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ABSTRACT 

Resolving semantic heterogeneity is still a challenging issue 

in data integration systems; but it can be strongly fixed when 

using ontology in an a priori approach where local ontology 

concepts are linked with shared ontology prior to populating 

data in corresponding sources. In this paper, we describe a 

defying context where local source is described by a fuzzy 

OWL ontology within an integration system using an a priori 

approach to achieve automatic integration for new data 

sources. We propose a conceptual framework starting by 

shared ontology and producing a target fuzzy Relational 

Database for every ontology-based local source participating 

in the integration system. Assuming shared ontology is a 

consensus in a given domain, this framework provides various 

contributions. It aims to solve ahead the problem of 

heterogeneous data sources because the local ontology that 

references the shared ontology is used to generate the 

conceptual data model for the target fuzzy Relational 

Database. To do this, it extends the a priori approach to deal 

with uncertainty which is a very common requirement in real 

world applications. Its storage process may be run on most of 

popular RDBMS. It is using a fuzzy OWL which represents 

most of fuzzy ontology constructs.   

Keywords 
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1. INTRODUCTION 
Ontology is defined as a consensual and shareable conceptual 

model of a domain [1]. Unlike the conceptual model, which 

specifies the information must be represented in a database to 

answer a set of application loads; ontology is intended to 

describe all the information, in a consensual way, allowing 

fairly broad application areas to be conceptualized. Ontology 

provides essentially the knowledge of relevant terms of a 

domain. If a knowledge base of these terms was available and 

could be processed automatically, this should both accelerate 

the design process and make results more relevant. This 

should, also, reduce the amount of designer’s work and would 

resulted in the development of more comprehensive and 

coherent conceptual models [2]. Furthermore, in the case of 

consensual domain ontology, it is possible to express different 

conceptual models corresponding to different specifications in 

terms of subsets or specialization of this ontology. 

Several data integration approaches have concluded on the 

importance of ontology using to ensure semantic data 

integration automatically, especially to circumvent the issues 

of semantic heterogeneity, thus facilitating the specification of 

a conceptual model [3], [4]. Heterogeneity, which can 

characterize data sources used in data integration systems 

such as mediators or data warehouses, may be of different 

kinds: syntactic, systematic, schematic or structural. Actually, 

in classification of data integration systems with respect to 

automaticity criterion in [5], we conclude that automaticity 

can be strongly achieved when using ontology in an a priori 

approach then in a posteriori approach [6]. The latter means 

ontology is considered once the data sources have been set up. 

The former means that ontology concepts of local ontology 

are joined with shared ontology prior to populating data in 

corresponding sources. After local domain ontology is already 

defined from shared ontology, it can be used for target 

database design, and it will not be necessary to create another 

conceptual model for that design. This ensures that semantic 

heterogeneity is resolved upstream of integration process 

when new data sources must be added to the system. 

To benefit from the automatic integration offered by 

ontologies, there are two main solutions. The first proposes to 

store whole ontology in addition to data on the target; the 

second proposes to transform all or part of the source 

ontology on the target. An example of the first solution is 

given in [7]. It does an explicit representation of local crisp 

ontology in each local database allowing their easier 

integration and even automatic generation of knowledge-level 

access interfaces. Such databases, combined with an ontology 

that defines the meaning, are called ontology-based databases 

(OBDB). An OBDB is composed of four parts; two of them 

are for storing classical data and two others for storing 

ontology data. This approach seems promising; but 

unfortunately, it adapts poorly to a fuzzy ontology model 

because of its ontology model that is inherent to the field of 

engineering domain and it can’t be fuzzifed easily without 

changing its core syntax. Besides, with real ontologies having 

sizes increasingly large (hundreds of thousands concepts), it 

appears that storing the entire ontology will make a significant 

extra cost, especially this can greatly affect usability of the 

approach. 

In the second solution, most of the proposed approaches [8], 

[9], [10], etc. propose to do direct linear transformation where 

associating a concept to a table and a property to a table 

attribute. This will induce, at least, as many tables in target 

RDB as there are concepts in source ontology, and will make 

a significant extra cost for transforming real ontologies having 

sizes increasingly large. Furthermore, the fuzzy extensions of 

ontology languages which have been presented are not 

complaint with OWL2 and current ontology editors [11]. 

To circumvent some of these drawbacks, we present, in this 

paper, a conceptual framework for fuzzy ontology storing on 

database. This framework assumes the existence of shared 

domain ontology as in an a priori approach for data 

integration system. This will guarantee automaticity since the 

domain ontology integrates different data sources feeding the 

future integration system to be developed. The proposed 



International Journal of Computer Applications (0975 – 8887) 

Volume 122 – No.15, July 2015 

11 

target schema is flexible and do not depend on source 

ontology size since it allows to add new resources with a cost 

of insertion or update in a classical DB. There is minimal 

impact of ontology update on target fuzzy DB size since this 

does not imply adding new tables. Also, storage process can 

be run on most of popular RDBMS and so database querying 

enjoys the power understood from the standard RDBMS 

query system. Actually, for a given application, a local 

ontology is first extracted from shared domain ontology, and 

then it is fuzzified and then transformed by a mapping process 

to produce the target fuzzy database. We have considered 

fuzzy ontologies in order to deal with uncertainty, which is a 

very common requirement in real world applications. But the 

conceptual formalism supported by crisp ontologies may not 

be sufficient to represent such uncertain information and 

many fuzzy extensions were proposed in literature [9]. We 

have chosen OWL2 syntax extended with fuzzy annotations 

properties as prescribed by [11], because it allows annotating, 

with fuzzy label annotations, most of OWL2 constructors, 

except for role constructors where it represents only fuzzy 

modified roles. A motivating example is provided later 

throughout the paper for well describing the proposed 

approach. 

The rest of the paper is organized as follows. Section 2 

presents a state of the art on the various approaches using 

ontology either to design conceptual models or to store fuzzy 

ontology in databases. Section 3 describes the process of 

fuzzy database design form fuzzy ontology and gives the 

overall structure of target RDB. Section 4 starts by giving an 

illustrative example which is then used to describe thoroughly 

the different steps in the process of storing a fuzzy Ontology 

on fuzzy RDB.  Section 5 outlines formal proof of semantic 

preserving; Section 6 concludes the work and outlines some 

future perspectives. 

2. RELATED WORK 

2.1 Fuzzy Ontology 
[12] proposes an extension of the description logic 

SROIQ(D) and provides a reasoning algorithm implemented 

to a prototype DELOREAN that supports fuzzy extensions of 

OWL and OWL2. 

The authors of [13] define a fuzzy extension of the OWL 

language considering the possibility to add a concept modifier 

for a relation and introducing a new constructor to define 

belonging of objects to a given concept with a membership 

value greater or lower than a fixed value. 

Among prominent and recent works on fuzzy ontologies, [11] 

extend most of OWL2 constructors with annotation properties 

representing features of the fuzzy ontology that OWL2 cannot 

directly encode. 

2.2 Domain ontologies as conceptual 

models 
In [14] the OWL-DL ontology is stored along with its 

instances in tables defined by the relational database system to 

prevent the loss of information. The transformation presented 

in [15] is based on a set of rules that specify how to map each 

construction in ontology to a corresponding structure in an 

Object-Relational database. In [16], ontology classes are 

mapped to relational tables, properties to relations and 

attributes, and constraints to metadata tables. Sugumaran, V. 

et al. in [17] show how a domain ontology, which captures 

knowledge on specific areas of application, can be used for 

the creation and validation of Entity-Relationship modeling 

for conceptual models. Architecture for an ontology 

management system is presented, and implemented in a 

prototype. [18] presents an ontology that can be used as a 

surrogate for the meaning of words in a database design 

system to simulate the contributions that a designer would 

make based on his/her general knowledge. The ontology 

classifies a term into one or more categories such as person, 

abstract good or tradable document. In [19], a domain 

ontology is described as an abstraction of the knowledge 

present in the data source schemas. A refining process is 

carried out for the ontology that is adapted to a local schema. 

The obtained ontology forms the starting point for the 

implementation of database schema. 

2.3 Transformation of fuzzy ontologies to 

databases 
Campaña, J.R. et al. in [10] define OWL ontology to allow 

fuzzy digital data types as the range of properties. They give 

algorithms used to convert the OWL ontology to a database 

schema. They also discussed the role of ontologies as tools for 

designing relational databases. 

In [8], a set of storage rules, based on features of ontology 

structure and fuzzy ontology instances, is presented. 

Correctness of storage procedure for fuzzy ontology is 

evaluated, based on information capacity. 

In [20] and [21], an ontology system is proposed to represent 

the knowledge structure enabling fuzzy information to be 

stored in fuzzy databases. Instances of ontology system 

represent diagrams describing the domain information in a 

database. These meta-models can be used to create the schema 

defined in different fuzzy DBMS according to the 

characteristics of available data representation. 

[9] proposes an approach for storing items such as fuzzy 

classes, fuzzy properties and data instances of fuzzy ontology 

within fuzzy relational databases. 

The authors in [22] propose a database schema to store 

ontology along with its instances preserving all information. 

Ontology and instances are stored in different schemas in 

order to improve the access to instances while retaining the 

capability of reasoning over the ontology. 

In most of the approaches mentioned above, they propose to 

transform the complete ontology either into RDB tables or 

into an ER diagram which can be used then to create the target 

database. In most of these mentioned approaches, when the 

whole ontology must be transformed to a relational database, 

this will induce at least as many tables in target RDB as there 

are concepts in source ontology. If we take for example a 

local ontology with 25000 concepts, it will be very costly to 

manage 25000 tables in target database. Also, we must point 

out that there is little work that deals with this problem. 

Furthermore, to the best of our knowledge, there is no 

approach that proposes to automate the fuzzy RDB design in 

the context of a data integration system using an a priori 

approach. 

In this paper, we describe the challenging context of a fuzzy 

OWL ontology as local source ontology within an integration 

system using an a priori approach in order to achieve 

automatic integration for new fuzzy data sources. We propose 

a conceptual framework starting by shared domain ontology 

and producing a target fuzzy RDB, for every local fuzzy 

ontology participating in the integration system. 
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The framework presented in this work assumes domain 

ontology is a consensus in a given domain and thus it provides 

various contributions. First, it aims to solve ahead the problem 

of heterogeneous data sources because the local ontology that 

references the shared ontology is used to generate the 

conceptual data model for the target fuzzy RDB. Secondly, 

this approach is using a fuzzy OWL which does not imply 

syntax change of basic OWL2 [11], and which represents 

most of fuzzy ontology constructs compared to related work. 

Thirdly, the proposed storage schema avoids highly large 

number of tables which could be implied by transforming 

each ontology concept and some object properties by a 

database table, as it is proposed by most of related work. 

Fourthly, it simplifies the designer's task and makes it more 

automatic and then much of time and efforts are saved. 

Fifthly, no special constraints are to be made on the target 

fuzzy database, since storage process has to be run on most of 

popular relational RDBMS and thereby database querying 

enjoys the power understood from the standard DBMS query 

system. Sixthly, transformation correctness is to be proven 

formally through information capacity model [23].  

3. PROPOSAL OF A CONCEPTUAL 

FRAMEWORK FOR FUZZY DATABASE 

DESIGN FROM FUZZY ONTOLOGY 
This section suggests how to use the proposed approach in the 

context of an a priori data integration system using fuzzy 

Ontology. Supposing a set of sources sharing domain 

ontology as described in [7], the framework proposed here 

suggests a set of steps (Fig. 1). First, we propose to extract 

source local ontology form shared domain ontology using, for 

example, approach proposed in [24]. After that, we use fuzzy 

OWL to add fuzzy annotations to each extracted source local 

ontology. At the end, the obtained fuzzy ontology is stored 

onto target fuzzy relational database. Hereafter are the steps: 

1. Choice, selection and loading of a shared domain 

ontology Op. 

2. Data Base Administrator (DBA) extracts the class 

hierarchy for its own local ontology Oi; an approach is 

proposed in a previous work [24] for that extraction. 

3. DBA links this class hierarchy Ci with that of the shared 

ontology Cp by defining the subsumption relationship 

between Ci and Cp. 

4. DBA of each source chooses the classes, properties and 

individuals which will be fuzzified as required by the 

target application. 

5. The DBA transforms the local crisp ontology to another 

fuzzy one using a dedicated ontology editor, or manually 

by using the fuzzy OWL syntax as described in the 

previous Section. This transformation is guided by a set 

of basic rules given in Fig. 3. 

6. The local Fuzzy OWL ontology is stored into fuzzy 

Relational Database according to processes detailed in 

Section 4.2. The proposed storage target schema is 

divided into the following parts. 

a. Ontology Structure Schema: These are tables 

for describing all ontology resources with their 

namespace in source ontology (Table 1), 

classes/properties hierarchy (Table 2), properties 

restrictions (Table 3), properties characters (Table 

4), and Fuzzy Resource types (Table 5).  

b. Instance Mapping Schema: Set of tables 

mapping ontology individuals with corresponding 

concepts and properties keeping membership degree 

(Table 6), with crisp and fuzzy properties (Table 7 

and Table 8), with fuzzy data types (Table 9) and 

with fuzzy values (Table 10 and Table 11) in source 

ontology.  

4. FUZZY ONTOLOGY STORING 

ONTO RDBMS 

4.1 Illustrative example 
For the sake of clarity, we shall give an example to illustrate 

the global steps of our proposed approach. First, a given 

classic domain ontology is chosen by a Database 

Administrator (DBA) in conjunction with a domain expert. 

Then, the DBA proceeds to extract local ontology which 

conforms to local application needs. After that, a fuzzification 

process is carried out to produce a fuzzy ontology (Fig. 2) 

according to predefined rules as seen above. Finally, the 

storing process is initiated to get the target fuzzy database as 

thoroughly explained in the subsequent sections.  

4.2 Storing Ontology Structure 

4.2.1 Storing Ontology Resource Table 
It has structure depicted in (Table 1) and must describe all 

concepts, properties and individuals of the source fuzzy 

ontology. Onto_name column gives Ontology name; ID 

column identifies a resource, Type column differentiates 

resource types and URI column is intended to keep semantic 

articulation between RDB data and source ontology concepts. 

(Table 1) exhibits the result of storing process for classes (Fig. 

4), properties (Fig. 5) and individuals (Fig. 6). The storing 

process was conducted on the ontology example given in Fig. 

2, and its outcomes are shown progressively in the following 

paragraphs. 

4.2.2 Storing Hirerachy Table 
Table 2 keeps track of relationship between classes/subclasses 

and properties/sub properties. This table is filled by processes 

for storing ontology classes (Fig. 4) and properties (Fig. 5). 

Table 2.  Hierarchy Table 

Res_ID1 Res_ID2 Relationship  

C3_AdminStaff C2_Staff SubClass of 1 

C4_AcademicStaff C2_Staff SubClass of 1 

C7_fzStaff_1 C4_AcademicStaff SubClass of 1 

C9_ma@tom.com C8_Ma_email SubClass of 0.2 

C10_ma@yahoo.fr C8_Ma_email SubClass of 0.8 

 

 

 

 

 

 

  

mailto:ma@tom.com
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Table 1. Ontology Resource Table 

Onto_Name Resource_ID Resource URI Local Name Type 

Fuzzy_Local_On

to 

C1_Department http://www.semanticweb.org/dell/ontologies/2014/11/u

ntitled-ontology-74#Department 

Department Class 

 C2_Staff http://www.semanticweb.org/dell/ontologies/2014/11/u

ntitled-ontology-74#Staff 

Staff Class 

 C3_AdminStaff http://www.semanticweb.org/dell/ontologies/2014/11/u

ntitled-ontology-74# AdminStaff 

AdminStaff Class 

 C4_AcademicStaf

f 

http://www.semanticweb.org/dell/ontologies/2014/11/u

ntitled-ontology-74# AcademicStaff 

AcademicSta

ff 

Class 

 C5_Student http://www.semanticweb.org/dell/ontologies/2014/11/u

ntitled-ontology-74#Student 

Student Class 

 C6_Course http://www.semanticweb.org/dell/ontologies/2014/11/u

ntitled-ontology-74#Course 

Course Class 

 C7_fzStaff_1 http://www.semanticweb.org/dell/ontologies/2014/11/u

ntitled-ontology-74#fzStaff_1 

fzStaff_1 Class = 

fuzzNominal 

Class 

 C8_Ma_email http://www.semanticweb.org/dell/ontologies/2014/11/u

ntitled-ontology-74#Ma_email 

Js_email fuzzy Weighted 

Class 

 C9_ma@tom.co

m 

http://www.semanticweb.org/dell/ontologies/2014/11/u

ntitled-ontology-74#ma@tom.com 

ma@tom.co

m 

Class=base of 

C7 

 C10_ma@yahoo.

fr 

http://www.semanticweb.org/dell/ontologies/2014/11/u

ntitled-ontology-74#ma@yahoo.fr 

ma@yahoo.f

r 

Class=base of 

C7 

 OP1_Study_in http://www.semanticweb.org/dell/ontologies/2014/11/u

ntitled-ontology-74#Study_in 

Study_in ObjProperty 

 OP2_Work_in http://www.semanticweb.org/dell/ontologies/2014/11/u

ntitled-ontology-74#Work_in 

Work_in ObjProperty 

 OP3_Teach http://www.semanticweb.org/dell/ontologies/2014/11/u

ntitled-ontology-74#Teach_in 

Teach ObjProperty 

 OP4_Choose_cour

se 

http://www.semanticweb.org/dell/ontologies/2014/11/u

ntitled-ontology-74#Choose_course 

Choose_cour

se 

ObjProperty 

 fOP5_Email http://www.semanticweb.org/dell/ontologies/2014/11/u

ntitled-ontology-74#email 

Email fuzObjPropert

y 

 DP1_Staffname http://www.semanticweb.org/dell/ontologies/2014/11/u

ntitled-ontology-74#staffname 

Staffname DataProperty 

 DP2_Title http://www.semanticweb.org/dell/ontologies/2014/11/u

ntitled-ontology-74#title 

Title DataProperty 

 fDP3_Age http://www.semanticweb.org/dell/ontologies/2014/11/u

ntitled-ontology-74#age 

Age fuzDataProper

ty 

 Id_Staffid_1101 http://www.semanticweb.org/dell/ontologies/2014/11/u

ntitled-ontology-74# Staffid_1101 

Staffid_1101 Fuzzyndiv=bas

e of C7 

 Id_Depid_0206 http://www.semanticweb.org/dell/ontologies/2014/11/u

ntitled-ontology-74#Depid_0206 

Depid_0206 Indiv 

 Id_Courid_309 http://www.semanticweb.org/dell/ontologies/2014/11/u

ntitled-ontology-74#Courid_309 

Courid_309 Indiv 

 Id_fuzzMa_email http://www.semanticweb.org/dell/ontologies/2014/11/u

ntitled-ontology-74# fuzzMa_email 

fuzzMa_ema

il 

fuzzIndiv=base

of C8 

 

mailto:ma@tom.com
mailto:ma@tom.com
mailto:ma@tom.com
mailto:ma@tom.com
mailto:ma@yahoo.fr
mailto:ma@yahoo.fr
mailto:ma@yahoo.fr
mailto:ma@yahoo.fr
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Fig. 1. Fuzzy DB design steps from fuzzy Domain Ontology 

 

Fig. 2. Example of a Fuzzy Local ontology 

 

 

 

 

 

 

 

 

 

 

 

1) For each fuzzy individual with membership degree <1 

a. Create a sub class named with fuzzy_RangeClassID+autoNumber. 

b. Add fuzzy Individual as base of fuzzy nominal concept of above created sub 

class with corresponding degree. 

2) For each data Property Value for an individual having a possibility distribution as Range 

Type 

a. Create a root concept for each possibility item. 

b. Create a weighted sum concept having as bases the above created concepts with 

corresponding values. 

c. Make this individual as range value of concerned individual fuzzy value. 

3) For each data property value with range equal to fuzzy label 

a. Create a fuzzy data type from the available fuzzy data types in fuzzy OWL. 

b. Assign created fuzzy data type to data property range. 

Fig. 3. Fuzzification Rules 
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4.2.3 Storing Property Restrictions Table 
Property Restrictions are stored in Restriction Table (Table 3) 

using process for property storing in Fig. 5. In addition to 

MaxCardinality and MinCardinality restrictions, one can store 

other property restrictions including: allValuesFrom, 

someValuesFrom, etc. 

Table 3. Property Restrictions Table 
Class_ID Prop_ID Type Value 

C4_AcademicStaff OP3_Teach mincard 1 

C4_AcademicStaff OP3_Teach maxcard 3 

C5_Student OP4_Choose_course mincard 2 

C5_Student OP4_Choose_course maxcard 5 

 

4.2.4 Storing Property Specification Table 
Property characteristics are stored in the Property 

Specification Table (Table 4) according to property storing 

process in Fig. 5. Prop_Type column states if property is 

fuzzy/crisp data type, fuzzy/crisp object property. Character 

column states if property is transitive, functional, symmetric, 

etc. If ‘Property Range’ is a fuzzy one, then its range type is 

added, if not yet, in fuzzy types table (Table 5). 

Table 4.  Property Specification Table 
Prop_ID Prop_Type Domain Range Character 

OP1_Study_i

n 

Obj C5_Student C1_Department Functional 

OP2_Work_i

n 

Obj C2_Staff C1_Department  

2) Find root Classes of source fuzzy ontology 

3) Insert Classes into a queue 

4) while Queue is not empty 

a. Pull queue head Class 

b. if Class is fuzzy then 

i. Add Class tuple in ‘fuzzy Resource Types Table’ 

c. Add Class Tuple in ‘Resource table’ 

d. If Class has sub-classes 

i. Insert Every Sub-class in queue 

ii. Insert a tuple in ‘Hierarchy Table’ 

5) End 

Fig. 4. Storing ontology Classes 

1) Find root properties of source fuzzy ontology 

2) Insert properties into a queue 

3) while Queue is not empty 

a. Pull queue head property 

b. if property is fuzzy then 

i. Add tuple for New fuzzy Property Range in ‘fuzzy Resource Types 

Table’ 

c. Add property in ‘Resource table’ 

d. Insert tuple in ‘Property Restriction Table’ 

e. Insert a tuple in ‘Property Specification Table’ 

f. If Property has sub properties then 

i. Insert a tuple in ‘Hierarchy Table’ for each sub property 

ii. Insert every sub property in queue 

4) End 

Fig. 5. Storing ontology Properties 

1) Locate individuals of source fuzzy ontology 

2) Insert individuals into a queue 

3) while Queue is not empty 

a. Pull queue head Individual 

b. Add individual in Resource table 

c. if individual is fuzzy then 

i. Add tuple in ‘fuzzy Indiv Per Class Table’ with fuzzy degree from its 

super class Annotation in ‘fuzzy Resource Types table’ 

d. Add fuzzy Property values in ‘FProp_Values_Per_Indiv Table’ 

e. Add Tuple in ‘CrispProp_Values_Per_Indiv Table’ 

4) For each tuple in ‘FProp_Values_Per_Indiv Table’ 

5) If annotation assertion is Fuzzy Label then 

i. add tuple in ‘Fuzzy Label values Table’ 

6) If annotation assertion is possibility distribution then 

i. add tuple in ‘Possib_Distrib_values Table’ for each possibility 

7) End 

Fig. 6. Storing ontology Individuals 
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OP3_Teach Obj C4_AcademicSt

aff 

C6_Course  

OP4_Choose

_course 

Obj C4_AcademicSt

aff 

C6_Course  

fOP5_Email FuzzObj C7_fzStaff_1 C8_Ma_email  

DP1_Staffna

me 

Data C4_AcademicSt

aff 

xsd:string  

DP2_Title Data C4_AcademicSt

aff 

xsd:string  

fDP3_Age FuzzData C4_AcademicSt

aff 

Fz_Age  

 

4.2.5 Storing Fuzzy Resource types Table 
This table is filled according to processes for storing ontology 

concepts, properties and individuals. A resource is fuzzy if it 

has an annotation property fuzzyLabel as defined in [11]. A 

fuzzy Resource Type is inserted into this table in order to 

keep elements of its fuzzy Annotation Assertion. These 

elements which are filled here will be used to describe and fill 

fuzzy property values for each individual as done in (Table 9) 

which will be described hereafter. 

Table 5. Fuzzy Resource Types Table 
F_Type_ID F_Type_Ont

o_Name 

F_OWL_Type

_Name 

F_OWL 

Annotation 

C7_fzStaff_1 fzStaff_1 Fuzzy Nominal C7 Label 

C8_Ma_email Ma_email Fuzzy weighted 

concept 

C8 Label 

fDP3_Age Fz_Age Fuzzy Data 

Type 

Fz_Age Label 

 

4.3 Storing Instance Mapping Schema 

4.3.1 Storing fuzzy Individual Per Class Table 
In (Table ),  denotes membership degree of a given 

individual to its class. If an individual is a crisp one, then its 

membership degree will be equal to 1. This table is filled by 

the process for individual storing (Fig. 6). 

Table 6. Fuzzy_Individual_Per_Class Table 

Indiv_ID Class_ID  

Id_Depid_0206 C1_Department 1 

Id_Courid_309 C6_Course 1 

Id_fuzzJs_email C8_ Ma _email 1 

Id_Staffid_1101 C7_fzStaff_1 0.9 

 

4.3.2 Storing CrispProp_Values_Per_Indiv Table 
The Crisp property value of each individual is stored in this 

table by the process for storing individuals in Fig. 6. 

Table 7. CrispProp_Values_Per_Indiv Table 

Indiv_ID Prop_ID CrispValue 

Id_Staffid_1101 OP2_Work_in Id_Depid_0206 

Id_Staffid_1101 OP3_Teach Id_Courid_309 

Id_Staffid_1101 DP1_Staffname ‘MMM AAA’ 

Id_Staffid_1101 DP2_Title ‘Prof’ 

 

4.3.3 Storing FProp_Values_Per_Indiv Table 
For each value for a fuzzy object/data property, a tuple is 

created which contains a fuzzy value ID, individual ID, 

property ID. This task is done during individual storing 

process in Fig. 6. 

Table 8. FProp_Values_Per_Indiv Table 

Indiv_ID Prop_ID fPropValueID 

Id_Staffid_1101 fDP3_Age fDP3_Age_ 

Id_Staffid_1101 

Id_Staffid_1101 fOP5_Email fOP5_Email_ 

Id_Staffid_1101 

4.3.4 Storing Map_fPropVal_fType Table 
For each fuzzy individual property value, a tuple of its type 

identifier and its type literal is inserted in (Table 9) in order to 

map fuzzy type in (Table 5) with fuzzy values in (Table 10 

and Table 11) seen below. 

Table 9. Map_fPropVal_fType Table 

fPropValueID fType_ID fType_Literal 

fDP3_Age_ 

Id_Staffid_1101 

ID_Fz_Age middle 

fOP5_Email_ 

Id_Staffid_1101 

C8_Ma_email fzMa_email 

4.3.5 Storing fuzzy values of atomic type 
A tuple of four classical parameters values for each fuzzy 

value having a fuzzy atomic data type as its range, are stored 

in this table. Comparison between fuzzy values can be done 

easily since they are all in the same table. 

Table 10. Fuzzy_Label_Values Table 

fPropValueID Alpha Beta Gamma Delta 

fDP3_Age_ 

Id_Staffid_1101 

30 40 50 60 

 

4.3.6 Storing fuzzy values with Possibility 

distribution. 
A tuple is created for every possibility in a fuzzy value which 

is of type fuzzy possibility distribution i.e. which is an 

instance of fuzzy weighted concept. 

Table 11. Possib_Distrib_Values Table 

fPropValueID fValue fPossib 

fOP5_Email_ 

Id_Staffid_1101 

Ma@yahoo.com 0.8 

fOP5_Email_ 

Id_Staffid_1101 

Ma@tom.com 0.2 

5. PROOF OF SEMANTIC 

PRESERVING 
The storing process described in Section 4 is a total 

transformation, as defined by [23], since source and target 

models are different and because it involves all source 

ontology components. This storing process is dominance 

preserving because every element in target fuzzy RDB has 

equivalence in source fuzzy ontology. Furthermore, schema 

translation is often combined with database integration or 

view integration. The framework proposed in this paper can 

be seen as a schema translation combined with DB integration 

as illustrated in Fig. 7. 
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Fig. 7. Schema translation 

Two schemas can be compared based on information capacity 

by using Schema Intension Graphs (SIG) formalism. The 

information capacity of a schema S is the set of all valid 

instances of S. Intuitively, a schema S2 has more information 

capacity than a schema S1 if every instance of S1 can be 

mapped to an instance of S2 without loss of information. 

Target schema SIG. This schema in Fig. 8 is constructed as 

follows. While exploring ontology resource table (Table 1), a 

node is created for each class in ontology resource table. 

Then, by exploring hierarchy table (Table 2), a selection edge 

(labeled ) is created for each concerned class tuple. For each 

class C, a projection node PN containing all C’s data 

properties is created. A projection edge (labeled ) linking 

every property in PN with its data type range is added. 

 

Fig. 8. Target SIG 

Source schema SIG. Fig. 9 gives the SIG schema with 

respect to source local ontology described in Fig. 2. A 

selection edge represents subsumption relation between two 

classes. Under constraint of disjointness and completeness for 

AdminStaff and AcademicStaff, a sum node AdminStaff + 

AcademicStaff is created and linked by a bijective selection 

edge with Staff node. Edge work_in is functional since each 

staff works in a single department. Projection edges link 

projection node attributes with their data values. 

 Fig. 9. Source SIG 

One way to align the two SIGs is to clear the edge email in 

Fig. 8, and add extra attribute in the product node with a 

projection edge towards Ma_email node. Also, a sum node for 

AdminStaff and AcademicStaff can be added to target schema 

for the same reason it was created in source schema. This 

would make equivalent source and target SIG schemas. 

6. CONCLUSION 
Until now, there is no standard for crisp/fuzzy ontology 

storing onto RDB, although ontologies are more and more 

present in all knowledge areas. Moreover, there are still only 

few approaches that deal of storing fuzzy ontologies on 

databases albeit fuzzy ontologies play an increasing important 

role for dealing with uncertainty, which is a very common 

requirement in real world applications. 

 To tackle this issue, we presented, in this paper, a conceptual 

framework for fuzzy database design from shared domain 

ontology including fuzzy ontology storing onto RDB. This 

design approach assumes the existence of a shared ontology, 

in an a priori approach, integrating different data sources 

feeding the future integration system to be developed. 

This approach gets several advantages that need to be 

mentioned. First, the transformation of the whole ontology is 

not required, thereby saving time and space. Secondly, chosen 

fuzzy extension for source ontology language OWL does not 

imply syntax change of basic OWL2 [11], and it represents 

most of fuzzy ontology constructs compared to related work. 

Thirdly, target fuzzy database has to be run on most of 

popular relational RDBMS and so database querying enjoys 

the power understood from the standard DBMS query system. 

Furthermore, over other approaches, our approach provides 

independence of the target database size, which does not 

depend on considered domain ontology. Nevertheless, this 

work could be improved by considering the following aspects: 

─ Study of the impact of changes in fuzzy sources ontology 

on the target fuzzy database; 

─ Thorough study of the reasoning problem in source 

ontology and target database. Reasoning on OWL ontology is 

still a thorny track because of N2ExpTime [25]. For example, 

a full reasoning algorithm for [11]’s fuzzy logic is not known 

yet. They propose a parser to translate fuzzy ontology to a 

language adapted to fuzzy DL reasoners such as fuzzyDL or 

DeLorean. While in [10], they propose that some basic 

reasoning abilities can be added to the system through the 

combined use of the original ontology and the instance data in 

the database schema. 
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