
International Journal of Computer Applications (0975 - 8887)
Volume 121 - No. 8, July 2015

Two Approaches of Natural Numbers Sorting: TAISN
and Improved Array-Indexed Algorithms

Abdullah Sheneamer
Department of Computer Science

University of Colorado at Colo. Springs, USA
Jazan University, Saudi Arabia

Ahmed Alharthi
Department of Computer Science

University of Colorado at Colo. Springs, USA
Saudi Aramco, Saudi Arabia

Hanan Hazazi
Department of Computer IS

Regis University
Denver, CO USA

ABSTRACT
Data Structure is one of the fundamental areas of the com-
puter science. Sorting is crucial in data structure, which cre-
ates the list of sequence items. In this paper, we present two
techniques of sorting algorithm for natural numbers, which uses
the array indexing methodology and insert that number into
the proper index of the array without performing any element
comparisons and swapping. The first algorithm improves Array-
Indexed Sorting Algorithm for natural numbers [1] by adding neg-
ative numbers. The second algorithm is a new sorting algorithm
that refers to Two Arrays-Indexed Sorting Algorithm for Natu-
ral Numbers (TAISN). The two techniques of sorting algorithm
for natural numbers are efficient to give a much better perfor-
mance than the existing sorting algorithms of the O(n2) class,
for large array size with same length of digits of input data.

General Terms:
Data Structures, Algorithms

Keywords
Sorting , Natural Number Sorting.

1. INTRODUCTION
Many researchers in past years have tried to reduce the space and
time of the sorting algorithms [11]. Many resources are exploited to
propose a more working sorting algorithm. Up to date, there have
been discussions aiming to improve the performance of the Sorting
Algorithm. There are many sorting algorithms that are researched,
developed, and introduced on this area. Sorting algorithms have
three types of comparison (i) O (n2), (ii) O(n logn), and (iii)
O(n). The O(n logn) algorithms run faster than the O(n2) algo-
rithms, but in general, O(n2) algorithms need lesser space on the
RAM [1] because they are non-recursive. The O(n) algorithms run
faster than O(n2) algorithms. Therefore, in this paper, we propose
TAISN sorting algorithm for natural numbers and improve Array-
Indexed Algorithm [1] for decreasing the running time. The rest of
the paper is organized as follows:

Section 2, which discusses the problem statement.
section 3, which discuses other related works.
Section 4, which discusses our proposed algorithms.
Section 5, which describes the complexity time analysis.

Section 6, which assesses the comparison of TAISN Algorithm
and Array-Indexed Algorithm with existing sorting algorithms.
Section 7, which discusses the threats to validity,
Section 8, which is the conclusion and proposes the assessment
of the topic in the future work.
Section 9 covers the experiment environment.

2. PROBLEM STATEMENTS
The problem of sorting is a general problem that frequently arises
in the computer programming. There are many sorting algorithms
that have been proposed to make sorting process faster. Generally,
what we try to understand is what makes good sorting algorithms?
Speed is probably the top consideration, but other factors of inter-
est includes versatility in handling various natural numbers, consis-
tency of performance, memory requirements, length and complex-
ity of the code, and stability factors [5]. To assess all these factors,
as well as answering our research question, we try to investigate
and compare the majority of the existing sorting algorithms with
the new developed sorting algorithm.

3. RELATED WORKS
There are many of sorting methods that have been published in
the past years. Below is a brief description for some of these tech-
niques:

3.1 Bubble sort
Bubble Sort is the simplest way of sorting, and is considered slow-
est. It works by comparing two elements at a time, and swapping
them if they are in the wrong order. This method is considered rel-
atively inefficient and is not used anywhere, except for theoretical
purposes. For example, if there is a list of 100 elements, Bubble
sort will make 10000 comparisons to sort the list. As previously
mentioned, this sort of algorithm is inefficient because of present-
day standers. In the best case, the Bubble sort has O(n) behavior.
In the best average and worst case, it has a complexity of O(n2)
[2].

3.2 Selection Sort
Selection Sort is an inefficient algorithm on the larger list, but it
works well on smaller ones. Moreover, Selection Sort is noted for
its simplicity, and it has performance advantages over more com-
plicated algorithms in certain situations, especially where auxiliary

1

International Journal of Computer Applications (0975 - 8887)
Volume 121 - No. 8, July 2015

memory is limited. Basically, the algorithm scan the list for the
smallest elements, puts them at the first location, and after that it
selects the second smallest and puts to the second location, and so
on until it reaches the largest elements in the list [3]. Selection Sort
is an in-place comparison sort. It has O(n2) complexity, and that
is why it is inefficient while processing large lists, and performs
worse than the similar insertion sort [4].

3.3 Insertion sort
Insertion Sort is another simple sorting algorithm, and is considered
to be efficient sorting technique on small list, but very slow algo-
rithm in the large list. Also inserting algorithm is simple and easy
to implement [5]. It works by selecting one element in every pass,
and inserts it to the original location in the new list. The worst-case
complexity of insertion sort is also O(n2). [6].

3.4 Quick Sort
Quicksort or partition-exchange sort is a well-known sorting algo-
rithm developed by Tony Hoare. This algorithm selects an element
as a pivot and re-arrange the list in such a way that all elements in
the list that are greater than pivot elements comes after that. This
algorithm is significantly faster in practice than other O(n logn)
algorithms because its inner loop can efficiently be implemented on
most architecture. The algorithm has O(n logn) behavior in both
average and best cases while it gives O(n2) in the worst case per-
formance [7].

3.5 Heap Sort
Heap Sort is a comparison based sorting algorithm. It is part of the
selection sort family that creates sorted array (or list). It begins by
building a heap out of the data set, and then removing the largest
object and placing it at the end of the sorted array. After that, it
reconstructs the heap, removes the largest remaining objects, and
places it in the following open position form at the end of the sorted
array. It repeats the process until there are no items left on the heap,
and the sorted array [8]. Heap sort is considered being slow and is
not a stable sort in practices on the most machines as compared
to well implement quicksort. Heap sort algorithm has O(n logn)
runtime in both best and worse cases.

3.6 Merge Sort
Merge Sort is an O(n logn) efficient comparison-based sorting al-
gorithm. It is highly efficient and considered a stable sort. It works
on divide and conquer concept. Merge Sort divides the un-sorted
list into two parts; sorting the two-sub lists recursively by applying
the merge sort again. In the end it merges the sub-list [9].

4. THE PROPOSED ALGORITHMS
We present two approaches of the array-indexed algorithms. The
first approach is the future work of Array-Indexed Sort Algorithm
for Natural Numbers [1], which contains sorting for both positive
and negative numbers and the study of the performance of the al-
gorithm with the other best sorting algorithms.

4.1 Improved Array-Indexed Sorting Algorithm
The first algorithm can be understood by the following example:
n=10, A[10]={ -5,9, -4, -10,2, -3,0, 2 ,4,6}. Input data array A
and the first for loop of Algorithm 1 which are used to find the
MinValue and MaxValue from the input array which contains both

Algorithm 1 Improved Array Indexed Sort(A[], n) [1]

Require: An unsorted array A[] of size n
Ensure: An sorted array A[] of size n

x← 0,MinV alue← 0,MaxV alue← 0
for i← 0 to n− 1 do

if MinV alue >= A[i] then
MinV alue = A[i]

end if
if MaxV alue <= A[i] then

MaxV alue = A[i]
end if

end for
PositiveMinV alue← ‖MinV alue‖+ 1
MaxPos←MaxV alue+ PositiveMinV alue
B ← int[MaxPos]
for i← 0 to n− 1 do

A[n]← A[n] + PositiveMinV alue
end for
for i← 0 to n− 1 do

p← A[n]
B[p]← p

end for
m← 0
for i← 0 to n− 1 do

if B[i]! = 0 then
A[m]← B[i]− PositiveMinV alue
m++

end if
end for

negative and positive numbers.

Example 1

A[0]= -1
A[I]= 1
A[2]= -4
A[3]= −6←MinV alue

A[4]= 2
A[5]= -3
A[6]= 5
A[7]= -2
A[8]= 4
A[9]= 6←MaxV alue

In Example 1, MinValue = -6, MaxValue = 6. If MinValue is
a negative value, it will be converted into positive value. B
array length must be assigned to MaxPos that is a sum result of
MaxValue and PositiveMinValue. The second for loop is used for
add PositiveMinValue to each item of A array. The third for loop
is used for filling B array by transfer every element into A array
at its index position. Then, each element of B is subtracted from
PositiveMinValue and copied into A array. Finally, we have a sorted
array.

4.2 Two Arrays-Indexed Sorting Algorithm
The second algorithm, we present TAISN, which is a new Sorting
Algorithm that sorts both negative and positive numbers even if a

2

International Journal of Computer Applications (0975 - 8887)
Volume 121 - No. 8, July 2015

Table 1. : Example1 (Improved Array-Indexed Sorting Algorithm)
Iteration B Array Sorted A Array

j= 0 0 0
j= 1 B[1] = 1 A[0] = -6
j= 2 0 0
j= 3 B[3] = 3 A[1] = -4
j= 4 B[4] = 4 A[2] = -3
j= 5 B[5] = 5 A[3] = -2
j= 6 B[6]=6 A[4] = -1
j= 7 0 0
j= 8 B[8] = 8 A[5] = 1
j= 9 B[9] = 9 A[6] = 2

j= 10 0 0
j= 11 B[11] = 11 A[7] = 4
j= 12 B[12] = 12 A[8] = 5
j= 13 B[13]= 13 A[9] = 6

list of values contains duplicate values and gives much better run-
ning time than the Array-indexed sort [8] and the existing sorting
algorithms of the same complexity class such as Bubble Sort, Se-
lection Sort, Insertion Sort, and Merge Sort.

Algorithm 2 TAISN Algorithm(A[], n)

Require: An unsorted array A[] of size n
Ensure: An sorted array A[] of size n
MaxV alue← 0
for i← 0 to n− 1 do

if MaxV alue < A[i] then
MaxV alue← 1

end for
for k ← 0 to n− 1 do

if A[k] >= 0 then
t = k
if B[t] == Empty then

B[t]← t
else

B[t]← B[t] + ”NewLine” +t
end ifA[k] < 0
t← A[k].T rimStart(′−′)
if C[t] == Empty then

C[t]← ”− ” + t
else

C[t]← C[t] + ”NewLine” + ”-”+ t
end if

end if
end if

end for
for L←MaxV alue to 0 do

if C[L]! = Empty then
A[L]← C[L]

end if
end for
for Z ←MaxV alue to 0 do

if B[Z]! = Empty then
A[Z]← B[Z]

end if
end for

The algorithm can be explained in the same way of Example 1 that
has an in Improved Array Indexed Sort Algorithm: n=10, A[10]={

-5,9, -4, -10,2, -3,0, 2 ,4,6}. Input data array A and the first five
lines of Algorithm 2 are used to find the MaxValue from the Input
array that contains also both negative and positive numbers.

Example 2

A[0]= -5
A[I]= 9←MaxV alue

A[2]= -4
A[3]= -10
A[4]= 2
A[5]= -3
A[6]= 0
A[7]= 2
A[8]= 4
A[9]= 6

In Example 2, MaxValue=9. The first six lines of the second for
loop are used to copy the positive numbers in B array by indexing
the same number. The rest of the second for loop lines are used to
copy the negative numbers in C array by indexing the same number.
The third for loop is used to copy C array to A array from the last
element to the first, and the forth for loop is used to copy B array to
A array.

5. TIME COMPLEXITY ANALYSIS
The Array-Indexed Sort has two loops. The first loop is to find
the minimum and maximum value, which has running of times
O(n). The second loop has two loops: 1. outer loop from Minimum
to Maximum elements, which has running numbers of Maximum
value.

6. COMPARISON OF PRPOPSED ALGORITHMS
WITH EXISTING SORTING ALGORITHMS

We compared the TAISN Algorithm and Improved Array-Indexed
Algorithm with other sorting techniques to check the performance
of the presented two algorithms. Various sizes and items were se-
lected using random number generator with values ranging from
-3000 to 3000. We found our Improved Array- Indexed Algorithm
better in terms of performance and efficiency than our TAISN al-
gorithm and other existing sort algorithms through a comparison

3

International Journal of Computer Applications (0975 - 8887)
Volume 121 - No. 8, July 2015

Table 2. : Example2 (TAISN Algorithm)
Index Unsorted A Array Sorted B Array Sorted C Array Sorted A Array
k= 0 A[0]= -5 NULL C[5] = -5 A[0]=-10
k= 1 A[1]= 9 B[9]=9 NULL A[1]=-5
k= 2 A[2]= -4 NULL C[4] = -4 A[2]=-4
k= 3 A[3]= -10 NULL C[10] = -10 A[3]=-3
k= 4 A[4]= 2 B[2] = 2 NULL A[4]=0
k= 5 A[5]= -3 NULL C[3] = -3 A[5]=2
k= 6 A[6]= 0 B[0]=0 NULL A[6]=2
k= 7 A[7]= 2 B[2] = 2 ‖2 NULL A[7]= 4
k= 8 A[8]= 4 B[4] = 4 NULL A[8]=6
k= 9 A[9]= 6 B[6] = 6 NULL A[9]=9

Fig. 1: Comparison with Bubble Sort

technique explained in the sub-sections below. We used the Stop-
watch class in C.

6.1 Comparison with Bubble Sort
In the Fig 1 below, we placed elements number at x-axis and placed
the execution time of the program in milliseconds at y-axis. We
can see clearly that from 100 to 1000 elements the difference is
not much, but when the size starts increasing after 500 elements
to 3000, the bubble sort execution is increasing rapidly, while the
TAISN sort shows much better performance than the Bubble Sort.
Additionally, the Improved Array-Indexed Sort shows better effi-
ciency and performance than Bubble Sort and TAISN Sort.

6.2 Comparison with Insertion Sort
In the Fig 2 below, we can clearly recognize that different perfor-
mance gets bigger between Insertion Sort and the new two Sort Al-
gorithms from 100 elements. As we see Insertion sort and TAISN
sort. It is clear that the Improved Array-Indexed Sort is so much
better performance than TAISN Sort and Insertion Sort after 100
elements.

6.3 Comparison with Selection Sort
In Fig 3, we can also see the difference is starting increase at 100
elements. We see Improved Array-Indexed Sort Algorithm is bet-
ter performing than TAISN Sort Algorithm. Also the TAISN Sort
Algorithm is so much better in performance than the Selection Sort
Algorithm.

Fig. 2: Comparison with Insertion Sort

Fig. 3: Comparison with Selection Sort

6.4 Comparison with Merge Sort
In Fig 4, we can also observe that different executing time is in-
creasing after a 100 elements. Also, Improved Array-Indexed Sort
is better in terms of performance than the TAISN Sort in all the
cases. The TAISN Sort is better in terms of performance than the
Merge Sort. Also, the Improved Array-Indexed Sort performs bet-
ter than the TAISN Sort and Selection Sort.

7. THREATS TO VALIDITY
The concern with the Improved Array-Indexed Algorithm is the ac-
curacy, especially when we have duplicate values. If we have same
values, the algorithm will override the old values. The TAISN Al-

4

International Journal of Computer Applications (0975 - 8887)
Volume 121 - No. 8, July 2015

Fig. 4: Comparison with Merge Sort

gorithm works for duplicate values and same signs in the input be-
cause they deal with the duplicate values as strings. Our algorithms
work with small numbers. The amount of space allocated for this
algorithm would be dependent on the data and could be huge.

8. CONCLUSION FUTURE WORK
In this paper, we presented two approaches of the array-indexed
algorithm, which are Improved Array-Indexed Sorting and TAISN
Algorithms. The TAISN Algorithm gives a better executing time
than the existing sorting algorithms. Overall, the evaluation shows
that the TAISN Sorting Algorithm is very efficient for large num-
bers with the same length of elements. Also, the Improved Array-
Indexed Sort Algorithm is better than the TAISN and the other
existing sort algorithms in all cases. The future work includes
addressing Improved Array-Indexed Sorting Algorithm accuracy
when we have a problem on duplicate values and reducing the time
complexity of Array-Indexed Sort Algorithm. Also, it can be an
efficient and effective sorting algorithm than other existing algo-
rithms.

9. EXPERIMENT ENVIRONMENT
We executed our experiments on an Intel Core i5 2.8 GHz machine
with 4GB of memory 1600 MHz DDR3 running Mac OSX. The
algorithm has been constructed using Xamarin Studio.

10. REFERENCES
[1] Babu, D. R., Shankar, R. S., Kumar, V. P., Rao, C. S., Babu,

D. M., Sekhar, V. C. (2011, May). Array-indexed sorting al-
gorithm for natural numbers. In Communication Software and
Networks (ICCSN), 2011 IEEE 3rd International Conference
on (pp. 606-609). IEEE.

[2] Donald K. The Art of ComputerProgramming, Volume 3:
Sorting and Searching, Third Edition. Addison-Wesley, 1997.
ISBN 0-201- 89685-0. pp. 106-110 of section 5.2.2: Sorting by
Exchanging.

[3] Butt, W. H., Javed, M. Y. (2008, December). A new Relative
sort algorithm based on arithmetic mean value. In Multitopic
Conference, 2008. INMIC 2008. IEEE International (pp. 374-
378). IEEE.

[4] Seymour Lipschutz. Theory and Problems of Data Structures,
Schaum’s Outline Series: International Edition, McGraw- Hill,
1986. ISBN 0-07-099130-8., pp. 324-325, of Section 9.4:Se-
lection Sort.

[5] Leiserson, C. E., Rivest, R. L., Stein, C. (2001). Introduction
to algorithms. T. H. Cormen (Ed.). The MIT press.

[6] Seymour L . Theory and Problems of Data Structures,
Schaum’s Outline Series: International Edition, McGraw- Hill,
1986. ISBN 0-07099130 8., pp. 322-323, of Section 9.3: Inser-
tion Sort.

[7] Hoare, C. A. R. ”Partition: Algorithm 63,” ”Quicksort: Algo-
rithm 64,” and ”Find: Algorithm 65.” Comm. ACM 4(7), 321-
322, 1961.

[8] Heap Sort.” Wikipedia. Wikimedia Foundation, 30 Nov. 2013.
Web. 03 Dec. 2013.

[9] Merge Sort.” Wikipedia. Wikimedia Foundation, 12 Feb. 2013.
Web. 03 Dec. 2013

[10] Knuth, D. E. (2006). Art of Computer Programming, Volume
4, Fascicle 4, The: Generating All Trees–History of Combina-
torial Generation. Addison-Wesley Professional.

[11] Agarwal, A., Pardesi, V., Agarwal, N., Tech, M., Tech, C. N.
M., DTU, D. B., BITS, S. (2013). A New Approach To Sort-
ing: Min-Max Sorting Algorithm.International Journal of En-
gineering, 2(5).

11. APPENDIX A: ARRAY-INDEXED SORTING
SORUCE CODE

us ing System ;
us ing System . C o l l e c t i o n s . G e n e r i c ;
us ing System . Linq ;
us ing System . Text ;
us ing System . D i a g n o s t i c s ;
namespace A r r a y I n d e x e d
{

c l a s s Program
{

p u b l i c s t a t i c i n t Pos t i veMinVa lue ;
p u b l i c s t a t i c i n t MaxPos ;
p u b l i c s t a t i c i n t [] b ;

s t a t i c vo id Main (s t r i n g [] a r g s)
{

Conso le . Wr i t e (” E n t e r I n p u t Numbers : ”) ;
i n t xx = Conve r t . To In t32 (Conso le . ReadLine ()) ;
i n t [] a= new i n t [xx] ;

Random rng = new Random () ;
f o r (i n t i = 0 ; i < xx ; i ++) {

s t r i n g a r r = rng . Next (−3000 , 3 0 0 0) . T o S t r i n g () ;
a [i] = Conve r t . To In t32 (a r r) ;

}

Stopwatch StopWatch = new Stopwatch () ;
StopWatch . S t a r t () ;

i n t MinValue = 0 ;
i n t MaxValue = 0 ;
f o r (i n t i = 0 ; i < a . Length ; i ++) {

i f (MinValue >= a [i]) {
MinValue = a [i] ;

}
i f (MaxValue <= a [i]) {

MaxValue = a [i] ;
}

}

Pos t i veMinVa lue = Math . Abs (MinValue) + 1 ;
MaxPos = MaxValue + Pos t i veMinVa lue ;
b = new i n t [MaxPos + 1] ;

f o r (i n t n = 0 ; n < a . Length ; n ++) {
a [n] = a [n] + Pos t i veMinVa lue ;

}

f o r (i n t m = 0 ; m < a . Length ; m++) {
i n t p = a [m] ;

b [p] = p ;
}
i n t i n d e x = 0 ;

f o r (i n t f = 0 ; f < MaxPos+1 ; f ++) {
i f (b [f] != 0) {

a [i n d e x] = b [f] − Pos t i veMinVa lue ;

Conso le . W r i t e L i n e (a [i n d e x]) ;

5

International Journal of Computer Applications (0975 - 8887)
Volume 121 - No. 8, July 2015

i n d e x ++;
}

}

StopWatch . S top () ;
Conso le . Wr i t e (” Time :{0} ” , StopWatch . E l a p s e d . T o t a l M i l l i s e c o n d s) ;
Conso le . ReadLine () ;

}
}

}

12. APPENDIX B: TAISN SORTING SOURCE
CODE

us ing System ;
us ing System . C o l l e c t i o n s . G e n e r i c ;
us ing System . Linq ;
us ing System . Text ;
us ing System . D i a g n o s t i c s ;
namespace New Array Indexed
{

c l a s s Program

{
p u b l i c s t a t i c s t r i n g [] a ;
p u b l i c s t a t i c s t r i n g [] b ;
p u b l i c s t a t i c s t r i n g [] c ;
p u b l i c s t a t i c i n t Max = 0 ;
p u b l i c s t a t i c i n t x ;
p u b l i c s t a t i c i n t i = 0 ;
p u b l i c s t a t i c Stopwatch s topWatch = new Stopwatch () ;
s t a t i c vo id Main (s t r i n g [] a r g s)
{

Conso le . Wr i t e (” E n t e r I n p u t Numbers : ”) ;
x = Conve r t . To In t32 (Conso le . ReadLine ()) ;

s topWatch . S t a r t () ;
a = new s t r i n g [x] ;
Random rng = new Random () ;
f o r (i n t i = 0 ; i < x ; i ++)
{

a [i]= rng . Next (−3000 , 3000) + ”\ r \n ” ;
}

Max = 0 ;
i n t i i = 0 ;

whi le (i i < x)
{

i n t j = Conve r t . To In t32 (a [i i]) ;
a [i i] = j . T o S t r i n g () ;
s t r i n g s u b s t r a c t M i n = j . T o S t r i n g () . T r i m S t a r t (’ − ’) ;
j = Conve r t . To In t32 (s u b s t r a c t M i n) ;
i f (Max < j)
{

Max = j ;
} i i ++;

}
b = new s t r i n g [Max + 1] ;
c = new s t r i n g [Max + 1] ;
f o r (i n t k = 0 ; k < x ; k ++)
{

i n t t = Conve r t . To In t32 (a [k]) ;
i f (t < 0)
{

i n t f = t ;
s t r i n g s = t . T o S t r i n g () . T r i m S t a r t (’ − ’) ;
t = Conve r t . To In t32 (s) ;
i f (c [t] == n u l l)
{

c [t] = f . T o S t r i n g () ;
}
e l s e
{

c [t] = c [t] + ”\ r \n ” + f ;
}

}
e l s e

i f (b [t] == n u l l)
{

b [t] = t . T o S t r i n g () ;
}
e l s e
{

b [t] = b [t] + ”\ r \n ” + t ;
}

}
Conso le . W r i t e L i n e (” ”) ;

foreach (s t r i n g l in c)
{

i f (l != n u l l)
{

Conso le . W r i t e L i n e (l) ;
}

}
Conso le . W r i t e L i n e (” ”) ;
foreach (s t r i n g z in b)
{

i f (z != n u l l)
{

Conso le . W r i t e L i n e (z) ;
}

}
s topWatch . S top () ;

Conso le . W r i t e L i n e (” Time : ” + s topWatch . E l a p s e d . T o t a l M i l l i s e c o n d s) ;
Conso le . ReadLine () ;

}
}

}

6

	INTRODUCTION
	PROBLEM STATEMENTS
	RELATED WORKS
	Bubble sort
	Selection Sort
	Insertion sort
	Quick Sort
	Heap Sort
	Merge Sort

	THE PROPOSED ALGORITHMS
	Improved Array-Indexed Sorting Algorithm
	 Two Arrays-Indexed Sorting Algorithm

	TIME COMPLEXITY ANALYSIS
	COMPARISON OF PRPOPSED ALGORITHMS WITH EXISTING SORTING ALGORITHMS
	Comparison with Bubble Sort
	Comparison with Insertion Sort
	Comparison with Selection Sort
	Comparison with Merge Sort

	THREATS TO VALIDITY
	CONCLUSION FUTURE WORK
	EXPERIMENT ENVIRONMENT
	References
	Appendix A: ARRAY-INDEXED SORTING SORUCE CODE
	APPENDIX B: TAISN SORTING SOURCE CODE

