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ABSTRACT 

Heat transfer characteristics of air flows in concentric toroidal 

annular tubes filled with porous media were numerically 

investigated. The toroidal annulus is constant walls 

temperature where the outer wall temperature is lower than 

the inlet temperature. The numerical methodology was based 

on the finite difference approximation method. The 

computations were performed for vertical and horizontal 

toroidal ring, four toroidal length and four radius ratios cases 

for a modified Rayleigh number range (10 ≤ Ra ≤ 5000). 
The inner tube radius ranged from 0.15 to 0.4 m with the 

radius ratios Rr 0.333, 0.555, 0.777 and 0.888 and a length of 

0.05, 0.1, 0.15 and 0.2m. The local Nusselt number in the 

angular direction for both walls and the average Nusselt 

number in concentric toroidal annular tubes were obtained. In 

addition the isothermal lines and the streamlines were 

investigated. The results show that The vertical toroidal loop 

is more suitable than the horizontal one because the heat 

transfer is less so the temperature values will be higher and 

remain high for a longer time which is required in such 

devices The best design of such devices is to take L=0.05 with 

inner radius of 0.15 m and to use it at δ =0 (vertical)  

General Terms 

Cp: Specific heat at constant pressure (kJ/kg o C),  g: 

Acceleration due to gravity (m/s2), kf: Thermal conductivity of 

the fluid (W/m K), ks: Thermal conductivity of the solid 

(W/m K), keff.: Effective thermal conductivity of the porous 

media (W/m K), K: Permeability (m2), l: toroidal gap length 

(m), L: Dimensionless toroidal gap length, NuLocal 1 : Local 

Nusselt number on the inner surface, NuLocal 2: Local Nusselt 

number on the outer surface, Nu 1: Mean Nusselt number on 

the inner surface, Nu 2: Mean Nusselt number on the outer 

surface, p: Pressure (N/m2), q: Local heat flux (m), r: Radial 

coordinate (m), R: Dimensionless radial coordinate, Ra*: 

Modified Rayleigh number, Rr: Radius ratio, T: Temperature 

(K), ur,uϕ, uz: velocity component in r,ϕ and z - direction 

(m/s), Ur, Uϕ, Uz: Dimensionless velocity component in R, ϕ 

and Z direction, x, y, z: Cartesian coordinate system (m), Z: 

Dimensionless axial coordinate, αf : Fluid thermal diffusivity 

(m2/s), αs : Solid thermal diffusivity, αeff. : Effective thermal 

diffusivity (m2/s), β: Volumetric thermal expansion coefficient 

(1/K), θ: Dimensionless temperature, ψr, ψϕ, ψz: Vector 

potential component in R,ϕ and Z – direction, µf : Dynamic 

viscosity of fluid (Pa.s), FAI: angular direction. 
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1. INTRODUCTION 
Many researches on natural convection in conventional 

configurations of square, rectangular and another 

configurations enclosure are done, as evidenced by [1–4]. 

[5] Investigated numerically the transient laminar natural 

convection regimes occurring in a thermal convection loop 

heated from below and cooled from above for a wide range of 

Rayleigh numbers. The upper half of the loop is cooled and 

maintained at a constant low temperature while the lower half 

of the loop is heated and maintained at a constant high 

temperature. The finite volume method is used to solve the 

system of governing flow equations.  

[6] Described a new working principle for a radio frequency 

(RF) hyperthermia applicator, suitable for heating large 

cylindrical volumes of coaxial loads. The system includes a 

toroidal inductor as an active device producing an almost 

uniform E field, which is polarized along the toroidal Z axis in 

the space inside the toroidal ring where the conductive tissue 

is placed. This E field produces axial RF currents which, in 

turn, produce the required heating, provided that a closed loop 

is formed by electrically connecting the conductive load 

through capacitive ring (CR) electrodes to form an electric 

circuit closed externally to the toroidal inductor.  

[7] Study experimentally the free and mixed convection heat 

transfer from inductor toroids to determine the averaged 

Nusselt number. The experimental program range was 

conducted in the Reynolds number range 4000 ≤ 	
 ≤13000 and 3�	10� 	≤ 	� ≤ 7�	10�. General models were 

proposed for natural and mixed convection from the inductor 

toroids in different orientations.  

2. OBJECTIVE OF THE RESEARCH 
In this research an investigation are made for the natural 

convection heat transfer in a toroidal ring filled with porous 

media (silica sand) which is used as a medical device used for 

remedy.  In this device a heater is used to heat the inner ring 

and the heat will be transferred to the sand which detains the 

heat for many hours. The computations were performed for 

four toroidal length and four radius ratios cases. The inner 

toroidal ring radius ranged from 0.15 to 0.4 m with the radius 

ratios Rr 0.333, 0.555, 0.777 and 0.888 and a length of 0.05, 

0.1, 0.15 and 0.2m for a modified Rayleigh number range 

(10 ≤ Ra ≤ 5000).  
3. MATHEMATICAL MODEL  

The device considered is a toroidal (ring) loop. The gap of the 

toroidal loop is filled with porous media.  

The isometric of the toroidal loop is illustrated in the Fig.1. In 

order to model the incompressible flow in the porous medium, 

the steady-state equations of the Darcy flow model, namely, 

mass, momentum (Darcy) and energy conservation laws and 

the Boussinesq's approximation were employed. These 

equations in vectorial notation were given by [8]. 



Fig. 1 The isometric and the coordinate sketch 

toroidal loop for different lengths and radius ratios

4. GOVERNING EQUATIONS
The conservation equations of mass, momentum and energy in 

steady state and the supplementary equation are:

� � ���1 � ��� � ��)�                                                 
Where: 

� � �
�
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��                                                                     

� Is the thermal coefficient of the volume expansion, this 

constant is evaluated at T2 which is the temperature at the 

inner surface of the toroidal loop, ρ2 is the density at T

is the density at T, [9]. This technique is called Boussinesq's

approximation. 

4.1 Mass Conservation 
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4.2 Momentum Equations 
Darcy flow model in three dimensions is used 

media as in [10] which states that the volume average velocity 

through the porous material is proportional with the pressure 

gradient.  

4.2.1 Momentum Equation in Radial Direction
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4.2.2Momentum Equation in Angular Direction
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4.2.3. Momentum Equation in Axial Direction
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EQUATIONS 
The conservation equations of mass, momentum and energy in 

are: 

                      (4.1)          

                          (4.2)                      

Is the thermal coefficient of the volume expansion, this 

which is the temperature at the 

is the density at T2 and ρ 

. This technique is called Boussinesq's 

                      (4.3)                                                         

in three dimensions is used in the porous 

states that the volume average velocity 

through the porous material is proportional with the pressure 

4.2.1 Momentum Equation in Radial Direction 

                               (4.4)  

4.2.2Momentum Equation in Angular Direction 

                                        (4.5) 

Momentum Equation in Axial Direction 

                                       (4.6) 

4.3 Energy Equation 
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Where Φ  is viscous dissipation function.

A vorticity vector Ω and a vector potential 

components are [11]: 

Ψ � 4@ , @B, @$	6                        
Defined by: 
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5. NON DIMENSIONAL VARIABLES
Convert the governing equations to the dimensionless form 

using r2 as a characteristic length [12]

magnitudes defined as follow: 

	 � 8
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Substitute these dimensionless magnitudes in the governing 

equations. Alternative expressions of equation (3) may be 

written in terms of @ , @∅,@$ as:
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To eliminate pressure terms in the momentum equations 

of the momentum equations will be taken and the equations 

will be: 
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is viscous dissipation function. 

vorticity vector Ω and a vector potential Ψ with its 
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5. NON DIMENSIONAL VARIABLES 
tions to the dimensionless form 

characteristic length [12]. The dimensionless 
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Substitute these dimensionless magnitudes in the governing 

Alternative expressions of equation (3) may be 

as: 

                                         (5.1) 
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the momentum equations a curl 

will be taken and the equations 
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The energy equation is: 
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5.1 Dimensionless Hydraulic Boundary 

Conditions 
The boundary conditions are given as: 

�7			 � 	�, 1												 1	
3�	@ )3	 � @∅ � @$ � 0 

�7	∅ � 0, e															@ � 3@∅3∅ � @$ � 0 

�7	M � 0, f																@ � @∅ � 3@$3M � 0 

5.2 Dimensionless Thermal Boundary 

Conditions 
For the temperature field, the dimensionless thermal boundary 

conditions are: 

�7			 � 	� � 8�8� 										O � 1 

�7			 � 	� � 1										O � 0 

�7		∅ � 0, e															 3O3∅ � 0 

�7		M � 0, f															 3O3M � 0 

;EFF � �1 � g)	;h ! g	;F                                                   (5.8) 

 

6. COMPUTATIONAL TECHNIQUE 
The number of grid points used was 21 grid points in the R – 

direction, 31 in the φ  – direction and 301 in the Z – direction 

which seems reasonable and will be used in the present study. 

Convergence criterion given by inequality: 

i�j1i%i	
88-8 � kOlm� � Ol
Ol k ≤ 10n 

6.1 Calculation of Local and Average 

Nusselt Number 
Local Nusselt number is the dimensionless parameter 

indicative of the rate of energy convection from a surface and 

can be obtained as follows [9]: 

o% � p� <P Q)
=��QP�<)                                                                      (5.9) 

The local Nusselt number Nu1 and Nu2 on the inner and the 

outer surfaces are written in the form [9]: 

o%qrsVS	� � ��1 � 	�) X�^�JZJtJQ                                    (5.10)  

o%qrsVS	� � ��1 � 	�) X�^�JZJtJQ                                    (5.11) 

The mean Nusselt number Nui1 and Nu2 on the inner and the 

outer surfaces respectively are defined as: 
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u
x                   (5.12) 
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u
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7. RESULTS AND DISCUSSION 

7.1. Isotherms and Streamlines Field 
The isothermal lines and streamlines within the toroidal ring 

are presented in a contour maps form in the (R-ϕ) plane.  

Fig.2 shows the isothermal and streamlines respectively for a 

vertical toroidal loop δ=0, L=0.05, yz=0.15 m and Ra=10. 

The uniformity and symmetry of the isothermal lines is clear 

and it was observed that for Ra*=5000 in Fig. 3 the intensity 

of the streamlines is less than that for Ra=10 and the cold 

region is larger because of the increase in heat transfer as Ra 

increase. 

 

 

Fig. 2 Isothermal and streamlines contours for Ra*=10, 

δ=0 and yz=0.15 m and L=0.05 m 
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Fig. 3 Isothermal and streamlines contours for L=0.05 m, 

Ra*=5000, δ=0 and yz=0.15 m 

Increase Ra* and/or increase the inner radius results in a 

thicker cold layer near the bottom wall and a high temperature 

field near the top wall. More heat is transported upward, and a 

large difference of temperature is observed between the upper 

and lower parts of the toroidal loop as shown in Fig. 4 

 

 

Fig. 4 Isothermal and streamlines contours for Ra*=5000 

δ=0, L=0.05 m and yz=0.4 m 

Keeping the same parameters as in Fig. 4 but with δ=90 

(horizontal toroidal loop) in Fig. 5, the region seems very 

warm because the heat transfer is less in this situation so the 

temperature distribution is higher than that in Fig, 4.  

 

 

 

Fig. 5 Isothermal and streamlines contours for Ra*=5000 

δ=90, L=0.05 m and yz=0.15 m 

Now increasing the length of the toroidal loop from 0.05 in 

Fig. 5 to 0.2 as in Fig.6 cause to increase the heat transfer and 

the fluid will acquire more free movement due to the 

enlargement in the gap causing the temperature distribution to 

be less than that in Fig.5.  

 

 

Fig. 6 Isothermal and streamlines contours for Ra*=5000 

δ=90, L=0.2 m and yz=0.15 m 

The local Nusselt number in the angular direction on the cold 

outer surface and the inner hot surface of the toroidal loop are 

illustrated for Ra =10 and Ra =5000 in Fig. 7 and Fig. 8 

respectively for the same other parameters. Fig. 7 shows a 

smooth curve with lesser values than that in Fig. 8 due to the 

increase in Ra which causes an increase in heat transfer and 
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consequent the local Nusselt number which is an indication of 

heat transfer will be increased. 

 

 

Fig. 7 Local Nusselt number in the angular direction for 

Ra*=10, δ=0, L=0.05 m and yz=0.15 

 

 

Fig. 8 Local Nusselt number in the angular direction for 

Ra*=50000, δ=0, L=0.05 m and yz=0.15 m 

Fig. 9 shows the increase of the mean Nusselt number with Ra 

number for vertical toroidal loop (δ =0) and for a small gap of 

length L=0.05 with 8�=0.15on the cold outer surface and the 

inner hot surface. It is clear that for low values of Ra the 

increase in the mean Nu is small and as Ra exceeds 500 the 

increase in Nu is very significant.  

 

Fig. 9 The variation of the mean Nusselt number with Ra 

number for δ =0 L=0.05 and yz=0.15 

Fig. 10 shows the variation of the mean Nusselt number with 

the radius ratio (r1/r2) on the cold surface for two 

dimensionless gap lengths 0.05 and 0.2 and it is clear that for 

small values of radius ratio which means large toroidal gap 

the mean Nusselt number is very high and when (r1/r2) 

increase up 0.555 the two curves will be coincident and its 

value will be decreased significantly.    

 

Fig. 10 The variation of the mean Nusselt number on the 

cold surface with the radius ratio (r1/r2) for Ra =5000, δ =0 

Fig. 11 shows the variation of the mean Nusselt number with 

the radius ratio (r1/r2) on the hot inner surface for two 

dimensionless gap lengths 0.05 and 0.2 and it is clear that for 

small values of radius ratio which means large toroidal gap 

the mean Nusselt number is very high and when (r1/r2) 

increase the mean Nu decrease and the two curves will be 

coincident at about (r1/r2) equal 0.777.    

 

Fig. 11 The variation of the mean Nusselt number on the 

hot surface with the radius ratio (r1/r2) for Ra =5000, δ =0 

Fig. 12 shows that the mean Nu is nearly constant for low 

values of Ra and remains constant for small toroidal gap, but 

as r1 decrease the mean Nu increase significantly. It seems 

that r1=0.15 m is the best radius which gives the highest heat 

transfer.   
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Fig. 12 The variation of the mean Nusselt number on the 

outer cold surface with Ra for δ =0 and various values of 

the inner radius 

Fig. 13 and Fig. 14 show the variation of the mean Nu on the 

cold outer surface of the toroidal loop for vertical and 

horizontal toroidal loop respectively. The two figures show 

that the curves coincide with each other for lowest and highest 

values of Ra. In the ranges of Ra between about 300 to 800 

the lowest heat transfer is observed for L=0.05 at Ra=500, so 

it appears to be the best design of such devices to take L=0.05 

with inner radius of 0.15 m and to use it at δ =0 (vertical) 

which gives low heat transfer that mean the device keep the 

heat for a long time with high temperature distribution.        

 

Fig. 13 The variation of the mean Nusselt number on the 

outer cold surface with Ra for δ =0 and various values of 

the gap length 

 

Fig. 14 The variation of the mean Nusselt number on the 

outer cold surface with Ra for δ =90 and various values of 

the gap length 

7. CONCLUSIONS 
The following major conclusions can be drawn from the 

study:  

1- The vertical toroidal loop is more suitable than the 

horizontal one because the heat transfer is less so the 

temperature values will be higher and remain high for a 

longer time which is required in such devices. 

2- The best design of such devices is to take L=0.05 with 

inner radius of 0.15 m and to use it at δ =0 (vertical)  

3- For future it is recommended to study the toroidal loop 

using composite material with low thermal conductivity 

to decrease the heat transfer and it is recommended to 

repeat this research using nanofluid as a working fluid. 
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