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ABSTRACT 
Though some components play a major role for enhancing the 

quality of a system, but exactly identifying those components at 

the early stage is a big challenge. Metrics that are designed at 

the early stage guide both the test manager and the system 

analyst in decision making. In this paper, we propose an 

Influence Metric at the architectural level to get the influence of 

a component towards the system failures. First, we generate an 

intermediate graph called Sequence Diagram Graph (SDG) for a 

sequence diagram and compute the occurrence probability of 

each event within the sequence diagram based on operational 

profile of the system. Then, we propose an algorithm called 

Influence Computation Algorithm (ICA) to compute the 

influence of a component within a use case and within the whole 

system. The influence of a component c is decided by checking 

how many components are calling directly or indirectly the 

component c and the probabilities of their call to c. A 

component with high influence value is more sensitive towards 

system failures. The influence metric is applied on two well 

known case studies and the sensitivity analysis is conducted 

through a set of experiments to validate our approach.  
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1. INTRODUCTION 
The main aim of testing is to achieve high quality system within 

the available test budget. For this, the test activities should be 

planned well in advance. Bugs in some components cause more 

frequent and more severe failures compared to those in others. 

The user's view on the reliability of a system is improved, when 

bugs which occur in the most frequently used parts of the source 

code is almost removed [1-4].  However, the length of time a 

part of the source code is executed does not wholly determine 

the importance of the part in the perceived reliability of the 

system. It is possible that the result produced by a component 

which is executed only for a small duration is saved and used by 

many components with high execution probability. Hence, a 

component would have a very high impact on the reliability of 

the system even though it is itself getting executed only for a 

small duration. This concept motivates us to consider the 

interaction among components through coupling and compute 

the influence metric at various stages of software development 

life cycle. In our previous work [5, 6], we have proposed 

algorithms to compute the static and dynamic influence of a 

component at the implementation level.   

 

Metrics designed at the early stage guides both the test manager 

and the system analyst in decision making. At the early stage, it 

is required to make a decision about what to test more or test 

less within the available test budget. Sensitivity analysis at the 

architectural level saves both the development and testing cost 

[7]. We study the sensitivity of the application reliability 

towards the reliabilities of its elements within the system and 

take a valuable decision on allocating test resources to various 

components.  Conducting sensitivity analysis at the early stage 

and allocating test resources accordingly helps to get a more 

reliable system within the available test budget and also 

improves the customer's satisfaction on the reliability of the 

system.  

 

We are motivated to identify the critical components1 in advance 

based on the data collected up to the architectural level and plan 

for testing accordingly.  Our aim is to develop a novel approach 

that will enable the software analysts and the test manager to: 

 Compute the influence of a component within a use 

case. 

 Compute the influence of a component within a 

system. 

 Generate a list of components ranked by their relative 

influence values. 

We propose an algorithm to compute the influence of a 

component towards the system failure at the architectural level. 

The influence value of a component is decided through the 

analysis of behavioral dependencies among components within 

various use cases and Operational Profile designed for the 

system. First, all scenarios of a use case are derived from the 

sequence diagram that is designed for the use case and then, the 

scenarios are integrated into a graph called Sequence Diagram 

Graph (SDG) [8]. SDG helps to find the impact of an event 

within a use case. Then, the events are prioritized within the 

SDG based on their probability of occurrence within the use 

case. Based on the priority values of events, influence value of a 

component within a use case is computed by applying forward 

slicing technique on SDG. A forward slice provides the answer 

to the question which statements of a program will be affected 

by the slicing criterion?" [9]. The influence value of a 

component for the overall system is computed by considering all 

use cases within the system. The components within a system 

are prioritized for testing based on their influence values within 

the system. For achieving a higher reliable system, test effort 

                                                           
1
 A part is critical if a bug in the part is responsible for frequent 

failures. 
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should be assigned to various components within a system 

according to their test priority. This work is the extension of our 

previous work [10]. In the previous work, we have prioritized 

the components based on their influence values and allocated 

test efforts to various components according to their priority to 

obtain a high reliable system. For this, we have proposed a test 

case selection schema based on Genetic Algorithm that selects a 

given number of test cases from a pool of test cases to obtain 

high reliability of a system. In this paper, we have conducted a 

sensitivity analysis through a set of experiments and rank the 

components according to their influence values within a use case 

and within the whole system. Our ranking technique is used as a 

guideline both for developer and tester as, it is obtained at the 

analysis stage, before the coding starts.  

 

The rest of the paper is organized as follows. In Section 2, we 

propose our approach to compute the influence of a component 

within a system at the architectural level and prioritize the 

components accordingly. In Section 3, we apply our proposed 

approach on two case studies to identify the critical components 

within a system and validate our approach through sensitivity 

analysis. We present the review of the related work in Section 4 

and conclude the paper in Section 5. 
 

2. OUR APPROACH TO PRIORITIZE 

COMPONENTS 
We first discuss the concept of Operational Profile in Section 

2.1 and then, discuss SDG in Section 2.2. Once SDG is 

constructed, we compute the occurrence probability of an event 

within a scenario in Section 2.3.  We propose an algorithm to 

compute the influence value of a component in Section 2.4 and 

the working of the algorithm is discussed in Section 2.5. 

 2.1. Operational Profile 
 An Operational Profile assigns probability values to various use 

cases based on probability of use of the high level functions (use 

cases) by different user types [2]. Suppose we have drawn a use 

case diagram consisting of m types of users and n number of use 

cases for a practical application system. Each user type has 

assigned a probability of using the application system. Let ui is 

the probability assigned to ith user type of accessing the system 

such that .1
1

m

i
iu  

We identify the use cases with the high-level functional 

requirements of the system. Let qij is the probability of 

requesting the functionality of jth use case (j=1...n) by ith type 

user (i=1...m) such that 1
1

n

j ijq .    

Then, the probability value of a use case x, p(x), denotes the 

likelihood of the use case being executed by an average user is 

as follow. 

P(x) = jx

m

j j qu *
1

… (1) 

We consider that the functionality of any system can be modeled 

through a set of scenarios derived from use cases. From each use 

case, a number of scenarios are identified by drawing the 

sequence diagram for each possible use of use cases. Now, we 

will assign non uniform probability distribution to each scenario 

based on its frequency of execution. As per the domain 

knowledge, each scenario of a use case is assigned some 

frequency value based on the number of executions in a 

particular environment for a particular time period. Let fi(j) is 

the frequency of jth scenario of ith use case such that  

1)(
1

jf
inos

j i
 where, nosi is the total number of scenarios of 

ith use case. Then, the probability of execution of kth scenario of 

ith use case is:  

P(ki)=p(i)* fi(k)…(2) 

 

2.2 Sequence Diagram Graph (SDG) 
We construct an intermediate graph of a sequence diagram 

called sequence diagram graph (SDG).  SDG is a combination of 

all events of operation scenarios and all transitions among the 

events [8]. Mathematically, SDG=(S, E, s0, f0) where, S is the set 

of nodes representing various states of operation scenario; each 

node basically represents an event. E is the set of edges 

representing transitions from one state to another. s0 is the initial 

node representing a state from which an operation begins. f0 is 

the set of final nodes representing states where an operation 

terminates. An operation scenario is a quadruple, aOpnScn: 

(ScnId; StartState; MessageSet; NextState). A unique number 

called ScnID identifies each operation scenario. Here, StartState 

is a starting point of the ScnId, that is, where a scenario starts.  

MessageSet denotes the set of all events that occur in an 

operation scenario. NextState is the state that a system enters 

after the completion of a scenario. This is the end state of a use 

case. A SDG has a single start state and one or more end states 

depending on different operation scenarios. An event in a 

MessageSet is denoted by a tuple, aEvent: (messageName; 

fromObject; toObject [/guard]) where, messageName is the 

name of the message with its signature, fromObject is the sender 

of the message and toObject is the receiver of the message and 

the optional part /guard is the guard condition subject to which 

the aEvent  will take place. An aEvent with * is an indication of 

an iterative event. A message consists of interaction between 

two objects with or without a guard condition.  

The sequence diagram associated with the use case PIN 

Authentication in a usual ATM system along with its five 

scenarios and the SDG of the use case is shown in Figure 1. We 

have extended the SDG proposed in [8], by adding the data 

dependency edges. We have considered the edge set E= (E1, E2) 

where, E1 represents control dependency and E2 represents data 

dependency among events within a use case. If a method is 

returning a wrong value, a number of events are affected by this 

due to using it in guard condition or in method call. If the 

activation of an event A depends on another event B then, A is 

control dependent on B. If an event B is defining a data and 

event A is using the data then, A is data dependent on B. In 

Figure 1.c, event S2 and S3 are control dependent on S1 and 

event S8, consisting of message verifyPin(), is data dependent 

on event S7, consisting of message readPin(). If method 
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readPin() of class KeyReader will return wrong value then, 

method verifyPin() of class Bank will be affected as, it is using 

that output at the time of its implementation. Control 

dependency is showing that the chance of activation of an event 

is depending on the output of other event whereas, data 

dependency is showing the chance of producing correct output 

by an event is depending on other events. Each event of a 

program belongs to one or more scenarios. That is, each scenario 

is typically implemented by several events and an event may 

participate in several scenarios. A scenario is a path in a SDG 

from start node to any end node through the control edges. Fi(j) 

is a set of events within SDGi which are activated when, 

scenario SCi(j) (j
th scenario of ith use case) gets executed by the 

user. Once, the SDG of a use case is constructed, we calculate 

the probabilities of various nodes (events) of SDG based on 

probabilities of various scenarios of the use case within a 

system.    

2.3   Probability Assignment for Events 
Each event used within a use case is assigned probability value 

based on its frequency of execution within the use case. 

pv(Si(j)), the probability of jth event within SDGi is as calculated 

as follow. 

pv(Si(j)) =

inos

j

ijq
1

)( …  (3)  

(a) Sequence diagram for Pin Authentication use case. 

<scn1 

State X 

s1: (m1, a, b) 

 s2: (m1, b, 

a)| c1 

State Y> 

 

 

<scn2 

State X 

s1: (m1, a, 

b) 

 s3: (m3, b, 

e) 

s4: (m4, b, 

a)| c2 

State Y> 

 

 

<scn3 

State X 

s1: (m1, a, 

b) 

s3: (m3, b, 

e) 

s5: (m2, b, 

a)| c3 

State Y> 

 

 

<scn4 

State X 

s1: (m1, a, 

b) 

s3: (m3, b, 

e) 

s6: (m5, b, 

c)| c4*  

s7: (m6, b, 

d)| c4*  

s8: (m7, b, 

e)| c4*  

s9: (m2, b, 

a)| c5  

State Y> 

<scn5 

State X 

s1: (m1, a, 

b) 

s3: (m3, b, 

e) 

s6: (m5, b, 

c)| c4*  

s7: (m6, b, 

d)| c4*  

s8: (m7, b, 

e)| c4*  

s10: (m8, b, 

c)  

State Z> 

(b) Various Scenarios of the use case 

 

(c) SDG of the use case 

Figure 1: Pin Authentication use case with its scenarios and 

SDG. 

In the above equation, q(ji) = p(ji), if Si(j) ∈ Fi(j) else q(ji) = 0. 

Fi(j) is the set of events corresponding to scenario SCi(j) ( jth 

scenario of ith use case) and nosi is the number of scenarios 

within ith use case. As discussed earlier, p(ji) represents the 

probability of jth scenario of ith use case within the system. 

Equation 3 expresses the fact that the probability value assigned 

to an event (node of SDG) within a use case is the summation of 

the probability values of all those scenarios of the use case to 

which the event belongs. The probability value of an event in a 

use case intuitively indicates the probability of it being executed 

during an actual operation of a use case. pv(Si(j)) = 0.8 

represents that the jth event, Si(j), would get executed 80% of the 

time when, a user executes the ith use case.  

 

We present an algorithm called Event Probability Computation 

Algorithm (EPCA) in Figure 2 to compute the probabilities of 

various events within a use case. The variables used in our 

algorithm are as follows. 
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nos and noe represents the number of scenarios and number of 

events within the use case respectively.  

pv(S(k)) is the probability value of the kth event within a use 

case.  

F (j) contains the set of events that are activated at the execution 

of jth scenario of the use case. 

 

Algorithm 1 Algorithm: EPCA 

Require: SDG of a use case and probabilities of various 

scenarios of the use case within the system. 

Return Probabilities of various events within the use case. 

1: for k ← 1 to noe do 

2:   pv(S(k)) ← 0. 

3: end for 

4: for j ← 1 to nos do 

5:     for each event S(k)  {F(j)} do 

6:         pv(S(k)) ← pv(S(k)) + p(j). 

7:     end for 

8: end for 

9: return probability values computed for various events  

     (nodes) of the use case (SDG). 

 

Figure 2:  Event probability computation Algorithm. 

 

2.4 Computing the Influence of a component 
If a method of a class returns a wrong value then, several events 

might be affected. It is because the wrongly computed returned 

value may be used in guard conditions of various events. Our 

aim is to get the failure-proneness of a component within a 

system at the architectural level and allocate test efforts 

accordingly. For this, we compute the influence value of a 

component through the data collected at the analysis and design 

stage. The influence value of a component c within a scenario is 

decided by checking how many components is using directly or 

indirectly the results computed by c within the scenario. For this, 

we maintain a set of events affected by a component within a 

scenario. We consider various use cases within a system and 

compute the influence value of a component for the overall 

system. For this, we propose an algorithm named Influence 

Computation Algorithm (ICA), shown in Figure 3. 

The variables used in our algorithm, ICA, are as follows. 

Inf_val(Ck): The influence value of kth component, Ck, within a 

system. 

Inf_set(Ck): The influence set of the component Ck. This 

contains the set of nodes, which are directly or indirectly 

dependent on the component within the use case. 

n and noc represent the number of use cases and components 

within a system respectively. 

noe_i and Slicei(j) represent the number of nodes (events) within 

SDGi and slice of SDGi with respect to jth node respectively. 

pv(Si(k)) is the probability value of the kth event (node) within ith 

use case (SDGi). 

 

Algorithm 2 Influence Computation Algorithm (ICA) 

Require: Set of SDG within a system and the probability value 

of each event within a SDG. {One use case has one SDG} 

Return Influence values of various components interacting 

within the system. 

1: for i ← 1 to noc do 

2:      inf_set(Ci) ← φ. 

3:      inf_val(Ci) ← 0. 

4: end for 

5: for i ← 1 to n do 

6:      for j ← 1 to noe_i do 

7:            Slicei(j) ← Slice(Si(j), SDGi). 

8:            Inf_set(toObject) ← Inf_set(toObject)  Slicei(j)  

    {The receiver component of the event Si(j) is named as  

                                                                                        toObject} 

9:      end for 

       {Compute the influence value of a component from the  

                                                             events in its influence set} 

10:     for k ← 1 to noc do 

11:            if Inf_set(Ck)  φ then 

12:                inf ←

Tk
i

s

kpv

i

s
)(

))(( /

SDGs

kpv

ii
k

is
)(

))((   

                                                                Where, T = Inf_set(Cj ). 

13:                inf_val(Cj)+ = inf 

14:                inf_ set(Cj ) ← φ. 

15:            end if 

16:      end for 

17: end for 

18: for i ← 1 to noc do 

19:     return Inf_set(Ci) 

20: endfor 

Figure 3: Influence computation Algorithm. 

2.5 Working of ICA 
Consider the use case, Pin Authentication, within the ATM. The 

execution probabilities assigned to five scenarios (see Figure 1) 

based on Operational Profile are 0.05, 0.1, 0.1, 0.3, and 0.45. 

Based on our proposed algorithm 1 (see Figure 2), we assign 

probability to each node (event) in the SDG of the use case (see 

Figure 1.c). The probability value of event S1 is 1.0 as it is used 

in all the scenarios of the use case Pin Authentication. The 

probability value of S2...S10 is 0.05, 0.95, 0.1, 0.1, 0.75, 0.75, 

0.75, 0.3 and 0.45. Then, we apply our proposed algorithm, ICA, 

(See Figure 3) to get the influence value of each component 

within the system. 

Step-1: After forward slicing of node S1, inf_set(SessionMgr) = 

{S1, S2, S3, S4, S5, S6, S7, S8, S9, S10}. It means these events 

are dependent (control or data) on the return value of methods of 

class SessionMgr. 

Step-2: After forward slicing of node S2, Inf_set(CardReader) = 

{S2}. 

Step-3: After forward slicing of node S3, Inf_set(Bank) = {S3, 

S4, S5, S6, S7, S8, S9, S10}. 

Step-4: After forward slicing of node S4, Inf_set(CardReader) = 

inf-set(CardReader) and S4} = {S2, S4}.   

Step-5: After forward slicing of node S5, Inf_set(CardReader) = 

{S2, S4, S5}. 

Step-6: After forward slicing of node S6, inf_set(DisplayMgr) = 

{S6, S7, S8, S9, S10}. 

Step-7: After forward slicing of node S7, Inf_set(KeyReader) = 

{S6, S7, S8, S9, S10}. 

Step-8: After forward slicing of node S8, Inf_set(Bank) = {S3, 

S4, S5, S6, S7, S8, S9, S10}. 
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Step-9: After forward slicing of node S9, Inf_set(CardReader) = 

{S2, S4, S5, S9}. 

Step-10: After forward slicing of node S10, Inf_set(DisplayMgr) 

= {S6,S7,S8,S9,S10}. 

 

Statement number 13 and 14 of Algorithm 2 (see Figure 3) 

computes the influence value of a component from the set of 

events in its influence set. The influence value computed for 

component Bank = (pv(S3) + .. + pv(S10)) / (pv(S1) + .. + 

pv(S10)) *100 = 80%. Similarly the influence values of 

SessionMgr, CardReader, KeyReader and DisplayMgr are 

100%, 12%, 56% and 56% respectively. From our proposed 

method, it is found that the descending order of the components 

based on their influence value are SessionMgr, Bank, 

DisplayMgr, KeyReader and CardReader within the use case 

PIN Authentication in ATM system. 

 

3.  SENSITIVITY ANALYSIS 
Using our estimated influence value for various components at 

the architectural level, we investigate the criticality of a 

component within a use case through the following procedure. 

Procedure:- 

Step 1. We select a component within a use case. 

Step 2. We decrease the reliability2 of the component from 1 to 

0.5 in a step-wise manner, while fixing the reliabilities of other 

components to 1.0, for the sake of comparison. 

Step 3. We check the variation in the reliability of a use case 

within a system by decreasing the reliabilities of its components 

(one at a time). 

For sensitivity analysis, we have considered two case studies- 

Library Management System (LMS) and Automatic Teller 

Machine (ATM). LMS is already explained in our previous 

work [5]. The reader can refer [11] for a detailed view of ATM. 

The sensitivity analysis for various use cases of ATM case study 

is shown in Figure 4 and the sensitivity analysis of LMS case 

study is shown in Figure 5. 

 

Figure 4.a shows that the variation in reliability of the use case 

Pin Authentication of ATM as a function of variation of its 

components reliabilities. From the figure, it is observed that the 

reliability of the use case is drastically decreased, when the 

reliability of components SessionMgr or component Bank is 

decreased whereas, this is not true for other components of the 

scenario. When the reliability of SessionMgr (Bank) is 

decreased by half, the reliability of the overall scenario is 

decreased to 0.19 (0.23). From the figure, we observe that when 

the reliability decreases for a component with high influence 

value, the reliability of the use case decreases in a high rate. As 

the influence values of components- SessionMgr and Bank- are 

high, the decrease in their reliability (one at a time) affects the 

use case more, whereas this is not true for the component 

CardReader, as it has very less influence value. Similarly, we 

conduct a sensitivity analysis and generate a list of components 

                                                           
2 Techniques for class reliability estimation are a step wise 

procedure that includes fault injection, testing and retrospective 

analysis. We are assuming an estimate is available; this is used 

as a parameter for observing the failure rate to analyze the 

sensitivity of the application. 

 

that are ranked according to their influence value within 

Withdraw and Deposit scenario of ATM case study. Table 1 and 

Table 2 show the influence values of various components within 

Deposit and Withdraw use cases respectively. Figure 4.b and 

Figure 4.c show the sensitivity analysis of the use cases Deposit 

and Withdraw. Similarly, we conduct the sensitivity analysis of 

Issue-book and Delete-item use case of LMS in Figure 5.a and 

5.b. In LMS, the influence values of various components within 

Issue-book and Delete-item use cases are shown in Table 3 and 

Table 4. From the figures of both the case studies (see Figure 4 

& 5), it is observed that components with high influence values 

within a use case have high impact on the reliability of the use 

case. 

 

Table 1: Influence values of various components within 

Deposit use case. 
SessionMgr Deposit 

 

Message 

 

Bank 

 

EnvelopAccepter 

 

DisplayMgr 

 

Receipt 

100% 92% 67% 92% 56% 49% 38% 

 

Table 2: Influence values of various components within 

Withdraw use case. 
SessionMgr Withdraw Message CashDispenser DisplayMgr Receipt 

100% 92% 67% 86% 37% 28% 

 
 

 
(a) Sensitivity Analysis of Pin Authentication Use case  

 

 
(b) Sensitivity Analysis of Deposit Use case  

(c) Sensitivity Analysis of Withdraw Use case  

Figure 4: Use case reliability as a function of components 

reliabilities (one at a time) within various scenarios of ATM. 
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(a) Sensitivity Analysis of Issue-book Use case 

 

 
(b) Sensitivity Analysis of Delete-item Use case 

 

Figure 5: Use case reliability as a function of components 

reliabilities (one at a time) within various scenarios of LMS. 

 

Table 3: Influence values of various components within Issue-

book use case. 
SessionMgr BorrowerCtrl BookCtrl 

 

Book Borrower ReservationCtrl Reservation 

100% 76% 71% 58% 52% 39% 28% 

 

Table 4: Influence values of components within Delete-item 

use case. 
TitleCtrl  ItemCtrl Title Item 

100% 68% 37% 48% 

 

Finally, we investigate the failure rate of the whole system based 

on the failure of its individual components. We have done it in 

three phases. In the first phase, we selected the component 

having the highest influence value from a case study and 

decreased its reliability, while fixing the reliabilities of others to 

1.0, for the sake of comparison. To observe the failure rate of 

the application, we selected randomly 100 numbers of test cases 

(randomly selected scenarios) based on Operational Profile.  A 

test case is responsible for the execution of one scenario at the 

system level. We continued our process by slowly decreasing 

the reliability of the selected component in a step wise manner 

and observed the failure rate of the system under test at each 

reliability point of that component for the same set of test cases. 

Same process and same test cases were also applied to a 

component having medium influence value and also to the 

component having the lowest influence value within the system. 

As failures are observed by executing the same set of test cases 

at each reliability point of selected components (one at a time), it 

helps us to analyze the sensitivity of a component towards the 

system failures. The graphs in Figure 6 show the failure rates of  

the whole system (LMS and TAS case studies) by decreasing the 

reliability of the highest priority component, some medium 

priority components and the lowest priority component (one at a 

time) within a system. We have considered six components of 

each case study including the components having the highest 

and lowest influence values. In ATM and LMS, the components 

having the lowest influence values are Balance and Fine 

respectively and their influence towards failure is very much 

low compared to other components. In ATM, when the 

reliability of the component Balance is decreased to 0.5, the 

system reliability is 0.87 whereas, the system reliability is 0.28, 

when the reliability of the component Withdraw is decreased to 

0.5. From Figure 6, it is observed that the system reliability is 

slowly affected by the decrease in the reliability of components 

with less influence value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Sensitivity Analysis of ATM 

 

            

 

 

 

                              

 

 

(b) Sensitivity Analysis of LMS 

Figure 6: System reliability as a function of components 

reliabilities (one at a time) 

4. LITERATURE STUDY 
A lot of research is going on to provide high reliable products to 

the customer within the available test resources. A number of 

testing approaches are proposed in the area of reliability 

analysis. These approaches are broadly classified into two types. 

The aim of the first one is to minimize the residual bugs in the 

software. For this, various methods are proposed to identify the 

faulty components within a system. It is found that many times a 

system having a number of faulty components can continue to 

provide reliable service as long as the service requested is not 

influenced by the adverse effects of the defective parts. Since 

the sequence of code executed in a particular run is dependent 

on the input data, an error in the non-executed statements or 

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 29– No.10, September 2011 

22 

branches does not have any effect on the output of the program. 

Hence, the system reliability depends on the probability that a 

bug is activated in the run. Based on this idea, the aim of second 

type of technique for reliability improvement is to identify the 

components which have a high impact on the reliability of the 

system. For this, a number of researchers have estimated 

reliability at the early stage and have conducted sensitivity 

analysis. In Section 4.1, we present a brief summary of work 

done relating to the identification of fault-prone components 

both at implementation level and architectural level. In Section 

4.2, we discuss the work related to reliability estimation and 

sensitivity analysis at the architectural level for guiding the 

tester and the developer.  

4.1. Identifying Fault-prone Components 
Our work is related to the existing work on computation of fault-

proneness of a component.  The existing work in this area 

identifies the faulty components in a system and test effort 

prioritization is done accordingly. It estimates the probability of 

the presence of faults in a component, which helps to take 

valuable decisions on testing. A lot of research work has been 

done to identify the faulty components in a system [12-15], 

which are very relevant to our work. Different authors have 

focused on different characteristics associated with a component 

for counting faults.  Eaddy et. al. [12] have experimentally 

proved that concern oriented metrics3 are more appropriate 

predictors of software quality than structural complexity 

measures and there is a strong relationship between scattering 

and defects.  Ostrand et.al. [13] have proposed a novel approach 

to identify the faulty files in the next release. For prioritizing test 

efforts, their approach considers the factors that are obtained 

from the modification requests and the version control system. 

These factors are (i) the file size (ii) whether the file was new to 

the system (iii) fault status in previous release (whether the file 

contained faults in earlier releases, and if so, how many) (iv) 

number of changes made (v) programming language used for 

implementation. For some initial releases, the models were 

customized based on the above observed factors. Based on the 

experimental results, the authors conclude that their 

methodology can be implemented in the real world without 

extensive statistical expertise or modeling effort. Ostrand et. al  

[15] have proposed a negative binomial regression model, in 

which the binomial model is used to predict the expected 

number of faults in each file of the next release of a system. The 

predictions are based on the code of the file in the current 

release, and fault and modification history of the file from 

previous releases. Emam et. al. [14] found that a class having 

high export coupling value is more fault-prone. A complex 

program might contain more faults compared to a simple 

program [16]. As the factor complexity is the most important 

defect generator, researchers [17, 18] have used the complexity 

metric as a parameter for testing  

Some researchers have proposed prediction of faulty 

components from design metric at the architectural level. 

Researchers [19, 20] relate the structural complexity metric (CK 

                                                           
3 A concern is anything a stake holder may want to consider as a 

conceptual unit, including features, nonfunctional requirements 

and design idioms. 

 

metric suite [21]) to fault-proneness. From the discussed 

research work, it is observed that the estimated defect density 

(fault- proneness) that is computed through static analysis and 

the pre-release defect density that is computed through testing 

are strongly correlated. Unlike these papers, our aim is not to 

investigate the characteristics of a component to check which 

components have high fault densities. Our aim is to make the 

testing process more effective by finding defects from critical 

components within the system, so that the reliability of a system 

can be improved without increasing the testing budget. 

 

4.2. Early Reliability Estimation and 

Sensitivity Analysis at the architectural level 
At the early stage of development life cycle, a lot of alternative 

reusable assets are available. So, to get a more reliable system 

within the testing budget, it is required to study the sensitivity of 

the application reliability to reliabilities of its elements within 

the system. It helps the system architect to select elements with 

suitable reliability characteristics. Cortellessa et.al. [22] have 

proposed an early estimation of time distribution for components 

from UML model. Their approach on system reliability 

prediction is based on component and connector failure rates. 

Three different types of UML diagrams: Use Case, Sequence 

and Deployment diagrams are used for reliability analysis. For 

estimating the time spent in each component, they have counted 

the number of times a class is busy in a scenario. Both 

component failure and connector failure probabilities are 

considered. According to their approach, a component which is 

busy more times is more failure-prone. Similar to this, Yacoub 

et. al. [7] also proposed a path-based approach to get the early 

reliability of a system at the analysis phase. They proposed an 

algorithm named Scenario-Based Reliability Analysis (SBRA). 

SBRA is used to identify critical components and critical 

component interfaces, and to investigate the sensitivity of the 

application reliability to changes in the reliabilities of 

components and their interfaces. The technique is suitable for 

systems whose analysis is based on valid scenarios with timed 

sequence diagrams.  

Garousi et al. [23] have proposed a Behavioral Dependency 

Analysis (BDA) technique for UML model to measure the 

dependency between two entities in a system. They have 

calculated dependency index between two entities based on 

criticality of a message, amount of data carried by a message, 

frequency of use of return value and operational profile. Though 

BDA technique is not estimating any reliability of a system, but 

like our approach, it helps the analysts to devise appropriate 

provisions for the most crucial entity of a system and forecast 

test effort for each entity before implementation to improve the 

reliability of a system. 

 

5. CONCLUSION AND FUTURE WORK 
We have proposed a technique to prioritize components at the 

architectural level in accordance to their impact on the reliability 

of the system. The priority of a class within a system is decided 

based on its influence towards system failures. The inputs 

considered for influence computation are sequence diagram and 

the Operational Profile designed for the system. First, we 

generate an intermediate graph of a sequence diagram and apply 

the forward slicing method on the graph to compute the 

influence of a component within a use case. Then, we use it to 
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get the influence of the component within the whole system. 

Using our priority estimation, we investigate the failure rate of a 

use case and also the failure rate of the whole application based 

on the failure of its individual components. We conducted a set 

of experiments and concluded that the system reliability is 

decreased at a higher rate when, the reliability of a high priority 

class is decreased, but this is not true for a low priority class.  

Hence, our proposed Influence Metric helps to improve the 

reliability of a system by exposing critical components within 

the system at the architectural level. The Influence metric is used 

as a guideline both for the tester and the developer throughout 

the development cycle.  

 

We have only prioritized a component based on its influence 

towards system failures. We have not considered the impact of a 

failure within a system. We want to minimize the failures which 

have a negative impact on the user’s perception on the system 

reliability or create a financial loss to the organization, when the 

system is executed for some duration in the operational 

environment. For this, in our future work, we are planning to 

consider two external factors: (i) the impact of a failure (the 

severity of a failure) within a use case and (ii) the business value 

(value that comes from customer and market) associated with a 

use case, for prioritization.  
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