. In this
article the class of 1-neighborhood system, that is, each element
has exactly one neighborhood are studied and we find the
condition for which there is no loss of information in a
distributed knowledge base by dividing the knowledge base into
smaller fragments. Also we extended the result of Busse [1988]
to obtain properties of approximations of classifications which
are necessary and sufficient type. Dependency through the
neighborhood operator be defined and a proposition is
established.
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