
International Journal of Computer Applications (0975 – 8887)

Volume 29– No.10, September 2011

47

JavaMarker Extended: An Eclipse Plugin to

Mark Java GUI Programs

Marzieh Ahmadzadeh
Dept. of Comp. Eng. & IT

Shiraz Univ. of Technology
Shiraz, Iran

Mahsa Janghorban1
Dept. of Comp. Eng. & IT

Shiraz Univ. of Technology
Shiraz, Iran

Behnaz Jamasb1

Dept. of Comp. Eng. & IT

Shiraz Univ. of Technology
Shiraz, Iran

ABSTRACT

Graphical user interfaces are an important part of today’s

application, which requires academic staff to teach the principles

and to ask students to deliver assignments on designing those

interfaces. The considerable number of students in this filed

makes the process of marking difficult and time consuming.

Therefore the existence of an automated marking system seems

inevitable.

Graphical user interfaces however, for some reasons are difficult

to be marked automatically. Amongst these difficult issues are

the event driven nature of graphical user interfaces (GUIs),

existence of several components in Java that do the same job

and can be used interchangeably and the possibility of designing

a program in a complete different ways.

This paper elaborates these difficulties and introduces an Eclipse

plugin, which is an extension to previously introduced system,

designed to mark GUI programs.

General Terms

GUI Marking, GUI Grading, Automated Assessment, Computer

Based Assessment, Java

Keywords

Eclipse, Plugin

1. INTRODUCTION
Graphical user interfaces have spanned more than three decades

started from Xerox product [8] in 1977 and evolved to be a

major part of each program. As a survey in 1993 [12] reported,

around 50% of development time is spent on GUI. The

popularity of graphical interface is due to a friendlier look and

better interaction that it provides in comparison with text-based

systems. For this almost all of today’s applications are equipped

with a graphical interface.

This encourages universities to undergo major changes and to

teach the design of graphical user interfaces. The major issue in

teaching GUI is the difficult task of marking students’

assignments. Hiring assistants to do the job may lead to

inconsistence marking. To overcome this labor work, the

development of an automated marking system seems

unavoidable.

1- Both the co-authors have had the same contributions.

Although a couple of marking systems have been introduced in

the literature [1, 2 ,3 ,4, 5, 9, 10, 13], a majority of these systems

have been designed to mark text-based programs. Only a few of

them have focused on marking graphical interfaces [6,7,14]. It

seems that none of these systems have been developed to work

in the predefined settings of the labs (i.e. they have been

implemented as an independent system). Since the editor for

programming course in Shiraz University of Technology had

been chosen to be Eclipse editor [15] we decided to implement a

plugin for Eclipse to mark students’ assignment. This plugin

which is called JavaMarker is an extension to previously

implemented plugin, which was responsible for marking text-

based programming assignment written in Java [1, 2].

Developing graphical interfaces is different from that of text-

based programs and additional issues need to be taken care of.

These issues will be covered in section two of this paper. In next

section the developed plugin will be explained in detail. For this

the architecture of the system, the format of test cases file, the

views that is generated by the plugin and some snapshots of the

executed marking system will be brought. In fourth section a

review of the literature will be given. And finally the work that

will be carried out in the future will be discussed in section five.

2. THE PROBLEM OF GUI
To efficiently interact with a computer program, Graphical User

Interfaces were introduced. A number of so-called components

such as frame, panel, button, etc., which interact with each other

make a GUI. In such kinds of programs all the inputs and

outputs is done via those component. For example you enter

your information via a text field, a slider, a check box button etc.

and you view the output in a panel, label or something similar.

This is the sole difference between a command-based (text-

based) program and a program with graphical user interface.

Although the difference between command-based programs and

graphical user interfaces is the way in which data is entered and

outputted, the marking of such programs is not that easy and

includes several complexities.

One of the problems that a developer of an automated system

faces is the variety of the ways that a programmer can choose to

implement the given problem. For example if your program is

about to get user date of birth, you have the choice of

implementing this by a text field or a dropdown list or a

combination of a text field and radio button and so on. This

leaves the developer of such an automated system with

alternatives that in most of the cases are not predictable by

grader and this makes the marking even more difficult. What we

International Journal of Computer Applications (0975 – 8887)

Volume 29– No.10, September 2011

48

meant here by alternatives is the variety of possible layouts that

a programmer can design to solve the given problem. Moreover,

each component can operate differently which adds to

complexity of marking. Thus it is unlikely that any two

submitted program will be similar.

Another complexity of developing such a system is the

properties that each component can have including size, location

they appear, color and so on, which together form the aesthetic

design of the program. Further, when a program runs, its

components can change their states which provide more options

for a marking system to test.

Further, event-driven nature of graphical user interfaces allow

users to click anywhere in the created screen, which means there

are many possible ways that input can occur. In other words the

large number of available options for a program to receive an

event makes the testing of the program even more complicated.

All these complexities together do not allow a grader to

statically define input and test output against the entered input.

In other words a grader should look inside the code and check

whether each component does the proper job, which is

responsible for. Also for the same reason a strict program

specification should be provided to actually limit a programmer

to use any available Java feature. For example if a text should be

entered and the use of textfield is suggested in program

specification, a programmer must follow this and will not be

able to use textArea for instance.

Therefore one way to approach marking is to consider each

object (i.e. component) and its state one at a time and compare it

with expected state and award mark accordingly.

3. JavaMarker
JavaMarker as an Elcipse plugin was first designed to mark

command-based programs [1, 2] and then extended to mark

graphical programs. Although the latter is in early stage of its

life, still it can be used to mark students’ graphical programs. At

the moment the icon representing this plugin is separate from its

ascendant’s [1, 2] icon since the process in which the marking is

taken place is different from each other. However the process in

which the right assignment is chosen to mark is similar to what

is explained in [1, 2]. Therefore for the time being these two

plugins are shown with two different icons and will soon be

integrated to one.

3.1 Eclipse Plugin Architecture
As can be seen from figure 1 JavaMarker consists of several

parts. First, students submit their program, which will be held in

a repository. Then the plugin uses test cases file, which has been

provided by a system administrator (i.e. a teaching assistant) and

students’ program from repository and marks the program. A

report is issued for the student which can be seen in a view in

Eclipse and another for lecturer in another repository.

What actually happens in Javamarker plugin is that it scans the

Java program that has been submitted and removes nonessential

lines of code (i.e. comments) and separates each declared object

(component) and its features in some vectors. Features such as

size, color, etc., which relates to aesthetic design, has not been

considered in this stage. The information that are collected for

an object is features such as the right definition of object itself,

definition of any kinds of listeners on that object and to which

container it has been added. On the other hand, the information,

which resides in the test case file, is fetched and put in another

vector. Then the comparison is taken place and mark is awarded

accordingly.

For example, a program is supposed to define a JButton, add it

to a JPanel, be registered with ActionListener and exit the

program if the button is clicked. All of these definitions and

operators are retrieved from both the actual program and test

cases and then compared.

Figure 1: GUI Marker (JavaMarker) Architecture

One important task that is done by JavMarker is to recognize all

the objects that work together. For instance a couple of buttons

and textfields might together enter some information in a file

and a couple of checkboxes and buttons print a report on screen.

These sets are distinguished and their interaction is tested.

JavaMarker has been designed to mark the programs that are

syntactically correct. Therefore if any compilation error exists

none of the process explained above will be run and no mark is

awarded.

3.2 Test Case Format
As said before the components (i.e. objects) that works together

are distinguished. This helps to create an effective test case. As

can be seen from Figure 2, which is a sample graphical user

interface, the components that have been defined are a radio

button, three checkboxes, two text fields, three buttons and one

label. The first set (i.e. radio button, a text field and a button)

form one group that works together. User chooses one of the

options of radio button, enter a text in the text field and click the

button to print the entered information into a file. The Second

set, which comprises of three checkbox and a text field and a

Java

Program

Repository

JavaMarker

Plugin

Test

Cases

Individual

Report

Lecturer

Report

International Journal of Computer Applications (0975 – 8887)

Volume 29– No.10, September 2011

49

button also form another working group. Clicking on the button

leads to printing information of this group to a file. The third

group simply consists of one button that exit from the program.

Figure 2: A sample graphical user interface

Therefore the test case file should look similar to Figure 3. The

numbers (i.e. 1 , 2, 3) separates the group of components. The

other group of numbers (i.e. 20, 50, 30) shows the percentage of

the marks that will be awarded if the corresponding group of

components work correctly. At the bottom lines of each

numbered line, the components that form a group are

introduced. The order of objects that comprise a component is

not important and is recognizable by our system.

Figure 3: Test cases corresponding to Figure 2

3.3 Plugin View & Icon
Figure 4 shows a view of Eclipse along with our installed

plugin. It can be seen that this plugin has created a view, which

is beneath the editor area. This view is where the feedbacks

generated by our marker are shown to students. For each

program depending on the level of difficulty it has, a few

submissions are allowed. If, for instance, two submissions are

possible, after first submission students will see the comments in

the result view and consequently can improve the program based

on the given comments

In upper right part of Eclipse is an icon, created by our marker,

in order to allow students to submit their program. Clicking on

this icon shows a dialog box, in which student chosen the

assignment they would like to submit.

4. ASSESSMENT OF PROGRAMMING

ASSIGNMENT
Programming module is an important module that not only is

taught for Computer Science but also for several other

engineering majors. Success in this module is dependant to how

effectively students practice. Therefore one way to make sure

that enough practice has done by students is to give them weekly

homeworks. With a large number of students enrolled for the

module, teaching staff face a huge number of homework to

mark. There are of course a few teaching assistants available to

help but this leads to inconsistency in marking. To overcome

this problem automated marking systems are developed.

Although these systems are not able to be as intelligent and

accurate as a human in the process of marking but they offer

some benefits in several ways.

First, the marking will be consistent for all of the homeworks

and throughout the semester. Second, students will receive an

instant feedback on the program they have written. This is

invaluable in terms of learning. That is why in most automated

systems, students are allowed to submit their program more than

once. This gives them the opportunity to think about their

mistake and learn from it. Third, teaching staff will be able to

enforce students to practice in the framework that they set if

required. Finally, the process of marking will take considerably

less time.

In this part we will describe the tools that were designed to mark

text-based programs and graphical user interface separately in

two following subsections.

4.1 Text-Based Assessment Tools
Development of marking text-based systems have spanned

nearly two decades [1, 2, 3, 4, 5, 8, 9, 12]. These systems

evaluate programs written in C or Java and check the correctness

of the program and the quality of the code in terms of style.

However they have chosen different approach to marking. For

example BOSS system [9] provides all the information that one

needs to complete the task of programming but does not issue

any mark. Marking is done manually in this system.

Coursemarker [10] not only mark students’ program based on

what is given in program specification, but also provide an

environment in which students receive program specification,

develop their programs, submit them and receive the

corresponding mark.

Amongst the systems that were introduced, only JavaMarker [1,

2] works in the same environment that students would normally

develop their code (i.e. Eclipse). This helps students to focus on

the task of programming.

International Journal of Computer Applications (0975 – 8887)

Volume 29– No.10, September 2011

50

Figure 4: JavaMarker Plugin

4.2 GUI Assessment Tools
Sun and Jones [14] In their first attempt introduced an approach

for marking graphical user interfaces in which a specific

program specification provided to students. For example if a

program is to enter a data in a textfiled and process it by clicking

a button, students must follow the same design. Also it is not

possible to have more than one window or to define objects with

different names from what is said in the program specification.

GUI_Grader [6] is another automated tool that lets students to

define more than one window. It also allows students to choose

the objects they want to use for their program. With this option,

they allow more flexibility in designing the interface than what

is implemented in [14].

Another well developed graphical user interface marker is what

is reported in [7]. In this system an introspective approach was

applied to look into students’ program. It gives freedom to

students to choose the kinds of the objects that they want while

setting restriction is also possible. This system was developed

using Dynamic Class Loading [11]. A XML-based test case in

which various actions that should be defined on each component

is provided by teaching staff.

5. CONCLUSION & FUTURE WORK
In this paper the development of a making system for graphical

interfaces as a plugin for Eclipse was introduced. Since this is an

early stage of the work, some works can be carried out to

improve the system. These improvements are listed below.

Dynamic Class Loading [11] is a facility that is provided by

object oriented languages such as Java. This can be used for

automated marking of graphical user interfaces with more

flexibility than what is discussed in this paper. With this facility

we can allow students to be more creative and not to be

dependent strictly to what is set in program specification for

them. Therefore the next generation of this plugin will be the

improved version of the code using Class Loader facility. To

use this facility one should take into consideration that the

security of system might be compromised. Java Class Loader

loads every class, which means it gives the same privilege to

every one of the classes. This opens an opportunity for a

malicious code to attack the system. In case the program was

upgraded using this facility, this issue must be taken seriously.

As previously explained this plugin and its ascendant will be

integrated. To do so the current plugin should be able to run at

client side while all the repositories reside on server side. At the

moment for the complex nature of this program we decided to

keep everything locally on client machines. Also test case files

will join the database that had been defined previously for text-

based version of JavaMarker. This database resides in server,

which its replacement will take place at integration time.

6. REFERENCES
[1] Ahmadzadeh, M., Namvar, S., Solatani, M., JavaMarker:

2011, A Marking System for Java Programs, International

Journal of Computer Applications, Volume 20– No.2, April

2011. P 15-20.

[2] Ahmadzadeh, M., Soltani, M. 2010, JavaMarker: An

Eclipse Plug-in to mark Students’ Java Exercises. ITiCSE

'10: Proceedings of the 2010 ACM SIGCSE Annual

Conference on Innovation and Technology in Computer

Science Education. Ankara, Turkey. June 26-30, p 324.

Result

View

Submission

Icon

International Journal of Computer Applications (0975 – 8887)

Volume 29– No.10, September 2011

51

[3] Benford, S., Burke, E., Foxley, E. and Higgins, C. 1995.

The Ceilidh system for the automatic grading of students

on programming courses. In Proceedings of the 33rd

annual southeast regional conference (ACM-SE 33).

ACM, New York, NY, USA, 176-182.

[4] Daly, C. AND Waldron, J. 2004. Assessing the assessment

of programming ability. In Proceedings of the 35th

SIGCSE Technical Symposium on Computer Science

Education. 210-213.

[5] Daly, C. 1999 RoboProf and an Introductory Computer

Programming Course. In Proceedings of the 4th Annual

SIGCSE/SIGCUE ITiCSE Conference on Innovation and

Technology in Computer Science Education. 155-158.

[6] Feng, M.Y., McAllister A., 2006. A Tool for Automated

GUI Program Grading, 36th ASEE/IEEE Frontiersin

Education Conference, October 28-31, San Diego, USA.

[7] Gray, G. R., Higgins, C. A. 2006. An Introspective

Approach to Marking Graphical User Interfaces. ITiCSE

'06: Proceedings of the 2006 ACM SIGCSE Annual

Conference on Innovation and Technology in Computer

Science Education. Bologna, Italy, June 26-30.

[8] Jansen, B.J., 1998, The Graphical User Interface: An

Introduction, SIGCHI Bulletin pp22-26.

[9] Joy, M., Griffiths, N., and Boyatt, R., 2005.The BOSS

Online Submission and Assessment System., ACM Journal

on Education Resources in Computing, vol.5, No.3,

September 2005, Article 2.

[10] Higgins, C., Hegazy, T., Symeonidis, P., AND Tsintsifas,

A. 2003. The CourseMaster CBA system:Improvements

over Ceilidh. J. Edu. Inf.Technol. 8, 3, 287-304.

[11] Liang, S., Bracha, G. 1998, Dynamic Class Loading in the

Java TM Virtual Machine, Proceeding of 13th Annual ACM

SIGPLAN Conference on Object-Oriented Programming

Systems, Languages and Applications, Vancouver, BC,

October 1998.

[12] Myers, B.A. 1993, Why are Human-Computer Interfaces

Difficult to Implement? Technical Report CMU-CS-93-

183, Carnegie Mellon University, Pittsburgh, July 1993.

[13] Reek, K. A. 1989. The TRY system – or – how to avoid

testing student programs. SIGCSE Bull. 21, 1, 112-116.

[14] Sun, H., Jones, E.L. 2004, Specification-driven Automated

Testing of GUI-based Java Programs, Proceedings 42nd

ACM Southeast regional Conference, Huntsville, Alabama,

USA, April 2-3, pp. 140-145

[15] Sun Microsystem. April 20, 1999. Code Conventions for

the Java Programming Language.

http://www.oracle.com/technetwork/java/codeconventions-

150003.pdf. Last Accessed on 6/1/2011

