
International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.20, July 2015

14

A Memory Efficient Regular Expression Matching by

Compressing Deterministic Finite Automata

Utkarsha P. Pisolkar

PG Student, Dept. of Computer Engineering,
G.E.S’s R.H. Sapat College of Engineering,
Management Studies & Research, Nashik

Savitribai Phule Pune University, India

Shivaji R. Lahane
Asst Professor, Dept. of Computer Engineering,

G.E.S’s R.H. Sapat College of Engineering,
Management Studies & Research, Nashik

Savitribai Phule Pune University, India

ABSTRACT

Regular expressions are very meaningful and now-a-days

broadly used to represent signatures of various attacks. The

focal component of today’s security systems like intrusion

detection and prevention system is a signature based regular

expression matching. Deterministic finite automaton is often

used to represent regular expressions. In regular expression

matching, storage space of Deterministic finite automata is

very important concern. A massive amount of memory is

essential to store transition function of Deterministic finite

automata. The method described in this paper reduces size of

Deterministic finite automata which is in regular expression

format. The performance of the regular expression matching

by compressing Deterministic finite automata is evaluated by

using regular expression set.

General Terms

Pattern matching algorithms, Network Security, Theory of

Computations.

Keywords

Regular expressions; security attacks; deterministic finite

automata; intrusion detection and prevention.

1. INTRODUCTION
Signature based regular expression matching is the focal

operation in intrusion detection and prevention system, traffic

classification, content based filtering and monitoring system

etc. It inspects the packet data and compares that data against

database of attack signatures or database of patterns of

interests. It involves examination of a given sequence of text

string for the presence of pieces of some pattern. A finite

automaton is used to represent database of signatures. A

deterministic Finite Automaton (DFA) is commonly used to

represent these signatures [1]. Pattern matching process takes

place over this DFA by traversing it.

Regular expression based pattern matching is very widely

used today because regular expressions are compact and

easier to express variety of security attacks instead of easy

patterns of string. When regular expressions are implemented

through DFA, it requires only one memory access per byte but

require large amount of memory space to store their transition

tables [2]. Therefore, they have limited use in real

applications.

This paper describes a method for memory space reduction of

DFA generated from regular expressions. This method has

four main phases as Regular expression to Non-Deterministic

finite automata (NFA) conversion, NFA to DFA conversion,

DFA compression and matching on DFA. These four phases

converts regular expressions to compressed form of DFA. The

signature based regular expression matching is performed on

compressed DFA.

The remaining paper is organized as follows. The related

work of some of the existing DFA compression methods and

different algorithms used till today are discussed in Section 2.

Section 3 highlights the regular expression matching by

compressing DFA work in detail, and Section 4 presents

results of Regular expression matching by compressing DFA

system on dataset. Concluding remarks and future work given

in Section 5.

2. RELATED WORK
Compressions of DFA have been done till today, mainly

include approaches like reducing transitions, states, input

alphabet sets and bits that represents the transitions. The total

number of transitions of the state were reduced by approaches

like D2FA [3] and CD2FA [4]. The D2FA [3] is the Delayed

Input DFA (D2FA) approach, which has used default

transitions to reduced space requirements between the states

that have larger number of common transitions [3]. The

CD2FA [4] is the Content Addressed Delayed Input DFA used

to increase the speed of D2FA through laying up more

information on the transitions edges and replacing state

numbers with content label to leave out past default

transitions.

The total number of states in DFA was reduced by the

approaches like Hybrid DFA-NFA, HFA and XFA. The

hybrid DFA-NFA [5] has reduced number of states by

merging the advantages of both automata DFA and Non-

deterministic finite automata (NFA) [5]. The nodes that have

state explosion problem were represented by NFA and for

lasting nodes a DFA was used. A History-based Finite

Automaton (H-FA) has reduced the number of states by

storing the transition history in a history buffer which is a

small and fast cache [6]. The extended character set (XFA) [7]

is another approach that has reduced number of states of DFA.

The conditional transitions were removed with many

automata transformations. For complex regular expressions

XFA approach is not good because separate DFA state is

required per every regular expression.

The number of states and transitions were decreased by the

Delta finite automaton [8] approach. The diversity between

nearby states which have many familiar transitions was stored

in this approach [8]. The size of input alphabet table was

decreased by alphabet compression table [9] approach. The

bunch of characters in an input alphabet set was transferred to

a small bunch of clustered characters for some states which

have analogous transitions in the automaton. For every

partition, an isolated alphabet compression table was

produced [9]. The number of bits that represents every state

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.20, July 2015

15

were reduced by HEXA [10] (History based Encoding,

eXecution and Addressing) approach [10]. This approach was

accumulated several paths to every node in history. Some

extra discerning data was added to the history so that every

node had separate storage location [10].

3. A MEMORY EFFICIENT REGULAR

EXPRESSION MATCHING BY

COMPRESSING DETERMINISTIC

FINITE AUTOMATA
The regular expression matching by compressing DFA

reduces the size of DFA which is generated from regular

expression as shown in Figure 1. It consists of four phases.

The first phase takes regular expression set R as input and the

NFA is constructed for each regular expression r R using

Thomson algorithm [11]. The second phase converts NFA to

DFA using subset construction algorithm [12]. These DFAs

are then combined into one single DFA and at the end

compression method is applied on this single DFA in thirds

phase. Fourth phase applies the regular matching process on

to compressed DFA.

Fig 1: Block Diagram for Regular Expression Matching by

Compressing DFA

3.1 Phase 1(Regular Expression to DFA

Conversion)
Regular expression dataset R is input to the first phase. The

Regular expression illustrates the pattern of the string. These

regular expressions contains characters with symbols used in

regular expressions such as closure (*) for zero and more

occurrences, or (+) for one and more occurrences etc. Each

regular expression r in R is converted into NFA using

Thomson algorithm [11]. The Thomson algorithm consists of

rules for conversion of each type of regular expression to each

state in NFA [11]. The Figure 2 shows NFA for Regular

expression “(a+b(ab)*)*”.

Fig 2: NFA for Regular Expression “(a+b(ab)*)*”

3.2 Phase 2 (NFA to DFA Conversion)
The set N of NFAs of given regular expressions is an input to

the second phase. Each NFA nfai in set N is converted into

corresponding DFA. The subset construction algorithm [12] is

used for this conversion. Subset construction algorithm

includes steps for converting each state in NFA to each state

in DFA. The Figure 3 shows DFA for previously generated

NFA in Figure 2.

Fig 3: NFA to DFA of Regular Expression “(a+b(ab)*)*”

3.3 Phase 3 (DFA Compression)
The set D of DFAs of given NFAs is an input to the third

phase. All DFAs in set D are combined into one single DFA.

The Aho-Corasick algorithm [2] is used while combining the

all DFAs. The Aho-Corasick algorithm has important property

that it does not depend on precise input therefore it is not

vulnerable to various security threats. Therefore Aho-

Corasick algorithm is used in this work. At initial stage, the

algorithm creates the finite machine from available set of

keywords, and then traverses the finite machine using input

text string for pattern matching purposes. The actions of

pattern matching are determined by three functions. If a

character is match, goto() function is executed with output()

function otherwise it executes failure() function [2]. The

transitions between DFA states are controlled by goto

function and failure function. The output function is used for

printing string if pattern matches [2]. The final single DFA,

which is an output of Aho-Corasick algorithm, is used as an

input for DFA compression approach. The compression

approach reduces the size of DFA by using CompactDFA

algorithm [1]. This algorithm decreases all transition rules to

no more than one rule so that each state has only one

transition rule. This converts all transitions to exacting state to

a single rule. It has three steps as Grouping the States,

Construction of Common Suffix Tree and Encoding [1].

3.3.1 Grouping the States
In the first step, set of states of single DFA is an input.

Common suffix and longest common suffix values are

calculated for DFA states [1]. If state s in DFA has one and

more than one incoming transitions then Common Suffix

value is calculated for that state. The label of the state is the

common suffix value for it the lacking its final symbol

[1].The extended length common suffix of a state is the

longest common suffix for that state to which state s has an

outgoing edge [1]. This step produces common suffix and

longest common suffix values as an output.

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.20, July 2015

16

3.3.2 Construction of Common Suffix Tree
In the second step, common suffix tree is constructed from

which compressed rules are generated. Common suffix tree is

constructed from a set of longest common suffix values.

These values are become nodes of common suffix tree such

that one value say lcsi is a predecessor of another value lcsj if

and only if lcsi is a suffix of lcsj [1]. After that, for every

internal node Connecting nodes are added to balance the tree

such that every node in the tree should have number children

equal to the power of two [1]. After that states are linked to

the nodes in common suffix tree in contacted with its longest

common suffix value such that a state is directly attached to

the node if the node is leaf and if not then state is attached to

one of the connecting node by balancing between all its

attaching states. This step makes the common suffix tree as an

output.

3.3.3 Encoding
In the third step, common suffix tree is an input and as an

output it generates compressed rules for DFA. Encoding step

encodes the common suffix tree, nodes and states. The size of

the code is computed. The size of code is a number of bits

necessary to predetermine the common suffix tree. The edges

are determined by listin on e ery siblin ed es . e

siblin ed es are t ose ed es t at initiate from t e similar

node. ery ed e is determined by its binary ordinal number

and code si e of lo n + bits, where n is the number of

sibling edges [1]. The nodes are determined by combination

of codes of edges on pathway between root node and that

node. The states are determined with the help of its position in

common suffix tree. The compression rules are generated for

those states that have the similar next state in DFA. This next

state should not be the root of the tree. The compression rules

are created in following way [1],

If state si has more than one incoming transitions then

compressed rule for it includes three fields as code of the node

common suffix of si is set as current state field, label on

incoming link of si is set as symbol filed and code of node si is

set as next state field.

If state has only one incoming transition the compressed rule

for it includes three fields as code of the node sj is set as

current state field, label on incoming link of si is set as symbol

field and code of node si is set as next state field, where sj is

the source of only edge to si .

If the state is root then the compressed rule for it includes

three fields as * of code size is set as current state field, * is

set as symbol field and code of root node is set as next state

field.

This phase generates the set compressed rules for storing DFA

in memory. The DFA is then stored into memory in the form

of these compressed rules and pattern matching process uses

these compressed rules. .

3.4 Phase 4 (Matching on DFA)
The compressed rules generated from regular expressions are

used in matching phase. The state code is able to go with

many compressed rules at a time. Therefore rule with longest

prefix match is selected [1]. From the input data, which is to

be inspected for presence of any security threat, one byte is

selected at a time. This byte is matched with each compressed

rule starting from root node rule. On every character, match

process moves to next rule. When all characters in input text

are over and if last state with which it has matched the rule is

final state then input text contains security threats otherwise

not. Therefore, total space required to store DFA and time

required to match is depend on number of compression rules

generated from phase 3.

4. EXPERIMENTAL RESULTS
The Snort data set [13] is used to evaluate the performance of

a compressed DFA on simple patterns. The performance of

uncompressed and compressed DFA of regular expression set

and simple pattern set is tested on Intel Pentium Processor P6

100 with 2GB RAM.

The five different regular expression sets are used as RE20,

RE12, RE6, RE5 and RE4. The RE20 set contains 20 regular

expressions of length 7, RE12 set contains 12 regular

expressions of length 4, RE6 set contains 6 regular

expressions of length 5, RE5 set contains 5 regular

expressions of length 16 and RE4 set contains 4 regular

expressions of length 10.

Three different pattern sets are used as P100, P1000 and

P5000. The P100 file contains 100 patterns, P1000 file

contains 1000 patterns and P5000 file contains 5000 patterns.

We have use two packet files as Pck500 and Pck5000. The

Pck500 contains 500 packets and Pck5000 contains 5000

packets. These packet are randomly generated files through

the programs. The storage space of DFA is measured in bytes

and matching time is measured in milliseconds.

Table 1 shows results of DFA size on uncompressed and

compressed DFA generated from regular expressions. Table 2

shows results of DFA size on uncompressed and compressed

DFA generated from simple pattern set.

Table 1. DFA Size Comparison between uncompressed

DFA and compressed DFA on regular expression set

Regular

Expression

Set

Length of

Regular

Expression

Size of

uncompressed

DFA

Size of

compressed

DFA

RE20 7 45378 byte 743 byte

RE12 4 34884 byte 1128 byte

RE6 5 26676 byte 484 byte

RE5 16 75924 byte 1164 byte

RE4 10 36936 byte 552 byte

Table 2. DFA Size Comparison between uncompressed

DFA and compressed DFA on simple pattern set

Number

of

Patterns

Size of

uncompressed

DFA

Size of

compressed

DFA

100 20344 bytes 3368 bytes

1000 100652 bytes 9920 bytes

5000 202556 bytes 11394 bytes

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.20, July 2015

17

Figure 4 shows results of pattern matching time on

uncompressed and compressed DFA generated from regular

expressions with pck500 input data file. Figure 5 shows

results of pattern matching time size on uncompressed and

compressed DFA generated from simple pattern set pck500

input data file.

Fig 4: Comparison of pattern matching time on

uncompressed and compressed DFA generated from

regular expressions with pck500 input data file

Fig 5: Comparison of pattern matching time on

uncompressed and compressed DFA generated from

simple pattern set with pck500 input data file

5. CONCLUSION AND FUTURE WORK
Regular expressions are broadly used to represent signatures

of security attacks. DFA is easy way to express regular

expressions. Memory space required to store DFA is very

large. To address this problem, this paper has described the

method which reduced the size of DFA generated from

regular expression. The regular expression matching by

compressing DFA method has converted regular expressions

into DFA of minimum size. The DFA is stored into memory

in the form of compressed rules. The compressed DFA of

regular expressions is used at the end in regular expression

matching process. As a future work, one may consider the

regular expression which represents security attacks in special

symbols for building and compressing deterministic finite

automata.

6. ACKNOWLEDGMENT
We are glad to express our sentiments of gratitude to all who

rendered their valuable guidance to us. We would like to

express our appreciation and thanks to our Principal, Prof. Dr.

P. C. Kulkarni. We are also thankful to our Head of

Department, Computer Engineering, Prof. N. V. Alone. We

thank the anonymous reviewers for their comments.

7. REFERENCES
[1] AnatBremler-Barr, D.Hay, Y. Koral,

“CompactDFA:Scalable pattern matc in Usin Lon est

Prefix Match Solutions," in IEEE/ACM Transaction on

networking,vol-22,No.2,April 2014.

[2] A.V. A o and M.J. Corasick. “ fficient Strin Matc in :

An Aid to Biblio rap ic Searc .” Communications of t e

ACM, 18(6):333–340, 1975.

[3] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J.

 urner, “Al orit ms to accelerate multiple regular

expressions matc in for deep packet inspection”, in

Proc. of ACM SIGCOMM , pages 339-350. ACM, 2006.

[4] S. Kumar, J. urner, J. Williams, “Ad anced al orit ms

for fast and scalable deep packet inspection”, in Proc.

ACM/IEEE Symp. Archit. Netw. Commun. Syst.

(ANCS), pages 81-92. ACM, 2006.

[5] M. Becc i, P. Crowley, “A ybrid finite automaton for

practical deep packet inspection”, in Proc. Conf.

Emerging Netw. Exp. Technol.(CoNEXT), pages 1-12,

2007.

[6] S. Kumar, B. Chandrasekaran, J. Turner, G. Varghese,

“Curin re ular expressions matc in al orit ms from

insomnia, amnesia, and acalculia”, in Proc. ACM/I

Symp. Archit. Netw. Commun. Syst. (ANCS), pages

155-164. ACM, 2007.

[7] R. Smit , C. stan, and S. J a, “Xfa: Faster si nature

matc in wit extended automata”, in I Symposium

on Security and Privacy, May 2008.

[8] D.Ficara, S.Giordano, G. Procissi, F.Vitucci, G.Antichi,

A.D. Pietro, “An Improved DFA for Fast Regular

 xpression Matc in ” ACM SIGCOMM Computer

Communication Review, Volume 38, Number 5, October

2008.

[9] S. Kon , R. Smit , and C. stan, “ fficient si nature

matc in wit multiple alp abet compression tables,” in

Proc. Int. Conf. Security Privacy Commun. Netw.

(Securecomm), 2008.

[10] S. Kumar, J. Turner, P. Crowley, and M. Mitzenmacher,

“H XA: Compact data structures for faster packet

processing", in Proc. IEEE Conf. Comput. Commun.

(INFOCOM), 2009.

[11] Ken ompson, “Pro rammin tec niques: re ular

expression searc al orit m”, in Communications of the

ACM, Pages 419-422 , Volume 11 Issue 6, June 1968

[12] Jo n . Hopcroft and Jeffrey D. Ullman, “Introduction to

Automata eory, Lan ua es, and Computation”,

Addison-Wesley Publishing, Reading Massachusetts,

1979.

[13] “SNOR ,” 20 0 Online . A ailable:

http://www.snort.org

IJCATM : www.ijcaonline.org

