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ABSTRACT 

The effects of exponentially varying viscosity and linearly 

varying thermal conductivity on unsteady MHD natural 

convective flow past a semi infinite vertical plate in a 

thermally stratified medium is studied. The variables of both 

viscosity and thermal conductivity are considered only a 

function of temperature. The governing boundary layer 

equations of continuity, momentum and energy have been 

transformed into dimensionless coupled and nonlinear 

equations and after that solved by implicit finite-difference 

method of Crank-Nicolson type. The effects of the varying 

viscosity, thermal conductivity and stratification parameter at 

various times are discussed with velocity and temperature 

profiles and additionally the skin-friction and the rate of heat 

transfer. 
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1. NOMENCLATURE 
u, v velocity of the fluid in x, y directions respectively 

U, V dimensionless velocity of the fluid in X, Y directions 

respectively 

Gr Grashof number 

Cp specific heat at constant temperature 

k  thermal conductivity of the fluid 

M magnetic parameter 

B0 magnetic induction 

t′ time 

t dimensionless time 

L characteristic length of the plate 

T temperature of the fluid in the boundary layer 

Tw plate temperature 

T∞ temperature of the fluid far away from the plate 

S dimensionless stratified parameter 

Pr Prandtl number 

Nux dimensionless local heat transfer rate 

Nu dimensionless average Nusselt number 

Cf skin- friction coefficient 

Cf average skin-friction coefficient 

Greek Symbols 

γ thermal conductivity variation parameter 

λ viscosity variation parameter 

μ fluid viscosity 

μ∞ fluid viscosity in free stream 

θ dimensionless temperature 

β volumetric coefficient of thermal expansion 

ν kinematic viscosity 

ρ the fluid density 

σ electrical conductivity of the fluid 

Subscripts 

w condition of the wall 

∞ free stream condition 

2. INTRODUCTION 
Free convection flows are of great interest in a number of 

industrial applications, for example, geothermal frameworks, 

fiber and granular insulation etc. Buoyancy is also of 

importance in an environment where differences between land 

and air temperatures can give rise to complicated flow 

patterns. Heat transfer on fluid flow due to free convection in 

the presence of magnetic field finds subsidiary applications in 

different branches of Science and Technology such as atomic 

science, fire engineering, computational astrophysics, the 

magnetic behavior of plasmas in fusion reactors, liquid-metal 

cooling of nuclear reactors and electromagnetic casting. The 

problem of free convection flow past an infinite vertical plate 

under different plate conditions was studied by numerous 

researchers. Soundalgekar [1] studied the free convection 

effects on the Stokes problem for an infinite vertical plate by 

using Laplace transform method. Hellums and Churchill [2] 

were the first to present unsteady natural convective flow past 

a semi-infinite isothermal vertical plate by using an explicit 

finite-difference scheme. As explicit finite-difference scheme 

has its own particular lacks, later, Soundalgekar and Ganesan 

[3] have solved free convection flow past a vertical plate with 

mass transfer using implicit finite difference method of 

Crank-Nicolson type which is unconditionally stable and 

convergent. 
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Magnetohydrodynamics has attracted the attention of a large 

number of scholars due to its diverse applications. The study 

of effects of magnetic field on free convection flow is 

important in liquid-metals, electrolytes and ionized gases. 

Soundalgekar and Mohammed Ali [4] have studied free 

convection effects on MHD flow past an impulsively started 

infinite vertical isothermal plate. Seddeek [5] reviewed the 

free convection effects with variable viscosity in an aligned 

magnetic field. Elbashbeshy [6] studied free convection flow 

with variable viscosity and thermal diffusivity along a vertical 

plate in the presence of magnetic field, in which the modified 

fourth order Runge-Kutta integration scheme was used along 

with Nachtsheim-Swigert shooting technique. The above 

problems were not done in the thermally stratified media. 

For many fluid flows of practical importance in nature and 

also in numerous engineering contrivances, the environment 

is thermally stratified. In the situation of thermal stratification 

takes place, the fluid temperature and convection exist in such 

environment like oceans, lakes, solar ponds, nuclear reactors 

where coolant is present in magnetic field etc. The 

consideration of researchers on the convective heat transfer in 

thermal stratified fluid has a consequential topic for scientific 

enquiry of both theoretical and applied fields. Deka and Neog 

[7] studied unsteady natural convection flow past an 

accelerated vertical plate in a thermally stratified fluid. 

Kulkarni et al. [8] presented the similarity solutions for 

natural convection flow over an isothermal vertical wall 

immersed in thermally stratified medium. Gurminder Singh et 

al. [9] examined the impacts of thermally stratified ambient 

fluid on MHD convective along a moving non-isothermal 

vertical plate using Runge-Kutta fourth order method along 

with shooting technique. The natural convection flow from a 

continuously moving vertical surface immersed in thermally 

stratified medium is presented by Takhar et al. [10]. In case of 

vertical plate problems thermal stratification arises mainly 

because of temperature variations of different density. The 

natural convection flow with combined effects due to thermal 

and mass diffusion in thermally stratified media was studied 

by Saha and Hossain [11], in which the authors used sixth 

order implicit Runge-Kutta-Butcher technique. 

In many transport processes in nature and in modern 

applications, the heat transfer with variable viscosity is a 

consequence of buoyancy effect caused by the diffusion of 

heat. Hazarika and Sarma [12] concentrated on to get the 

effects of variable viscosity and thermal conductivity on 

steady free heat and mass transfer flow along a vertical plate 

in the presence of a magnetic field. Mahanti and Gaur [13] 

studied the effects of varying viscosity and thermal 

conductivity on steady free convective flow and heat transfer 

along an isothermal vertical plate in the presence of heat sink. 

Gnaneswara Reddy and Bhaskar Reddy [14] studied unsteady 

MHD convective heat and mass transfer past a semi-infinite 

vertical porous plate with variable viscosity and thermal 

conductivity using the shooting method. Thakur and Hazarika 

[15] studied the effects of variable viscosity and thermal 

conductivity on unsteady free convective heat and mass 

transfer MHD flow of micropolar fluid with constant heat flux 

through a porous medium. 

From all these analysis, it is identified that the variation of 

viscosity and thermal conductivity with temperature is an 

interesting area in the stratified fluid flow problems. Most of 

the above problems dealt with two-dimensional steady MHD 

boundary layer flow. Hence the focus of the present paper is 

on unsteady MHD free convective thermally stratified flow 

with variation of viscosity and thermal conductivity over an 

isothermal semi-infinite vertical plate. 

3. MATHEMATICAL ANALYSIS 
A two dimensional unsteady flow of a viscous incompressible 

stratified fluid past a semi-infinite vertical plate is considered. 

The x- axis is taken along the plate in the vertically upward 

direction and the y-axis is chosen normal to the plate as 

shown in Figure 1. The gravitational acceleration g is acting 

downward. Initially, the plate and the fluid are at the same 

temperature T . At time 0t  , the temperature of the plate is 

suddenly raised to wT  and maintained at the same value. A 

magnetic field is applied transverse to the direction of the 

flow. The variable viscosity and thermal conductivity are 

involved and the viscous dissipation is negligible in the fluid 

flow. It is assumed that the viscosity of the fluid is an 

exponential function and that the thermal conductivity is a 

linear function of the temperature. All the fluid physical 

properties are assumed to be constant except for the body 

force terms. 

 

Fig 1: Physical model of the problem 

Under these assumptions, the governing boundary layer 

equations of continuity, momentum and energy with 

Boussinesq’s approximation are as follows  
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Introducing the following non dimensional quantities 
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The variations of the normalized viscosity and thermal 

conductivity parameters are composed in the form (Elbashbeshy 

and Ibrahim [16], Elbarbary and Elgazery [17]): 
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( ) / 1k k     (7) 

By introducing the above non dimensional quantities and the 

parameters (6, 7) in equations (1), (2) and (3), they are reduced 

to the non-dimensional form as follows 
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We obtain the boundary condition for temperature at the wall 

in non-dimensional form as follows 
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The corresponding initial and boundary conditions of (4) are 
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4. NUMERICAL TECHNIQUE 
The governing equations (8-10) are unsteady, coupled and non-

linear with initial and boundary conditions (11). Using implicit 

finite-difference scheme of Crank-Nicolson type, the governing 

equations are solved as described (Thomas algorithm) in Carnahan 

et. al [18]. The region of integration for the present problem is 

considered as a rectangle composed of the lines indicating Xmax = 1 

and Ymax = 15, where Ymax corresponds to Y = ∞, which lies well 

outside both the momentum and energy boundary layers. At a 

particular time level n, finite difference equations at every internal 

nodal point on a particular i-level constitutes a tridiagonal system of 

equations and thus the values of U and θ are known at every nodal 

point on a particular i level at (n + 1)th time level and determinately, 

the values of V are calculated explicitly at every nodal point on a 

particular i level at (n + 1)th time level. In a similar manner, 

computations are carried out by moving along i direction. After 

computing values corresponding to each i at (n + 1)th time level, the 

values at the next time level are resolute in a similar manner. 

Computations are completed until the steady-state is reached. The 

steady-state solution is assumed to have been reached, when the 

absolute difference between the values of U, as well as 

temperature θ at two consecutive time steps are less than 10-5 at 

all grid points. 

The finite difference scheme is proved to be unconditionally stable, 

for a natural convective flow, using Von-Neumann technique. The 

local truncation error is O(Δt' 2+ΔY2+ΔX) and it tends to zero as 

Δt', ΔY, and ΔX tend to zero, which demonstrates that the scheme 

is compatible. Hence compatibility and stability ensure the 

implicit finite difference scheme is convergent. 

5. RESULTS AND DISCUSSION 
The computations of dimensionless velocity, temperature 

profiles have been carried out for different values of the 

parameters. The velocity and temperature profiles obtained in a 

dimensionless form are presented in Figures (2-8) for Pr = 0.73 

(air) and Pr = 7.0 (water). Figure 2 represents the velocity profile 

for different values of S and for the fixed values of λ= - 0.6,       

γ = 1.0 and M = 0. It is clear from the Figure that the time to 

reach steady state decreases gradually with the increase of 

thermal stratification parameter S. The velocity increases with 

time until a temporal maximum (U = 0.53922) is reached and 

after there is a reduction can be seen until the steady state is 

reached. Figure 3 depicts the velocity profile for different values 

of magnetic parameter M. It is observed from the figure that the 

velocity decreases as M increases with time increasing and 

reaches temporal maximum and then decrease to reach steady 

state value. The Figures 4 and 5 represent the velocity profile for 

Prandtl number (=7.0) for water. The velocity profile is 

demonstrated in Figure 4 for different values of S. It shows that 

the velocity decreases as S increases. The velocity reaches 

temporal maximum at (U= 0.92015) and decreases 

monotonically to reach steady state. The steady state velocity 

can be seen from Figure 5 for different values of thermal 

conductivity parameter γ, magnetic parameter M and for some 

fixed values of S = 0, λ = 0.5. The velocity decreases as 

decreasing the value of γ but increasing the value of M. 

 

Fig 2: Steady state velocity for different values of S                    

(* Temporal maximum) 
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Fig 3: Steady state velocity profiles for different values of M 

(* Temporal maximum) 

        

 

Fig 4: Steady state velocity profiles for different values of S 

(*Temporal maximum) 

 

  

Fig 5: Steady state velocity profiles for different values of 

γ and M 

The impact of the stratified parameter on the temperature 

profiles is shown in Figure 6. It shows that the temperature 

profiles for air. The temperature profile decreases as the 

stratified parameter increases with decreasing time for some 

fixed values of λ, γ and M. It can be seen that the values of the 

non-dimensional temperature are positive in case of absence 

of the thermal stratification parameter (S = 0), while S = 0.1, 

0.2, 0.4, 0.5, the non-dimensional temperature are negative 

within the boundary layer, because at these values of S, the 

difference between the surface of the plate and ambient 

temperatures at X = 1 is zero. It shows that greater cooling of 

the surface with an increase in S results in a decrease in the 

temperature. It is due to the fact that an increase in the values 

of the thermal stratification parameter has the propensity to 

increase the thermal buoyancy effect. It takes more time to 

reach the steady state when S is diminutive. 

 

Fig 6: Steady state temperature profiles for different 

values of S 

Figure 7 shows that, increasing the values of λ, γ and M 

produces increasing temperature gradients near the wall. 

Moreover, extreme cases of large values of the same 

parameters and some fixed values of S show, far steeper 

temperature profiles. Figure 8 represents that the temperature 

decreases as the stratified parameter increases with increasing 

time for water. 

 

Fig 7: Steady state temperature profiles for different 

values of λ, γ and M 
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Fig 8: Steady state temperature profiles for different values 

of S 

Knowing the velocity and temperature field, it is standard to 

study the physical quantities of fundamental interest of the skin-

friction, the rate of heat transfer in steady state conditions. The 

dimensionless local and additionally average values of the skin-

friction and Nusselt number can be expressed as 
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The derivations involved in equations (11) and (12) are 

evaluated using five point formula and integrals are evaluated 

using Newton cotes formula numerically and from these 

equations, the local and average skin frictions are calculated. 

Figure 9 demonstrates that the local skin friction for different 

values of S and Prandtl numbers of air and water. It is observed 

from the figure that local skin friction decrease as increase in the 

stratification parameter S for both air and water. This is because, 

the velocity of the fluid decreases by increasing the stratification 

parameter as depicted in Figure 2. Therefore, there is a reduction 

in the shear stress along the wall and hence a decrease in the skin 

friction. It is additionally observed that an increase in Prandtl 

value, local skin friction is found to increase. The local and 

average heat transfer rates are calculated from the equations (13) 

and (14) respectively. Figures 10 and 11 represent the 

dimensionless steady state local heat transfer rate for air and 

water. From Figure 10, it is observed that the local heat transfer 

rate decreases as increasing the values of λ, γ and M. Similarly, 

Figure 11 depicts the local heat transfer rate decreases as the 

thermal stratification decreases. Figure 12 shows that the 

average skin friction for water. It is observed from the figure that 

the average skin friction decreases for decreasing thermal 

conductivity parameter γ but increasing magnetic parameter M. 

This is because, the velocity of the fluid decreases by increasing 

the stratification parameter as shown from Figure 4. Figure 13 

represents the average heat transfer rate for air and water. It 

decreases sharply at small values of time t, being unaffected by 

the stratification parameter S, but at large values of t, it is 

independent of time. When time increases, the average heat 

transfer increases and after some fluctuations, and reaches the 

asymptotic steady state. It is to be noted that the average heat 

transfer rate increases as the stratification parameter S increases 

for both air and water. It is also observed that a decrease in the 

Prandtl value, leads to an increase in the average heat transfer 

rate. 

   

Fig 9: Local Skin friction 

Fig 10: Local Nusselt number for different values of         

λ, γ and M 

  
Fig 11: Local Nusselt number for different values of S 
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Fig 12: Average Skin friction for different values of           

γ and M 

      

 

Fig 13: Average Nusselt number for different values of     

S and Pr 

6. CONCLUSIONS 
In this study, the problem of unsteady MHD natural 

convection flow over a semi-infinite vertical plate, in a 

thermally stratified media with variable viscosity and thermal 

conductivity is considered, and it is solved by the finite-

difference method of the Crank-Nicolson type. This study 

concludes with the following results: 

The velocity increases with a decrease in the stratified 

parameter for both air and water while the velocity increases 

with a decrease in the magnetic parameter M, and increase in 

the viscosity parameter λ for water. The temperature decreases 

on increasing S for both air and water. But the temperature 

decreases on decreasing λ, γ and M for air. Local skin friction 

decreases with an increase in the stratification parameter S for 

both air and water. The local heat transfer rate decreases on 

increasing the values of λ, γ and M for air, but decreases as the 

value of stratification parameter S decreases for water. The 

average skin friction decreases on decreasing γ but on 

increasing M for water. The average heat transfer rate 

increases as the stratification parameter S increases for both 

air and water.  

The present study may be established in various scientific 

aspects. 
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