
International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.12, July 2015

11

Solving N Queen Problem using Genetic Algorithm

Ahmed S. Farhan

Department of Computer
Science

Al Maaref University College
Erbil, Iraq

Wadhah Z. Tareq

Department of Computer
Science

Al Maaref University College
Istanbul, Turkey

Fouad H. Awad

Department of Computer
Science

Al Maaref University College
Erbil, Iraq

ABSTRACT

This paper, explain solution to find the 92 solution of n-

Queen problem based on GA (Genetic Algorithm). The n-

Queen problem become a Widespread platform for the AI

researcher for implement their intelligence algorithms and try

them. The Genetic algorithm used to solve the problem and

each chromosome is be a solution for the problem and

depending on the steps of the GA, The 92 solution, all

possible solution for 8 Queen problem is founded. The

represent of each chromosome have been by using one

dimension array with size equal 8 contain only the queens

which represent a one solution and the empty location are

aborted to reduce the searching time.

General Terms

Computer Science - Search Algorithm

Keywords

N-Queen Problem, 8-Queen Problem, Heuristic Techniques,

Genetic Algorithm (GA), Swarm Intelligence (SI).

1. INTRODUCTION
Researchers and scientists offered various Heuristic

algorithms for optimization by modeling from physical and

biological processes in nature, which often operate

collectively. Heuristic algorithms against classic algorithms

operate randomly and search along with the space. The other

difference between them is that Heuristic algorithms don’t use

space gradient information. These kinds of methods just use

fitness function for guiding the search, but because of having

intelligence as type of collective intelligence, are able to find

solution. Examples of these algorithms includes inherited

algorithms that have inspired by Genetics and evolution

science (1975), simulated annealing by modeling from

thermodynamics observations (1983), immunity algorithm by

simulating human defense system (1986), searching ants

population by simulating ants behavior in finding food (1991),

and optimization particles swarm by following birds social

behaviors (1995).

2. RELATED WORK
Previously, lots of work is done on this problem. K. D.

Crawford in [2], applied Genetic Algorithm and have

discussed two ways to solve n-Queen problem. Ivica et al.

provided a comparison of different heuristic techniques in [1].

The techniques include Simulated Annealing, Tabu Search

and Genetic Algorithm.

We found no solution to the problem based on Ant Colony

Optimization. So, we can say that this is first ever application

of ACO to the n-Queen problem. In order to apply ACO, we

first organized the search space. We then discussed a few
modifications in the calculation of some parameters for ACO.

We have added a few constraints in basic ACO as it cannot be

applied directly to the n-Queen problem. A detail discussion

on all these is provided in the subsequent sections.

3. N-QUEEN PROBLEM
For each an n x n chessboard we know how much the

maximum number of queen can be placed, so there is no one

attack the another, is equal to n. One of the classical

combinatorial problem is the eight queens problem which is a

method of putting the eight queens on a board with 8 x 8 size

such as chessboard and each one unable to capture any

another queen. The 8 queens problem was generalized as

putting n queen in a way that non-attacking between the

queens. The number, of the ways to putting n of queen on the

board without any attacking for the first eight n different

ways, are 1, 0, 0, 2, 10, 4, 40, 92 [4].

Fig 1: N-tuple notation exemplar

Fig 2: Third "left" and second "right" diagonal

So poor, weak, algorithm for find the solution for the n-queen

problem, which depending on pleasing a one single queen in

row, and that placements reduce the conflict in the rows.

because each queen must be in a one row and different from

another row and column, we will use solution representation

as n-tuples (q1 ,q2 ,..., qn) that are permutation of n-tuple

(1,2,..., n). Using this representation, guaranteeing no rook

attacks. This leads to reduce the rate of complexity of problem

since to solve part of the conflict. Figure 1 explain 4-tuples for

the 4-queens problem (all (two) solutions in the 4-queens

problem are shown). Since the n-tuple representation

eliminates row and column conflicts, the problem have only in

the diagonal attacks between queens. Accordingly, the fitness

function 3 should count diagonal attacks. The 2n-1 “left” and

2n-1 “right” diagonals have to be checked (Figure 2), but

there cannot be a conflict on the first and last diagonal (such

diagonals consist of only one field) so that algorithm only

will check the 2n-3 “left” and 2n-3 “right” diagonals in which

the conflict will founding[3]. Fitness function will return

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.12, July 2015

12

value equal to zero if and only if there is no conflicts and this

will be correct solution. A queen that occupies i-th column

and qi-th row is located on the i+qi-1 left and n-i+qi right

diagonal. i-th and j-th queens share a diagonal if:

 i – qi = j – qi (1)

 or

i – qi = j – qi (2)

Equation (1) represents “left diagonal” and on the other hand

the vice versa. And this leads to O(n) complexity of the fitness

function.So that each new solution will be differs from the

previous solution only in two positions, After that calculating

the new value of the fitness function can be by observing the 8

diagonals that directly found the change depending in the

number of queens.

4. GENETIC ALGORITHMS
One of the search and optimization procedures, which based

on 3 main principles: first selection, then crossover and the

mutation, the Genetic Algorithm. In Genetic algorithm the

solutions are represent as a chromosome in an individuals

that are estimated using function known as the fitness function

which represent the correctness of each solution in the

individual [5]. The genetic algorithm depending on a Basic

structure of which shown in the following list:

A random population of individuals (potential solutions) is

created. All individuals are evaluated using a fitness function.

Certain number of individuals that will survive into next

generation is selected using selection operator. Selection is

somewhat biased, favoring "better" individuals.

Selected individuals act as parents that are combined using

crossover operator to create children.

A mutation operator is applied on new individuals. It

randomly changes few individuals (mutation probability is

usually low).

Children are also evaluated. Together with parents they form

the next generation.

The first step is randomly and always the fitness is computing

after it. Steps 2.-5. are repeated number times depending on a

given times of iterations which have been set in the start,

solution improvement rate falls below some threshold, or

some other stop condition has been satisfied[6]. One

modification of this basic structure is a 3-way tournament

selection used here. Instead of selecting individuals from one

generation to the next, selection and crossover are performed

continuously. First, the three individuals usually selected

completely depending on random. Then, the two individuals

which have the high fitness value and near to stop condition

are combined using crossover to produce a new offspring

from two old random solution and will replace the worst

individual. There is no clear distinction between generations.

Individual representation and fitness function for n-Queen

problem were presented in the previous chapter. It is also

important to design suitable crossover method and
mutation operation that will operate on n-tuple
representation.

Mutation operator which was use very simple: its depending

on randomly, for a given tuple, select two positions and

change the numbers between themselves. This lead to creates

a new individual, similar to the original one, and of the tuple

is preserved. An example is given in figure 3:

Fig 3 : Mutation Operator

There are several of different possibilities for a crossover

operator. One of this version is equivalent to the mutation

operator: swapping two random positions in a tuple. Obvious

drawback of this operator is that it does not combine genetic

material of parents[7].

 Another crossover operator is PMX1 crossover. It is similar

to much to the two-point binary crossover . First step is

random selection of two positions within chromosomes and

exchange of genetic material:

Fig 4: PMX crossover – first step

In most cases, this will result in invalid tuples, since numbers

in a tuple must be unique. Second step in PMX crossover

eliminates duplicates. In the example above, number 2 occurs

at positions 1 and 4 in the first offspring. The 2 at position 4 is

newer (from the crossover), so the 2 at position 1 is changed

into 3 that was at position 4 before the crossover[8].

Fig 5: PMX crossover – second step

The third operator is designed for 3-way tournament selection:

parents are compared, and equivalent positions are copied to

the offspring. Other positions in the offspring tuple are filled

in randomly, but care is taken to preserve tuple validity. If

parents are equivalent, one of them is replaced by a randomly

created tuple to avoid chromosome duplication.

Fig 6: 3-way tournament crossover

5. N-QUEEN WITH GENETIC
The GA is implemented for solving 8-queen problem in order

to find all 92 correct solutions. The algorithm starts by initial

solution.

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.12, July 2015

13

Each chromosome is represented by one dimension array with

size equal to 8 and this the idea which reduce the space

search.

Each position refer to row in 8*8 board and the value

containing in the position is represent the Colum number for

example:

2 5 3 7 6 4 1 0

Where number 2 refer to the Colum 2 and the array position

which equal 0 refer to the raw so the queen location is [0,2].

Algorithm: Genetic Algorithm:

Input: Initial random solutions.

Output: All possible solutions for eight queens problem.

Step1
Generate 92 random solutions.

This was done by initializing 92 chromo-some (with length of

8), This is the initial population for GA.

Step2
 Evaluate the fitness of each chromosome (solution).

Step3
 Rank the chromosomes dep-ending on their fitness’s values

Step4

 apply the crossover and mutation on each pair of

chromosomes to generate new solutions.

Step5

 Repeat the steps 2,3,4 until rich to the stop condition.

The fitness is calculated be founding the numbers of crossover

between the queens and the stop condition.

6. RESULTS AND DISCUSSION
 Tables 1 show the results of applying the genetic

algorithm to find the 92 solutions for the 8-Queen, with the

number of iterations that are required to achieve each solution.

Table 1. The 92 Solution And Number of Iterations

z Solution

1017 3 5 7 1 6 0 2 4

2894 4 6 0 2 7 5 3 1

2722 2 6 1 7 4 0 3 5

313 5 1 6 0 2 4 7 3

2417 3 6 0 7 4 1 5 2

455 6 3 1 4 7 0 2 5

3056 3 1 6 4 0 7 5 2

1046 1 3 6 0 4 2 5 7

2097 3 6 4 1 5 0 2 7

4199 1 5 7 2 0 3 6 4

861 3 7 0 2 5 1 6 4

8724 3 6 2 7 1 4 0 5

406 3 1 6 2 5 7 0 4

6325 0 6 4 7 1 3 5 2

1454 5 3 1 7 4 6 0 2

1263 6 0 2 7 5 3 1 4

129 2 5 1 6 0 3 7 4

4676 3 6 4 2 0 5 7 1

2845 4 7 3 0 2 5 1 6

2046 4 2 0 5 7 1 3 6

373 2 0 6 4 7 1 3 5

3437 2 5 7 1 3 0 6 4

172 3 1 7 4 6 0 2 5

755 4 1 3 6 2 7 5 0

400 3 0 4 7 1 6 2 5

13 4 2 7 3 6 0 5 1

6056 3 1 6 2 5 7 4 0

3199 3 1 7 5 0 2 4 6

641 2 6 1 7 5 3 0 4

4053 1 6 4 7 0 3 5 2

740 5 3 6 0 7 1 4 2

11526 3 7 4 2 0 6 1 5

859 1 3 5 7 2 0 6 4

2738 5 7 1 3 0 6 4 2

5181 3 5 0 4 1 7 2 6

1341 4 1 3 5 7 2 0 6

3811 2 5 1 6 4 0 7 3

4333 2 4 7 3 0 6 1 5

4702 1 6 2 5 7 4 0 3

4082 4 0 7 3 1 6 2 5

3524 4 6 3 0 2 7 5 1

720 2 5 3 1 7 4 6 0

3829 2 5 7 0 4 6 1 3

12279 6 1 5 2 0 3 7 4

167 4 1 7 0 3 6 2 5

8402 4 2 0 6 1 7 5 3

909 6 2 0 5 7 4 1 3

3685 5 3 6 0 2 4 1 7

1548 6 4 2 0 5 7 1 3

128 1 5 0 6 3 7 2 4

2924 5 2 0 7 4 1 3 6

1399 0 5 7 2 6 3 1 4

3210 0 6 3 5 7 1 4 2

5188 4 6 1 3 7 0 2 5

1596 5 2 0 7 3 1 6 4

1812 6 3 1 7 5 0 2 4

4994 2 4 1 7 5 3 6 0

8069 4 1 5 0 6 3 7 2

4700 3 5 7 2 0 6 4 1

7784 4 6 0 3 1 7 5 2

7016 5 0 4 1 7 2 6 3

9710 5 2 6 1 3 7 0 4

1821 4 6 1 5 2 0 7 3

419 5 1 6 0 3 7 4 2

4958 7 2 0 5 1 4 6 3

66 1 7 5 0 2 4 6 3

1692 7 3 0 2 5 1 6 4

603 1 4 6 3 0 7 5 2

9827 6 2 7 1 4 0 5 3

1782 2 7 3 6 0 5 1 4

26584 5 2 0 6 4 7 1 3

7314 6 1 3 0 7 4 2 5

10854 0 4 7 5 2 6 1 3

3072 4 0 3 5 7 1 6 2

3289 2 5 3 0 7 4 6 1

23834 3 0 4 7 5 2 6 1

13955 2 5 7 0 3 6 4 1

8247 7 1 4 2 0 6 3 5

2751 2 5 1 4 7 0 6 3

2975 5 2 4 7 0 3 1 6

24804 2 4 6 0 3 1 7 5

37184 5 3 0 4 7 1 6 2

56132 4 7 3 0 6 1 5 2

1944 5 2 4 6 0 3 1 7

59389 4 0 7 5 2 6 1 3

International Journal of Computer Applications (0975 – 8887)

Volume 122 – No.12, July 2015

14

169369 7 1 3 0 6 4 2 5

8087 4 6 1 5 2 0 3 7

4817 3 1 4 7 5 0 2 6

2499 1 4 6 0 2 7 5 3

3355 3 7 0 4 6 1 5 2

8448 5 2 6 3 0 7 1 4

1502 2 4 1 7 0 6 3 5

The result is good special in number of solution and for

future can applying another meta heuristics algorithm and

comparing the result with this research.

From table 1 there is a solution founded by repeat the

algorithm 13 times and this is the faster solution founded

between the 92 solution.

Another solution founded after repeat the solution 169369 and

this difference related to the randomization in initial solution

and the random in the solution steps.

7. CONCLUSION
This paper found the total aver able solution 92 by applying

the GA. Each chromosome represent by one dimension array

with size equal to 8. This representation reduce the empty

cells which required more time comparing with our

representation. The one array hold the 8 queens for one

solution and depending on it the GA applying and the fitness

calculated.

8. REFERENCES
[1] I. Martinjak and M. Golub, “Com-parison of Heuristic

Algorithms for the N-Queen Problem”, Proceedings of

the ITI 2007 29th Int. Conf. on Information Technology

Interfaces, June 25, 2007.

[2] K. D. Crawford, “Solving the N-Queens Problem Using

GA”, In Proceedings ACM/SIGAPP Symposium on

Applied Computing, Kansas City, 1992, pages 1039-

1047.

[3] Božiković, Marko, G. "paralleling genetic algorithm",

Faculty of Electrical Engineering and Computing,

Zagreb, 22.05.2006.

[4] Sloane, Neil J. A., Number of ways of placing n non

attacking queens on n x n board, The On-Line

Encyclopedia of Integer Sequences id:A000170,

http://www.research.att.com/~njas/sequence,s/A000170,

(30.01.2007.)

[5] David E. Goldberg, Genetic algori-thms in search,

optimization and machine learning, Addison-Wesley

Publishing Company Inc., Reading, MA, 1989.

[6] Kelly D. Crawford, "Solving n Queen problem using

genetic algorithms", Tulsa University.

[7] Eric Cantú-Paz, "A summary of research on parallel

genetic algorithms", Computer Science Department and

The Illinois Genetic Algorithms (IlliGAL), University of

Illinois at Urbana-Champaign, cantupaz@uiuc.edu

[8] Eric Cantú-Paz, "A survey of parallel genetic algorithms,

Computer Science Department and The Illinois Genetic

Algorithms Laboratory", University of Illinois at Urbana-

Champaign, cantupaz@illigal.ge.uiuc.edu.

IJCATM : www.ijcaonline.org

mailto:cantupaz@uiuc.edu

