
International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.7, July 2015

39

Natural Language Interface for Databases in Hindi Based

on Karaka Theory

Aanchal Kataria

M.Tech Scholar
Department of Computer Science and Applications

Kurukshetra University
Kurukshetra, Haryana, India

Rajender Nath, PhD
Professor

Department of Computer Science and Applications
Kurukshetra University

Kurukshetra, Haryana, India

ABSTRACT
Data retrieval from the database requires knowledge of database

language like SQL. Hence people with no knowledge of

database language may find it difficult to access the database.

Moreover, in recent time there is a growing demand for non-

expert users to query relational database in a more natural

language encompassing linguistic variables and terms. This

triggered the idea of developing natural language interface to

database where a user can query the database using natural

language. And it relieved the persons from the burden of

learning database language like SQL. In this paper, architecture

of interface for converting natural language sentence in Hindi

into the equivalent SQL query based on Computational

Paninian Framework and Karaka theory is proposed. The

interface has been evaluated experimentally and is found

efficient.

Keyword
Hindi Language Query, Natural Language, Natural Language

Interface for Database (NLIDB), Query, Structured Query

Language (SQL).

1. INTRODUCTION
One of the major sources of information is database. Almost all

applications need to access information from database that

requires knowledge of database languages like SQL. A person

having no knowledge of Structured Query Language (SQL)

may find himself or herself handicapped while querying the

database for data retrieval. Hence for overriding the complexity

many researchers came with the idea to use natural language in

place of SQL, which can be ideal for non-technical users who

want to access database. This idea of using natural language for

data retrieval has prompted the development of interface called

Natural Language Interface for Database (NLIDB). The

interface acts as a kind of communication channel between the

non-professional users and the database. Main objective of

NLIDB is to accept the natural language sentence in language

the user is comfortable with and then apply the processing steps

required and after conversion the user is provided with

equivalent SQL query. The interface conceals all the inherent

complexity involved in information retrieval based on

unqualified user queries.

In this paper, Natural Language Interface for Database in Hindi

is proposed using computational paninian grammar framework

that uses karaka theory so that without any ambiguity the

interface answers the user more efficiently. The presented

interface supports simple, conditional and join queries.

Moreover intimate the users about the query status in case no

such data exists which users want to fetch.

The rest of the paper is organized as follows: Section 2 presents

the literature review of NLIDB. Proposed work is presented in

section 3 along with the architecture of the interface. Section 4

describes the results and experiments of proposed interface.

Conclusion along with future work is presented in section 5.

2. LITERATURE REVIEW OF NLIDB
The field of NLIDB has gained a remarkable expansion in the

last few decades. Numerous attempts have been made by many

researchers to build the interface till now. Different approaches

and frameworks were used by different interfaces in order to

enhance the efficiency of the NLIDB interface.

The LUNAR was the first system that was informally

introduced in 1971 [1], which answered questions about

samples of rocks, which were brought back from the moon. The

performance of LUNAR was very impressive and it could

easily handle 90% of requests without any error [2]. Hendrix

et.al in [3] proposed a system called as LADDER, which was

designed for US navy ships that used linguistics synchronic

linguistics to interrupt down inquiries to question a distributed

data. The system LADDER was enforced in LISP [4]. Warren

and Pereira in [5] proposed one of the best-known NLIDBs of

the early eighties known as CHAT-80. It was implemented

entirely in Prolog. It was used to transform English questions

into Prolog expressions, which were evaluated on the Prolog

database. The CHAT-80 was very impressive, efficient and

sophisticated kind of system.

PRECISE [6] system was developed at the University of

Washington and David Koin in 2004 by Alex Armanasu, Ana-

Maria Popescu, Oren Etzioni, and Alexander Yates. The

database of PRECISE was in the form of a relational database,

which used SQL as the query language. PRECISE was being

tested on two database domains out of which the first one was

the ATIS domain and second one was GEOQUERY domain.

El-Mouadib et.al introduced GINLIDB called as Generic

Interactive Natural Language Interface to Database in 2009 [7].

It was designed by the use of UML and developed using visual

basic .NET 2005. The system had two major components:

Linguistic handling component and SQL constructive

component. Linguistic handling component controlled the

natural language query correctness and SQL constructive

component generated the required SQL statement. The main

advantage of this system was that it analyzed the given query

with both syntactic and semantic merits to improve the

correctness.

Neelu Nihalani et.al in 2009 [8] proposed intelligent layer for

flexible querying in databases, based on semantic grammar

approach. In this paper an intelligent layer was developed

which can be incorporated with existing database system. This

proposed interface employed a set of predefined training sets.

The main benefit of these training sets was that they could be

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.7, July 2015

40

expanded or appended when the intelligent information system

discovered some new knowledge.

Abhijeet Gupta et.al in [9] introduced NLIDB interface using

the Computational Paninian Grammar Framework, which used

two approaches syntactic followed by semantic approach. This

system could be adapted to any domain by people having basic

knowledge of the domain.

Axita Shah et.al in 2013 [10] introduced, NLKBIDB interface

based on pattern matching and syntax based approach due to

which interface was not only able to answer syntactically

correct queries but also incorrect natural language queries.

NLKBIDB took natural language query as an input and

generated an output in tabular format if and only if generated

SQL query was valid. On the basis of testing done, their result

showed 53% increments in accuracy but the provided interface

was domain dependent.

Mohit Dua et.al proposed a Hindi Language Graphical User

Interface to Database Management system in 2013, which used

pattern-matching approach [11]. The paper mainly discussed

how a Hindi language sentence is mapped to equivalent SQL

query. The proposed architecture consisted of four main

components i.e. Tokenizer, Mapper, Query Generator and

Database Management System. This interface supported

selection, updating and deletion type of queries. The proposed

interface was domain specific and passed testing of more than

100 queries.

D-HIRD: Domain –Independent Hindi Language Interface to

Relational Database was proposed by Kumar Rajender et.al in

[12]. The main feature of this interface was its domain

independency, using pattern-matching approach. They

introduced a domain-identifier component in database, which

identified the domain by using knowledge base, which made it

domain independent. The interface was able to correctly

identify the domain from the query and translated it into SQL,

which was executed on the database. The interface has been

tested for 80 queries for each type of database.

3. PROPOSED NLIDB INTERFACE
In [11], the interface proposed was based on pattern matching

approach in which command, table name, fields name and

condition were predicted using knowledge base where each

such fields were stored which could occur in Hindi language

query provided by the user. By matching each token to the

stored token SQL query was generated but in case table name

and fields name were same, the interface had faced ambiguity

problem as interface was not able to decide which was the table

name and which was field name. Moreover, due to so many

tokens stored for converting the Hindi query into SQL query the

response time was high. Also this interface was domain specific

i.e., works for single domain only.

To address the problems stated above, a new NLIDB interface

in Hindi is proposed. It uses Karaka theory in order to find the

relation between the table name and attribute name. The

architecture of the proposed interface consists of six modules:

Parser, Case Solver, Graph Generator, Query Translator,

Knowledge Base and Query Executor (see Figure 1). All the

modules along with their functioning are discussed as follows:

Parser: This module is responsible for providing tokens for a

given Hindi language sentence submitted by the users with the

help of shallow parser. The main function of the parser is to

remove undesirable words, reporting corresponding base word

and POS type for each token. Tokens here can be any of the

following type i.e., can be table name, attribute name,

condition, value, or any unwanted type of word. The output of

this module is set of tokens after the removal of undesirable

token.

For example in a given Hindi query “उन विद्यार्थियों का नाम और

शहर बताओ जिनके अंक 79 है”, there are 11 tokens but the parsed

output “उन विद्याथी नाम और शहर बता िो अंक 79” have 9 tokens

i.e., „का‟, „है‟ tokens are removed by shallow parser.

Figure 1: Architecture of Proposed NLIDB

As the output of this module provide us number of useful

tokens along with their base word and POS type for example for

the token „बताओ‟ the base word is „बता‟ and its POS type is

verb which helps in predicting the command for the query. The

parsed output of the file acts as the input for the Case Solver

module.

Case Solver: Even after the removal of undesirable tokens in

the parser module, there are still some tokens left which are not

of any use. For example: „उन‟, „सभी‟, „बारे‟, „में‟ etc. These

tokens are removed here. In this module after comparing the

given Hindi language query and output provided by the parser

module, a new Hindi language query is formed, which consists

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.7, July 2015

41

of base words. The new query formed is: “विद्याथी का नाम और

शहर बता िो अंक 79”.

Further processing is made in this query for the retrieval of

command, table name, attribute name and conditional part if

any exists. Following are the steps for the retrieval of required

information in the translation of Hindi query into SQL query:

(a) Command Retrieval (b) Table Name Retrieval (c) Attribute

Name Retrieval (d) Conditional Part Retrieval.

(a) Command Retrieval: As the parsed output from the shallow

parser predicts about the POS type so token with the POS type

as verb is treated as the command, which is „बता’ in the taken

example. This information about the command is saved in the

set.

(b) Table Name Retrieval: Now the tokens of the new formed

Hindi language query is matched for the case symbols of the

karaka theory i.e., ‘का’, ‘के’ etc. After analyzing the structure of

Hindi Language query it is found that the words before the case

symbols talks about the entity, about which users wants to

retrieve information. So the token before the case symbols

represents the table name and it is stored in a set. In the

example taken, ‘विद्यार्थी’ is the name of the table.

(c) Attribute Name Retrieval: After getting the table name, the

next step is to find out the attribute name. There can be a case

the list of tokens of Hindi language may contain single or

multiple attribute name or it may not contain even a single

attribute name. Now for the retrieval of attribute name, the

tokens after the case symbols are searched as it is found in

karaka theory that attribute names are followed by the case

symbols. The tokens are searched for attribute name until the

field end token is found which is ‘और’ in case of more than one

attribute. There can also be a case that the attribute names are

separated by “,” and then by field end token ‘और’ in that case

also tokens are matched one position more until we get field

end token. In case, no attribute name is specified explicitly then

„*‟ is set as default column name. Now at this point of time all

the attribute names are predicted and stored in a set. Here in the

example it is resolved that ‘नाम’, ‘शहर’ are the attribute names.

(d) Condition Part Retrieval: After noticing the structure of

many Hindi language queries it is assumed that there exists

some words that always come before the start of condition.

These words here are called as condition start tokens which are

stored in a list. The Hindi language tokens are now matched for

the condition start token which can be „जिनका‟, „जिनके‟,

„जिसका‟, „जिसके‟ etc base word for all these is „िो‟. In case

„िो‟ token is found, this confirms the existence of the condition

field. Now the tokens after the condition start token are

searched for the retrieval of condition attribute name and for

their corresponding attribute value separated by the relational

operators. In case more than one condition then it must be

joined by logical operators, which is „या‟ and „और‟. So for the

first conditional part retrieval the tokens before the logical

operators are matched and stored in a set and for the other

conditional part retrieval the tokens after the logical operator is

matched and stored.

For example: relational operator here is „=‟, condition attribute

is „अंक’ and its corresponding condition value is 79.

The main point to be noted here is that all the information

retrieved about the query to be formed is still in linguistic form

that is in the form provided by the user. This information is
mapped to English tokens for SQL query in the subsequent

modules.

Graph Generator: The case solver module provides a set for

the command, table name, attribute name and conditional part if

exists. This module is responsible for generating the graph by

creating vertexes and edges showing the relationship between

the command, table name, attribute name and conditional part.

The graph for this particular query is shown in Figure 2.

Figure 2: Generated Graph from Graph Generator

Query Translator: This is the module where main conversion

from the natural language into the equivalent SQL query takes

place. Query translator module process the output of case solver

module which is set containing information about the

command, table name, attribute name and condition attribute if

exists. This module performs all the mapping of Hindi tokens

using the knowledge base database for converting Hindi tokens

into equivalent English tokens required for generating SQL

query. After the mapping step, the required SQL query is

generated.

So final SQL query generated corresponding to given example

is: „select student.name, student.city from studb.student

where student.marks=79‟.

After all the above steps, query translator yields SQL query as

output, which is fed to the SQL query executor module.

SQL Query Executor: SQL query executor takes SQL query

as input from the query translator and yields the result set after

fetching the data from the database. It generates the output in

tabular form if data is available else message showing „Data not

found‟ is displayed as shown in Figure 3. Moreover this module

is also responsible for storing the Hindi language query, its

corresponding SQL query and the status of the query in

database so that successful executed queries can be selected

later easily from the combo box if users want to execute them

again.

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.7, July 2015

42

Figure 3: Executed Query

Knowledge Base: Knowledge base stores all the Hindi tokens

and their corresponding English tokens required for converting

the Hindi language query into equivalent SQL query. This also

stores the types of the tokens i.e., whether it is table name,

attribute name, command, logical operator, relational operator

or any value.

The Hindi tokens in query translator module also uses

knowledge base for extracting their corresponding English

tokens required for generating SQL query.

As the proposed architecture of the NLIDB uses the Karaka

theory to find the relation between table name and attribute

name so, interface is able to answer the users queries more

efficiently and without any ambiguity. Moreover, the interface

makes use of shallow parser for parsing the Hindi language

query, which not only parse the sentence but also predicts the

base word. This base word helps in reducing the mapping time

as instead of storing each natural language token which

represents the same meaning, its corresponding base word is

stored in knowledge base. So at the time of mapping interface

needs to search few tokens stored in knowledge base that leads

to increase in speed of interface and reduction of response time.

In this way, interface converts the Hindi language query into

equivalent SQL query. The proposed interface is portable to

new domains without many changes and without any expert

help.

4. EXPERIMENTAL EVALUATION
The proposed NLIDB interface is implemented using Java

Swings as front end with MySQL as backend. The interface is

tested with 85 different queries. A partial list of queries is

shown in Table 1. When a Hindi query is given to interface by

user, the interface provided its corresponding standard SQL

query as shown in Table 1. For evaluating the performance of

NLIDB interface, the translation success rate is used which is

defined as (No. of queries answered/Total no. of queries)*100.

When tested on 85 queries experimentally it is found that the

proposed NLIDB is giving 92.4% translation success rate,

which is quite good and promising.

Table 1. Translated Queries

Query in Hindi SQL Query Generated

by NLIDB

सभी विद्याथी बताओ select * from

studb.student

उन विद्यार्थियों के

विभागनाम और शहर

बताओ जिनके अंक 79 से

कमयाबराबर है

select

student.department_na

me, student.city from

studb.student where

student.marks<= 79

उन विद्यार्थियों के शहर

बताओ जिनका नाम पारस

हो

select student.city

from studb.student

where student.name

='पारस'

सभी विभागों के नाम

बताओ जिनकी संख्या 2 से

ज्यादा या संख्या 1 है

select department.name

from studb.department

where department.id >

2 or department.id = 1

5. CONCLUSION AND FUTURE WORK
This paper has proposed a NLIDB architecture based on

innovative computational pannian grammar framework that

uses Karaka theory. The interface accepts users queries in Hindi

and converts them into equivalent standard SQL query. The

interface supported queries that include logical operators,

joining of tables, selection of single or multiple columns and

relational operators. The proposed interface is domain portable.

In order to test the proposed NLIDB, it has been implemented

using Java Swings as front end with MySQL as backend. By

testing it on 85 queries, it has been found that the proposed

NLIDB has given 92.4% translation success rate, which is quite

good and promising. The interface failed to answer syntactically

incorrect queries but this failure rate can be reduced by re-

formation of the query.

Future work will consists of extending the capabilities of

existing interface by enhancing it to accept queries in other

languages. Moreover, types of queries that interface can handle

can also be added. Also, the interface can be made platform

independent.

6. REFERENCES
[1] Sujatha B, Viswanadha S.R, Shaziya H, (2012), “A Survey

of Natural Language Interface to Database Management

System”, International Journal of Science and Advance

Technology, vol. 2(6).

[2] Nihalani N., Silakari S., Motwani M., (2011), ”Natural

language interface for database: a brief review”,

International Journal of Computer Science, vol. 2(8), 600–

608.

[3] Hendrix G., Sacrdoti E., Sagalowicz D., Slocum J., (1978),

“Developing a Natural Language Interface to Complex

Data”, ACM Transactions on Database Sytems, vol. 3(2),

105-147.

[4] Sujatha B,ViswanadhaS.R,(2014),“A Flexible and

Efficient Natural Language Query interface to databases”,

International Journal of Computer Science and Information

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.7, July 2015

43

Technologies, vol. 5(5), 6464-6467.

[5] Warren D., Pereira F., (1982), “An efficient and easily

adaptable system for interpreting natural language queries

in Computational Linguistics”, vol. 8, 3-4.

[6] Popescu Ana-Maria, Armanasu Alex, Etzioni, Ko David,

Yates Alexander, (2004), “Modern Natural Language

Interface to Database: Composing Statistical Parsing with

Semantic Tractabilty”, COLING

[7] El-Mouadib A. Faraj, Zubi S. Zakaria, Almagrous A.

Ahmed, El-Feghi S. Irdess, (2009), “Generic Interactive

Natural Language Interface to Database”, International

Journal of Computers, vol. 3(3).

[8] Nihalani Neelu, Silakari Sanjay, Moywani Mahesh,

(2009), “Design of Intelligent layer for Flexible Querying

in Database”, International Journal on Computer Science

and Engineering, vol. 1(2), 30-39.

[9] Gupta Abhijeet, Akula Arjun, Malladi Deepak, Kukkadapu

Purneeth, Ainavolu Vinay, Snagal Rajeev, (2012), “A

Novel Approach Towards Building a Portable NLIDB

System Using the Computational Paninian Grammar

Framework”, International Conference on Asian Language

Processing, 93-96

[10] Shah Axita, Pareek Jyoti, Patel Hemal, Namrata, (2013),

“NLKIDB-Natural Language and Keyword Based

Interface to database”, International Conference on

Advances in Computing, Communication and Informatics,

1558-1576

[11] Dua Mohit, Kumar Sandeep, Virk Singh Zorawar, (2013),

“Hindi Language Graphical Interface to Database

Management System”, International Conference on

Machine Learning and Applications, 549-553.

[12] Kumar Rajender, Dua Mohit, Jindal Shivani, (2014), “D-

HIRD: Domain-Independent Hindi Language Interface to

Relational Database”, International Conference on

Computation of Power, Energy, Information and

Communication, 843-847.

IJCATM : www.ijcaonline.org

