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ABSTRACT
This paper presents a novel approach for autonomous live sports
broadcasting using visual 3D model-based tracking and a vertical
take-off and landing (VTOL) unmanned aerial vehicle (UAV) such
as a quadcopter or hexacopter in GPS-impaired environments. To
achieve this level of autonomy, position estimation is essential and
is a highly challenging problem using a monocular camera due
to the scale ambiguity. In this paper, we track a tennis court, that
is standard in dimension, using a moving edge-based tracker, and
recover the scale with the prior knowledge of the fixed playing field.
Experimental results are demonstrated in 3 different environments
including static scenes, real broadcast video, and indoor flying.
We also evaluate the proposed approach with the ground truth
provided by a motion capture system and achieve a position
estimation with less than 0.02m standard deviation in the error.
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1. INTRODUCTION
Live sports broadcasting is getting a big market these days; for
example, approximately 4.7 billion people, or roughly two-thirds
of the world’s population, watched the Beijing Olympics through
TV [1]. Technological innovations in live sports broadcasting have
been accelerated in the last decade. The first sports broadcasting
only delivered textual data or symbols in the 1890s. Static cameras
are traditionally used to ensure complete coverage of the playing
field due to the large size or shape of the field. Recently, multiple
moving colour cameras and image processing techniques allow
viewers to see dynamic scenes from a variety of angles [2, 3]. As
many cameras are used for providing better coverage of the field,
especially for soccer and football, technology for choosing the
optimal camera is important [4, 5]. Some systems detect multiple
players and track them with PTZ camera automatically [6]. Some
systems extract highlight scenes by analysing sports broadcasts

Fig. 1. The UAV captures the tennis court for autonomous live sports
broadcasting. This figure is only for conceptual illustration of the proposed
application.

using the intensity of acoustics, by using keywords such as “goal”
spoken by an announcer, or using visual feature sequences and so
on [7, 8, 9]. Many commercial products apply augmented reality to
sports broadcasts, such as the BBC Piero system1, Viz Arena2, Tog
Sports3, and Spider Cam 4.
All of these technologies provide improved quality of sports
broadcasting, but the most basic task for applying these
technologies is capturing dynamic scenes in a variety of angles.
One good solution for this is using UAVs and drones with cameras.
These days, there is a growing interest in UAVs and drones for
various purposes, such as surveillance, reconnaissance operations,
monitoring, and aerial photography. Many broadcasting companies
use UAVs and drones with cameras to obtain dynamic scenes from

1http://www.bbc.co.uk/rd/projects/piero
2http://www.vizrt.com/products/viz_arena
3http://rtsw.co.uk
4http://www.spidercam.org
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a wide view without complex equipment5. Amazon is planning to
use UAVs for delivery in the USA and are now free to test its
Prime Air service6. This means UAV technology is on the level
for commercialisation and will become part of our daily life if
we can verify the safety of UAVs. Someday Google and Facebook
hope to use drones to assist in providing Internet access worldwide
from the sky. UAVs and drones are used for ocean exploration
[10], forest fire monitoring [11], wildlife tracking without human
intervention that allows providing better protection and securing of
animals [12], disaster recovery [13], infrastructure inspections [14],
and crop, soil, and water status monitoring [15, 16].
In this paper, we present an approach for the application
of sports live broadcasting by addressing the limitations of
existing approaches with the proposed high-performance system.
Especially, we focus on introducing a novel application that makes
use of vision-based model tracking and an unmanned aerial vehicle
for autonomous live sports broadcasting.
By recovering a scale using a predefined CAD model and
a monocular camera, we demonstrate precise metric position
estimation. We examine three case studies for tracking a tennis
court: 1) desktop environment, 2) broadcasting video, and 3) using
a real UAV system. We evaluate the feasibility and performance
of our method through these intensive experiments using real
broadcast video and ground truth provided by a motion capture
system.
This paper is structured as follows: Section 2 introduces related
work and background. Section 3 describes coordinate systems,
3D model-based tracking and dealing with unknown camera
calibration parameters. We present our experimental results in
Section 4 and conclusions in Section 5.

2. RELATED WORKS
2.1 Sports Broadcasting
Skycam is an instance of the current technological development
in live sports broadcasting. A cable suspended camera hangs
in open space over a playing ground and moves in horizontal
and vertical directions driven by motors anchored at elevated
corners of the stadium. This approach has been successfully
demonstrated for popular sports leagues such as NFL, NBA, and
the FIFA world cup. However, there are issues that must be
considered. Firstly, using a cable mechanism can only generate
tension force where the precision is subject to the flexibility of
cables. Secondly, this system requires rigorous and costly pre-setup
procedures including installation of reels, cameras, and a control
tower. Using flying vehicles for autonomous sports broadcasting
is a feasible alternative for resolving the limitations of Skycam.
They can carry sufficient payloads including a stabilised camera
system and can autonomously fly with GPS-based stabilised flight
modes in outdoor environments. Off-the-shelf VTOL platforms are
affordable.
However, it is challenging to use these platforms for fully
autonomous broadcasting. There are many domed or covered
stadiums and indoor arenas where GPS is not applicable. Moreover,
GPS signals can experience interference from external disturbances
in outdoor environments which in turn lead to inaccurate position
estimation. Accurate position estimation of a VTOL platform is key
for stable flight and high-quality broadcasting.

5http://www.aeronautics-sys.com/?CategoryID=
259&ArticleID=191

6http://www.amazon.com/b?node=8037720011

To achieve such a level of accuracy with a VTOL platform, vision
sensors are a favourable choice for small flying vehicles since
they are lightweight, low-cost, and can provide information-rich
data. However, there are also some challenges, including intensive
computing requirements and scale recovery. A scale cannot be
determined without the aid of other sensors (e.g., a laser range
finder, IMU, or a sonar sensor) or prior knowledge such as CAD
information. In this paper, we present an approach that makes use of
known metric information (i.e., a tennis court) for state estimation.
A fast and computationally cheap edge tracker with a CAD model
can resolve both issues mentioned above. The proposed approach
can be applied for any tennis court tracking since the dimensions
of tennis courts are internationally uniform. Besides, it is easy
to introduce another model for tracking sports such as soccer,
baseball, and basketball fields.

2.2 UAVs for broadcasting
Recently, interest in unmanned aerial vehicles has increased,
considering their broad range of applications in civil and military
domains, such as aerial transport, geographical surveillance, and
entertainment. Particularly, vertical take-off and landing (VTOL)
micro-aerial vehicles (MAVs), e.g., a quadcopter or a hexacopter,
offer a flexible and adaptable platform amenable to aerial research
for such applications. They have advantages of small size, agile
maneuverability, low-cost, and useful payloads [17, 18].
A large amount of impressive research has been presented using
these platforms. One of the interesting and challenging problems
is accurate state estimation that tracks internal states such as
position, orientation, velocities, and biases. GPS-based systems
have demonstrated stable performance for outdoor navigation, but
their accuracy may be insufficient for autonomous flying and is
not suitable for indoor systems. Using motion capture devices
can provide accurate estimates within limited workspaces [10].
Stochastic filter frameworks, e.g., an Extended Kalman Filter,
(EKF), or Particle Filter, can be utilised for state estimation using a
vision sensor and an inertial measurement unit (IMU) [19].
In order to avoid this issue, we propose to use a visual
3D model-based tracking approach for providing position and
orientation estimation. This approach has been widely developed
for decades due to its simplicity and robustness under varying
lighting conditions. Lepetit et al. [20] surveyed the state-of-the-art
industrial and research grade 3D model-based tracking solutions.
Teulire et al. [21, 22] demonstrated 3D model-based tracking and
position control of UAVs. Translational velocity was estimated with
inertial measurements and position estimation. This work is closely
related to the method presented in this paper. However, we apply
the technique to a different application (i.e., tennis court tracking)
and quantitatively evaluate the performance of the system using
accurate ground truth and real broadcasting video.

3. PRELIMINARIES
In this section, coordinate systems, 3D model-based tracking,
manual model initialisation, and camera calibration are introduced.
We utilise Visual Servoing Platform (ViSP) as a front-end feature
tracking module as shown in Figure 2. This open-source software
package includes useful computer vision algorithms, feature
tracking, and visual servoing implementations. Below, we provide
a brief overview of ViSP model-based tracking; more details can
be found in [23].
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Fig. 2. 3D model-based tracking system diagram. I is a grey input image
and pdi is a tracked set of points using a moving edge tracker. The CAD
model in world coordinates, WP, is projected onto an image plane with
camera intrinsic and extrinsic parameters, ε. CM∗W is an optimal estimator
of the position and orientation of a camera.
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Fig. 3. Coordinate systems definitions. Transformation between {B} and
{C} is constant whereas {W} and {B} vary as a camera moves. The world
coordinate system is defined on the top-right corner of the tennis court.

3.1 Coordinate systems
We define 3 right-handed frames: world {W}, camera {C} and
body {B} as shown in Figure 3. {W} has its z-axis upward while
{C} (camera optical axis) and {B} have their z-axis downward. We
define the notation aRb which rotates a vector defined with respect
to frame {b} to a vector with respect to frame {a}. The rotation and
translation between a camera and a body, CRB, t2 are considered
as constant in this paper.WRC , t1 is estimated by the model-based
tracking algorithm.

3.2 3D model-based tracking
3D model-based tracking is the trace of the projection of the
known 3D model on an image [24]. Time-consuming global edge
extraction is not required since this spatio-temporal edge tracker
only needs positions of sample pixels and their intensities. For
example, line tracking using moving edges is illustrated in Figure 4.
Firstly, line, `(r)k, in an image Ik is manually defined by the
user with a step size, w. k and r are a time stamp and camera
pose respectively. For each sample point denoted as blue in
Figure 4(a), a 1D search is performed along the normal direction
of each sample to determine the search interval, d. The maximum
convolutional response with a pre-defined 3×3 mask is detected
and an M-Estimator is utilised for outlier rejection. Given this
tracked model, the camera pose can be defined as

CM∗W = arg min
CRW ,t1

∑
i

(pdi − pr(CMWWPi))
2 (1)

`(r)k

d

w
(a)

`(r)k

`(r)k+1

(b)

Fig. 4. (a) An example of a line `(r)k search at time stamp k. w is a
constant step size in pixel units whereas d is a varying search interval. Blue
dots denote sampling points. (b) At k+1, 1D convolutional searching seeks
the maxima on `(r)k+1.

where pdi are the matrix produced by the moving edge tracker and
WPi is 3D points of a CAD model in the world coordinate frame.
WMC is a 4×4 homogeneous matrix containing camera pose,
position, and orientation (usually called camera extrinsics). pr(·)
is the projection that is a function of the camera pose. Therefore,
Equation (1) estimates camera pose by minimising the sum of the
errors between the edges in the image and those of the 3D model
projected onto the image plane given the camera pose.
It is important to mention that this moving edge tracker has
the advantages of fast tracking and providing mathematical
representations of the tracked edges. However, the tracking
speed and performance depends on the number of sample points
determined by w and the search interval d. A user is still required
to tune these parameters empirically with respect to the target
application.

3.2.1 Manual model initialisation. Before tracking a 3D model,
a model initialisation step is required to associate correspondences
between the 3D CAD model and the 2D image projection of it.
Given prior knowledge of a tennis court, we can link a 3D model
to the 2D image by sequentially clicking points in the image as
shown in Figure 5 (a). A minimum of three points that are not
collinear are required to define a surface representing the tennis
court. However, we use four symmetric points that are close to the
camera for a more accurate initialisation. One point is redundant
and can be removed. After the initialisation, the moving edge
tracker is invoked as depicted in Figure 5 (b). Note that the number
of points for the model initialisation vary depending on playing
fields.

3.3 Camera calibration
We faced an interesting and well-known problem: unknown camera
calibration [25]. For instance, we demonstrate accurate 3D model
fitting for the desktop experiment (see Figure 5-b), whereas the 3D
model fitting is quite poor for broadcast video (see Figure 6-a).
The right bottom of the 3D model is poorly aligned with the
tennis court in the image. It was difficult to obtain intrinsic camera
calibration parameters for the latter case (live broadcast video),
whereas we were able to carry on camera calibration for the former
case (desktop experiment).
There is a straightforward way to estimate unknown camera
intrinsic parameters ξ such as principle points, focal length, and
distortion parameters if we have information about an object. This
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(a) (b)

Fig. 5. Guidance for manual model initialisation (a) and
forward-projection of a CAD model (red) with the initialisation (b).
Green dots denote tracked point features.

(a) (b)

Fig. 6. Tracking results without calibration (a) and with (b). Camera
calibration yields longer tracking performance.

information determines how the object should be seen in an image.
We can define a camera byWMC , ξ and an objectWP with respect
to the world coordinate frame. Then, the position of the object in
{C} and its projection can be expressed as

CP =CMWWP
pprj =prξ(

CP).

The objective of camera calibration is to minimise the error e =
‖pprj − pmea‖ where pmea denotes the measured visual feature.
The motion of measured features is a function of camera velocity
νc and the time differentiation of intrinsic parameters ξ.

ṗprj = Lpν where ν =

[
νc

ξ̇

]
,Lp =

[
∂pprj
∂r

,
∂pprj
∂ξ

]
Finally, ν can be expressed as:

ν = −λL+
p e

where λ ∈ R is a positive gain, that determines the decay rate
and L+

p is a pseudo inverse of Lp. Note that we introduce only
general ideas of camera calibration using a 3D CAD model and
image measurements. It is also recommended to read the related
works for more detail and solid explanations [26, 27].

4. EXPERIMENTAL RESULTS
In this section, the experimental hardware and software setup and
results in three different environments: indoor desktop, outdoor
broadcasting, and indoor flying are presented. The image instances
for each test are shown in Figure 7. Each result consists of a
metric position, orientation, and 3D camera pose plots with respect
to the world coordinate frame. We also present ground truth
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Fig. 8. Indoor desktop experimental results. The CAD model is rotated
180◦ during the experiment whereas the camera is stationary. Both position
and orientation estimates show qualitatively reasonable results but it is
challenging to evaluate the performance without ground truth.

comparison provided by a motion capture system that can measure
sub-millimetre accuracy at >100Hz for the indoor flying test in
order to quantitatively evaluate the proposed system. It is worth
mentioning that the flying experiments are conducted with safety
nets and at low-altitude under the QUT legislation and guidance
regulations. Video demonstration is available from the link below7.

4.1 Experimental hardware and software setup
In this paper, we utilise a different camera for each test. Firstly,
a low-cost, $8 AUD, high-speed, up to 100Hz at 320×240,
Playstation EyeToy camera is used for the desktop test. This
cost effective CMOS camera has a rolling shutter that introduces
problems for moving platforms. Secondly, a global shutter
industrial low-end grayscale Bluefox camera from MatrixVision is
used for the flying test. 752×480 image sequences are recorded
at 30Hz with manual piloting. Third, an unknown commercial
zoom camera provides footage for a real tennis game. Tracking is
performed by post-processing with a computer (Intel i5 3.2GHz
CPU and 16GB RAM). Ubuntu Linux, 14.04 trusty and Visual
Servoing Platform (ViSP, 2.10.0) on Robot Operating System (ROS
indigo) software packages are utilised. The broadcasting dataset is
acquired from a previous tennis match 8.

4.2 Desktop tracking results
The first experiment is performed in a controlled, static
environments. An accurately calibrated EyeToy static camera
is placed about 20 cm away from a scaled tennis court. After
initialisation, a human rotates the tennis court 180◦ and introduces
occlusion and shape variations. For most desktop testing, the
tracker is able to track the court well as shown in Figure 8. The
object starts to move at about 20-60 s and the camera moves
from 60-90 s. There are two peaks at 60 s and 90 s. The former is
caused by object shape variation and the latter is due to the camera
shaking just before moving. Even though we do not have access to
ground truth for this experiment, the performance is qualitatively
demonstrated in the accompanying demonstration video clip.

4.3 Broadcasting video results
It is interesting to apply the proposed approach to the real broadcast
image sequences. There are fundamental challenges for this test

7http://youtu.be/5eH0U3iMDDw
8The authors do not hold the copyrights of this testing video.

4

http://youtu.be/5eH0U3iMDDw


International Journal of Computer Applications (0975 - 8887)
Volume 122 - No. 7, July 2015

(a) Indoor desktop (b) Outdoor broadcasting video (c) Indoor UAV flying

Fig. 7. Three experimental environments.

in comparison to the previous test. Firstly, we do not have access
to intrinsic camera parameters which yields poor model fitting
and lost tracking. Secondly, image scenes are more complex and
dynamic with moving players and camera zooming. Lastly, the
tracker often loses the tennis court when only small portions of the
tennis court are visible.
To address the first issue, we employ an unknown camera
calibration technique. The moving edge tracker performs
reasonably well with illumination changes and small occlusions,
but it still requires fine parameter tuning. We cannot resolve the
last issue in this paper, but propose some feasible solutions in
section 4.5.
Figure 9 shows position and orientation estimation with 3D camera
pose plots. Like the previous test, we do not have ground truth
for this experiment; however, the performance is qualitatively
demonstrated in the accompanying video clip. The camera is
initially located about 145m away from the tennis court and
approaches 30m from the tennis court with small linear and
angular velocities and decelerates at 115m.

4.4 UAV experiments
The last test is conducted with a down-facing camera on a manually
piloted flying vehicle. A scaled-down tennis court is placed on the
ground and image sequences are recorded for post processing; as
shown in Figure 10.
Figures 11 and 12 show position and orientation estimation results,
respectively. The results are plotted only for a successful tracking
period: 42–67 s. For position estimation, the tracker does not
suffer from drift, which is often a challenging issue for such
problems due to small error accumulation over a long period. In our
position estimation problem, error accumulation is not included,
but rather is minimised the error between the model projection
and measurements. We compute the standard deviation of each
error (i.e., the differences between ground truth and estimates) in
the period between 37–67 s and achieve σx = 0.017m, σy =
0.015m, and σz = 0.010m. This performance is impressive
and promising for future work such as closed-loop control and
autonomous navigation.
For orientation estimation, pitch and roll, the rotation along the
camera x and y-axes respectively, suffer from large noise. It is
found that those angle changes introduce errors in image features
that, in turn, produce errors for the moving edge tracker. It is
necessary for VTOL platforms to tilt into the direction they
want to move, which implies that the translation and rotation
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Fig. 9. Outdoor broadcasting video experimental results. (a) and (b) are
position and orientation estimation results and (c-e) are camera trajectory
plots in different views. The skycam is initially located around 145m away
from the tennis court and slowly flies to the target. Similar to desktop
experiments, both position and orientation estimates show qualitatively
reasonable results, but it is difficult to evaluate the performance without
ground truth.

behaviours are coupled. Thus, it may be difficult to avoid this
issue if we are exclusively using a vision sensor. However, we can
alternatively utilise a low-end onboard IMU sensor for providing
drift-fee reliable pitch and roll angle estimation. For the yaw angle,
this model-based tracking approach can also provide drift-free
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Fig. 10. Indoor UAV flying experiment with 62.6 times scaled-down
tennis court. A motion capture system measures ground truth positions of
reflective markers (grey dots) on the vehicle and the tennis court. For safety
reasons, we can only demonstrate low-altitude flight tests.
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Fig. 11. Position estimation results with the ground truth for indoor UAV
flying. The dotted line is our estimation and the solid line is ground truth
provided from motion capture devices. Note that the tracker is able to track
the tennis court for only 30 s and we discuss this issue in section 4.5.

estimates similar to the position estimation. This will be useful for
future closed-loop development. We calculate standard deviations
for the same period and achieve σpitch = 6.71◦ σroll = 5.26◦, and
σyaw = 3.84◦.

4.5 Discussions and limitations
As we presented in the previous section, we can see promising
results for tracking. The pose estimator is also simple and drift-free.
However, there are still many challenges that can be divided into
two major issues: safety and continuous tracking.
Regarding the first issue, we only demonstrate low-altitude flying
experiments due to the university’s regulations. UAVs must be
flown more than 30m away from people, vehicles, and buildings
and it is prohibited to fly over any populated areas. The maximum
height allowance is 120m in good weather conditions with
visual-line-of-sight. This is a sensitive issue in operating UAVs and
must be resolved before flight tests. One feasible approach is hiring
a certified CASA operator.
Regarding the second issue, the tracker often loses tennis court
tracking and is required to be manually re-initialised as shown
in Figure 13. This stems from insufficient edge measurements of
a 3D model, e.g., large occlusions or being beyond the field of

Time(s)
40 45 50 55 60 65 70

R
o

ll
 a

n
g

le
(d

e
g

)

-50

0

50 ViSP roll
Vicon roll

Time(s)
40 45 50 55 60 65 70

P
it

c
h

 a
n

g
le

(d
e
g

)

-50

0

50 ViSP pitch
Vicon pitch

Time(s)
40 45 50 55 60 65 70

Y
a
w

 a
n

g
le

(d
e
g

)

-50

0

50 ViSP yaw
Vicon yaw

Fig. 12. Orientation estimation results with the ground truth for indoor
UAV flying. The dotted line is our estimation and the solid is ground truth
provided from motion capture devices. Abundant errors in pitch and
roll estimation reflect a fact that a VTOL platform has to rotate first into
the direction of the traverse and this motion introduces errors in an image
and angle estimation.
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Fig. 13. Model tracking failure cases. The model tracker often loses
tracking when observations are insufficient due to occlusions or out of
FOVs.

views (FOVs). In order to address this challenge, we are planning
to exploit supervised machine learning techniques that are able to
provide a bounding box for the model. Within this image region,
a Particle Filter based approach can estimate the optimal pose of
a camera. More specifically, a particle is a forward-projection of
a 3D model given a random camera pose and we are then able to
compute a fitting score that is the residual of edge measurements
and the projection. This local window search approach will be able
to perform re-initialisation with low computation demands.

5. CONCLUSIONS AND FUTURE WORKS
In this paper, we address a novel approach for live sports
broadcasting applications using a VTOL platform and 3D
model-based tracking in GPS-denied environments. State
estimation of metric position and orientation is demonstrated by
using a moving edge-based 3D model tracker and a monocular
camera in different experimental environments. Ground truth
from a motion capture system is utilised for quantitative
evaluation. Developing a precise and accurate tracking system
is an essential first step in developing an automated UAV-based
sports broadcasting system before tackling closed-loop control
system issues.
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Future work includes using an IMU for feature de-rotation (motion
compensation) and feature prediction, auto initialisation, lost
tracking recovery, and closed-loop control.
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