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ABSTRACT 

Advanced manufacturing systems often caters to rapidly 

changing product specification determination by the 

continuously increasing productivity, flexibility and quality 

demands. The estimation of cutting forces is mandatory to 

select tools and accessories for machining. Complex 

interrelationships exist between process parameters and these 

forces. In the present work, the applicability and relative 

effectiveness of artificial neural network based model has 

been investigated for rapid estimation of cutting forces. The 

results obtained are found to correlate well with the actual 

experimental readings of cutting forces. Experiments were 

conducted at different process parameters of cutting in 

Drilling operation. The proposed work has wide application in 

selection of tools and online tool wear monitoring.   

General Terms 

Measurement and modeling of Cutting forces. 

Keywords 

Drilling; Cutting forces; Cutting process parameters; Artificial 
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1. INTRODUCTION 
The research in the area of metal cutting and machine tool is a 

fascinating experience. The Machining process is generally 

adopted to get higher surface finish, close tolerance, and 

complex geometrical shape that are otherwise difficult to 

obtain. The main problem is that all the manufacturing 

processes available for metal removal are probably the most 

expensive one. This is because of the substantial amount of 

metal removal taking place from the raw material in the form 

of chips in order to achieve the required shape. A lot of heat 

energy is generated in the process of metal cutting which is 

another reason for expensiveness of the process [1]. 

In the market with an increased demand for quality 

manufacturing along with the short lead time and short 

product life cycles, the increasing consumer awareness always 

looks for the cost factor and quality so this becomes most 

important for the manufacturers to take some initiative steps. 

To achieve all these, some questions arise in the mind of a 

production engineer: 1) Which is the most suitable and 

economical tool for a particular metal cutting operation? 2) 

For what specification, power consumption is minimum? 3) 

How much heat is generated in the metal cutting process? 4) 

What type of coolant should be used? 5) What should be the 

optimal flow rate of coolant? etc. To answer all these 

questions, the estimation of cutting forces is a must [2]. 

In the world of manufacturing, everyone is stressing on the 

need of fast accessing the information related to tool 

management systems i.e. providing the right tool at the right 

place and at the right time. If there is dedicated transfer line, it 

will be sufficient to determine the tool with required strength 

at the beginning of the machining, but in batch-type 

production having no flexible manufacturing system and any 

advanced information facilities, it will not be possible for a 

production engineer at work floor to determine the necessary 

tool with sufficient strength for a new job settings (in terms of 

changed operational parameters and work material). This 

situation compels him to go to either production planning and 

control (PPC) department or tool design department. This 

whole cycle makes the manufacturing systems sluggish and 

cumbersome [3]. 

Besides this, what happens sometimes is that at the production 

floor, there may be frequent and slight changes of work 

material, process and process parameter then every time 

production engineer will have to contact to the above 

departments. This results into a large non-productive time of 

machine tool as well as worker’s idle time, most of the times 

resulting into production halt [4]. 

To avoid this situation, the trained neural network (NN) 

model can be made available on a computer located at the 

production floor itself to production engineers for estimation 

of cutting forces. They can give the inputs to NN model in the 

form of process parameters, type of work material, etc. By 

doing so, with no lapse of time they will get all cutting forces 

acting on the tool in real time situation and matching the 

values of these forces with tool handbooks, they can choose 

the tool with required strength, which can perform operation 

satisfactorily [5-6]. 

It solves the most of the complications of production 

engineer’s job and a lot of non-productive time can be saved. 

This system becomes an essential part of production system 

especially in those, where every department is not integrated 

through a software system to access information from one 

department to another rapidly. It will work well in medium-

scale manufacturing industries [7]. 

2. LITERATURE REVIEW 
Modeling can be said to have had its beginning as an 

organized process in the late 1890s to early 1900s originated 

with F.W. Taylor’s pioneering engineering research and 

development of empirical methodology (and equations) for 

estimating reasonably economic machining conditions. 

Science-based modeling began to emerge in the 1940s by 

Merchant’s physics-based modeling in a machining process. 

Computer-based modeling, the “watershed” event of the 

advent of digital computer technology and its application to 

manufacturing in general, was started in the 1970s [8]. 
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Osman, Xistris and Chahil (1979) made the measurement and 

analysis of torque and thrust in drilling mild steel with twist 

drills using a specially designed two-component piezoelectric 

dynamometer which was both statically and dynamically 

calibrated [9]. 

Koplev, Lystrup and Vorm (1983) examined the cutting of 

unidirectional CFRP, perpendicular as well as parallel to the 

fiber orientation. They measured cutting forces parallel and 

perpendicular to the cutting direction for various parameters, 

and correlated the results to the formation of chips and the 

wear of the tool [10]. 

Veniali, Di Llio and Tagliaferri (1995) experimentally 

investigated major drilling characteristics of Aramid fiber-

reinforced plastics. The chips appeared were found to be 

highly deformed and tend to smear on the tool and the forces 

and torque to be more influenced by the tool diameter than by 

the feed rate and cutting speed [11]. 

The object of the study by Fuh and Wang (1997) was to 

model and forecast the grinding force for the creep feed 

grinding process, using error distribution function based back-

propagation neural network improved [12]. 

To model drilling processes, Lee, Liu and Tarng (1998) 

described the use of an abductive network composing of a 

number of self-organized functional nodes by means of a 

predicted squared error criterion. They predicted the drilling 

performance in terms of tool life, metal removal rate, thrust 

force and torque using above network. A simulated annealing 

technique with a performance index was then applied to 

optimize process parameters [13]. 

Szecsi (1999) proposed a method for cutting forces modeling 

using multi-layer feed-forward back-propagation neural 

networks trained by the experimental machining data for 

simulating and defining the cutting forces in the process [14]. 

Elhachimi, Torbaty, Joyot (1999) presented a new theoretical 

model to predict thrust and torque in high speed drilling. This 

technique was consisted of continuous measurement of 

cutting forces on the twist drill [15]. 

Lachaud, Piquet, Collombet and Surcin (2001) gave a model 

linking drill-bit axial penetration in terms of thrust force [16]. 

Ramulu, Branson and Kim (2001) experimented with variety 

of drill-bit materials to perform holes on graphite / 

bismaleimide titanium work with a standard geometry. The 

purpose was to understand and characterize the process [17]. 

Zuperl and Cus (2004) used ANN technique to find out the 

cutting forces for ball-end milling operation and to compare 

predictability ANN and analytical techniques [18]. 

Sheng and Tomizuka (2006) proposed an intelligent technique 

to model cutting forces in drilling process. For that, NN 

models were developed [19]. 

The principal aim of the work done by Abrão, Faria, Campos 

Rubio, Reis and Paulo Davim (2007) was to perform a survey 

on the machining of composite materials [20]. 

Aykut, Gölcü, Semiz and Ergür (2007) used scaled conjugate 

gradient feed-forward back-propagation neural network 

approach to model the effects of machinability on cutting 

parameters for face milling of stellite 6. [21].  

Tsao and Hocheng (2008) presented the prediction and 

evaluation of thrust force and surface roughness in drilling of 

composite material using candle stick drill. The objective of 

this study was to establish a correlation between the feed rate, 

spindle speed and drill diameter with the induced thrust force 

and surface roughness in drilling composite laminate using 

RBFN [22]. 

3. SELECTION OF MACHINE TOOL 

AND WORK MATERIAL 
In this work, we have selected a Radial Drilling Machine 

(installed at Machine Shop, Mechanical Engineering 

Workshop, Faculty of Engineering, Dayalbagh Educational 

Institute, Dayalbagh, Agra) as a machine tool. It is shown in 

Fig. 1. Specifically, Drilling machine is selected because it 

comes under the category of Primary machine tools as it 

performs primary functions but extent to which it can also be 

exploited to perform secondary functions. This is the most 

commonly used machine primarily designed to perform a 

variety of machining operations on a wide range of 

components. It is also known as a General purpose machine. 

By their nature of generalization, the general-purpose 

machines are capable to carry out a variety of tasks and the 

estimation of the cutting forces through these machines are 

also applicable to the production machine tools and the 

special purpose machine tools. 

 

Fig 1: Experimental setup of Strain-gauge type Drilling-

tool dynamometer fitted on Radial Drilling Machine 

The selection the work materials has been done out of a 

variety of engineering materials that are extensively used in 

the industries. These materials are used in the industries either 

individually or a combination of them is used. So, it becomes 

easier to estimate the cutting forces with the help of these 

materials for the large area of industrial materials. These 

materials are selected in this way that they cover wide range 

of yield strength from Mild steel to Aluminium. The five most 

commonly used materials selected for the experimentation are 

Mild steel (MS), Cast iron (CI), Copper (Cu), Brass, and 

Aluminium (Al). 
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4. CUTTING FORCES 
To investigate the performance of drill bit during drilling 

process, the measurements of cutting forces are essential. This 

helps in analyzing: 1) the effects of speed and feed on the 

cutting action of the drill, 2) the effects of mechanical 

properties of work material on the drilling forces, and 3) 

forces exerted on Drilling machine parts, jigs and fixtures, and 

the effect of these forces on the dimensional accuracies of the 

drilled holes. 

The force R acting on both the lips of drill in drilling process 

may be resolved into three mutually perpendicular force 

components: axial force (FA) along the axis of drill, radial 

force (FR) along the radial direction of drill, and tangential 

force (FT) perpendicular to the force components FA and FR. 

Taking an ideal case of the drill with both the lips identical, 

the radial force components FR at both lips will get cancelled. 

Out of the remaining two components, axial components FA 

acting on both the lips will add to act as an axial thrust P on 

the drill; while the tangential components FT acting on both 

the lips will form as a torque M opposing the rotation of the 

drill (see Fig. 2) [23-24]. 

 

Fig 2: Resulting axial thrust and torque 

5. ARTIFICIAL NEURAL NETWORKS 
Back Propagation (BP) neural network is a multiple-layer 

network with one input layer, one output layer and some 

hidden layers between the input and output layers. Its learning 

procedure is based on a gradient search with least sum 

squared optimality criterion. Gradient is calculated by a 

partial derivative of sum-squared error with respect to 

weights. Input is given to ANN after assigning random initial 

weights, each neuron is computed, and weighted sum of 

inputs from preceding layer neurons is used as an input to 

succeeding layers. Towards the end, the weighted sum of 

networks is calculated [25-26]. 

A two-layer feed-forward network with three input neurons, 

eight neurons in the first hidden layer, six neurons in the 

second hidden layer, and two output neurons in the output 

layer is designed and trained with the LM learning rule. The 

logarithm and tangent of sigmoid functions are used in the 

hidden layers, and the output layer has a pure linear neuron 

(see Fig. 3). Fig. 4 shows the training graph between the sum-

squared error and the number of epochs. 

Spindle speed (in RPM), work material (numbered as 1 to 5) 

and Drill diameter (in mm) are the three input parameters and 

output parameters are the resulting cutting forces, viz., torque 

(in N-m) and axial thrust (in N) [27]. 

 

Fig 3: Neural network architecture 

 

Fig 4: Training graph 
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6. EXPERIMENTAL SETUP AND DATA 

COLLECTION 
Drilling-tool dynamometer is essential to analyze the process 

of Drilling, as well as to solve the shop floor problems, such 

as, drill tool performance, forces on the machine parts, jigs 

and fixtures. To determine axial thrust and torque, drilling job 

is to be mounted over a fixture, which itself is mounted over 

the arms. The strain-gauges are mounted over arms to sense 

the load. The unit can be easily mounted over a table of drill 

machine. Dynamometer is calibrated for load up to 500 kgf 

axial thrust and 10 kgf-m torque. 

The Strain-gauge type Drilling-tool dynamometer consists of 

following sub-units: 

6.1 Sensing Unit 
The sensing unit consists of an armed wheel with strain-

gauges cemented on the arms. The unit accurately senses the 

axial thrust P independently and feeds the output to bridge 

balance unit. 

6.2 Bridge Balance Unit 
The bridge balance unit consists of a regulated power supply 

used to supply power to both the bridge circuits and 

changeover switch SW-5 connecting one of the bridge output 

channels to the measuring unit at a time. 

6.3 Measuring Unit (DC Micro-voltmeter) 
A standard DC Micro-voltmeter used to measure voltages 

from 0.1 µV to 3 V is required to measure the output of bridge 

balance unit. 

The strain-gauge readings, noted from the DC Micro-

voltmeter, are then converted into the actual cutting force 

values using the standard Calibration chart. The calibration 

relations for Strain-gauge type Drilling-tool dynamometer are 

as follow: 

6.3.1 Axial Thrust Conversion:  

3.8 micro-volts is equal to 1 kilogram force. This results into 

the following formula: 

 
9.806

2.58
3.8

P V V N     

 

6.3.2 Torque Conversion:  

145 micro-volts is equal to 1 kilogram force-meter. This 

results into the following formula: 

 
9.806

0.0676 -
145

M V V N m     

Here, P and M stand for axial thrust and torque respectively. 

It is obtained by PU1 or PU2 channel readings indicated by 

the strain-gauges. For obtaining actual cutting forces, we have 

substituted PU1 and PU2 values including reference scale into 

the above conversion relations [28]. 

 

 

 

 

Table 1. Experimental values of axial thrust, P measured 

at 110 RPM for different diameter drills and work 

materials 

S. 

No. 

Drill 

Dia.  

(in mm) 

Axial thrust, P (in N) for different work materials 

Brass 
Alum-

inium 

Cast  

iron 

Mild  

steel 
Copper 

1 12.0 980.5 903.1 1496.5 1092.1 1238.5 

2 11.0 774.1 774.1 1032.1 1063.6 1186.9 

3 10.2 774.1 774.1 903.9 1031.2 1135.3 

4 9.0 619.2 722.4 877.3 1002.3 1083.7 

5 8.0 541.8 722.4 774.1 990.1 1032.1 

6 7.0 464.4 696.7 722.5 980.5 1032.1 

 

Table 2. Experimental values of torque, M measured at 

110 RPM for different diameter drills and work materials 

S. 

No. 

Drill 

Dia.  

(in mm) 

Torque, M (in N-m) for different work materials 

Brass 
Alum-

inium 

Cast  

iron 

Mild  

steel 
Copper 

1 12.0 1.881 2.028 2.300 2.705 10.144 

2 11.0 1.352 2.028 2.203 2.705 8.115 

3 10.2 1.112 1.690 2.165 2.300 7.100 

4 9.0 0.909 1.352 1.352 2.029 6.086 

5 8.0 0.676 1.217 1.352 2.029 5.072 

6 7.0 0.672 1.082 0.811 1.691 4.733 

 

Table 3. Experimental values of axial thrust, P measured 

at 167 RPM for different diameter drills and work 

materials 

S. 

No. 

Drill 

Dia.  

(in mm) 

Axial thrust, P (in N) for different work materials 

Brass 
Alum-

inium 

Cast  

iron 

Mild  

steel 
Copper 

1 12.0 774.1 877.2 1032.0 1651.5 1033.2 

2 11.0 748.3 877.2 980.5 1393.4 1032.2 

3 10.2 722.5 722.3 980.5 1238.6 980.6 

4 9.0 567.6 619.3 825.8 1135.3 877.2 

5 8.0 516.1 619.2 774.2 1083.8 774.1 

6 7.0 516.1 567.6 774.1 1083.8 774.1 

 

Table 4. Experimental values of torque, M measured at 

167 RPM for different diameter drills and work materials 

S. 

No. 

Drill 

Dia.  

(in mm) 

Torque, M (in N-m) for different work materials 

Brass 
Alum-

inium 

Cast  

iron 

Mild  

steel 
Copper 

1 12.0 3.381 3.651 3.654 6.840 6.086 

2 11.0 2.705 2.840 2.840 6.086 5.680 

3 10.2 2.029 2.840 2.651 6.086 5.410 

4 9.0 2.029 2.028 2.434 5.680 5.086 

5 8.0 1.217 1.623 2.246 5.275 4.733 

6 7.0 0.811 1.623 1.840 4.057 4.056 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 121 – No.8, July 2015 

15 

Table 5. Neural network prediction (values) of axial 

thrust, P at 110 RPM for different diameter drills and 

work materials 

S. 

No. 

Drill 

Dia.  

(in mm) 

Axial thrust, P (in N) for different work materials 

Brass 
Alum-

inium 

Cast  

iron 

Mild  

steel 
Copper 

1 12.0 984.1 899.5 1495.2 1090.6 1239.0 

2 11.0 773.1 775.9 1030.8 1065.4 1188.2 

3 10.2 773.0 775.2 904.3 1030.3 1130.2 

4 9.0 618.2 725.7 875.9 1003.7 1080.3 

5 8.0 540.3 725.7 770.0 992.5 1033.7 

6 7.0 460.7 700.3 722.0 981.5 1032.2 

 

Table 6. Neural network prediction (values) of torque, M 

at 110 RPM for different diameter drills and work 

materials 

S. 

No. 

Drill 

Dia.  

(in mm) 

Torque, M (in N-m) for different work materials 

Brass 
Alum-

inium 

Cast  

iron 

Mild  

steel 
Copper 

1 12.0 2.003 2.281 2.350 2.875 9.234 

2 11.0 1.551 2.029 2.216 2.721 8.226 

3 10.2 1.100 1.722 2.156 2.229 7.009 

4 9.0 0.922 1.361 1.360 2.032 5.966 

5 8.0 0.687 1.220 1.344 2.001 5.001 

6 7.0 0.661 1.090 0.823 1.778 4.562 

 

Table 7. Neural network prediction (values) of axial 

thrust, P at 167 RPM for different diameter drills and 

work materials 

S. 

No. 

Drill 

Dia.  

(in mm) 

Axial thrust, P (in N) for different work materials 

Brass 
Alum-

inium 

Cast  

iron 

Mild  

steel 
Copper 

1 12.0 772.5 872.5 1028.2 1650.2 1028.2 

2 11.0 768.1 871.2 978.4 1328.4 1028 

3 10.2 720.2 728.1 972.8 1236.3 982.6 

4 9.0 562.6 618.3 824.5 1132.2 879.3 

5 8.0 515.2 617.3 784.2 1082.8 772.6 

6 7.0 514.2 565.8 771.4 1080.4 770.28 

 

Table 8. Neural network prediction (values) of torque, M 

at 167 RPM for different diameter drills and work 

materials 

S. 

No. 

Drill 

Dia.  

(in mm) 

Torque, M (in N-m) for different work materials 

Brass 
Alum-

inium 

Cast  

iron 

Mild  

steel 
Copper 

1 12.0 3.28 3.72 3.62 6.96 6.26 

2 11.0 2.82 2.72 3.42 6.21 5.98 

3 10.2 2.41 2.68 3.14 6.02 5.63 

4 9.0 2.18 2.21 2.74 5.62 5.32 

5 8.0 1.12 1.62 2.65 5.18 4.83 

6 7.0 1.01 1.62 2.23 4.13 4.15 

7. RESULTS 
The comparison of measured values of cutting forces through 

rigorous experimentation and those predicted by neural 

network are shown in Fig. 5 to 8. 

 

Fig 5: Comparison between Experimental and NN values 

of torque, M at 110 RPM for different diameter drills and 

work materials 

 

 

Fig 6: Comparison between Experimental and NN values 

of axial thrust, P at 110 RPM for different diameter drills 

and work materials 

 

Fig 7: Comparison between Experimental and NN values 

of torque, M at 167 RPM for different diameter drills and 

work materials 
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Fig 8: Comparison between Experimental and NN values 

of axial thrust, P at 167 RPM for different diameter drills 

and work materials 

8. CONCLUSION 
Whenever, the cutting force estimation problem in Drilling 

machine arises, it is possible to give the initial loading to this 

trained neural network model and it can give a fairly good 

estimation of corresponding forces torque and axial thrust 

values. Thus, there is an advantage of not using the machine 

tool if the torque and axial thrust forces are beyond the limits 

of the machine tool. The comparison of measured values of 

cutting forces through rigorous experimentation and those 

predicted by neural network confirms the cutting forces, viz., 

torque and axial thrust. 
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