
International Journal of Computer Applications (0975 - 8887)
Volume 121 - No.3, July 2015

Multi Level Caching and Anticipated Parallel
Processing-based Algorithm for Improving the

Performance of the Distributed File System

B. Rangaswamy
Sri Krishnadevaraya University

Ananthapur, Andhra Pradesh, India

N. Geethanjali
Sri Krishnadevaraya University

Ananthapur, Andhra Pradesh, India

T. Ragunathan
ACE Engineering College

Hyderabad, India

ABSTRACT
Large amount of data is getting generated due to the extensive use
of web applications by billions of users around the globe. The orga-
nizations which has deployed web applications are pondering over
solutions for scalable storage and faster access of large data. Dis-
tributed file systems (DFSs) have been emerged as efficient storage
solutions so that the data can be stored and accessed efficiently.
Modern cloud-based data centers have been using the DFS as main
storage component. Improving the performance of read operations
have become important as most of users of the web applications
carry out read operations in the web. Caching and speculation-
based approaches are proposed in the literature for improving the
performance of read operations in the DFS. In this paper, we have
proposed an anticipated parallel processing-based algorithm which
considers the presence of multi level caches namely local cache,
local cache of neighbouring node (nearby cache) and global cache.
We have carried out the performance evaluation of the algorithms
using mathematical analysis and simulation modeling. The results
of the analysis indicate that the proposed algorithm performs bet-
ter than the speculation-based algorithm proposed in the literature.

General Terms:
Algorithms.

Keywords
Distributed file system,Speculation, Multi level caching, Perfor-
mance evaluation

1. INTRODUCTION
More and more users have turned to use web applications to carry
out their daily activities. Smart mobile phones have been emerged
as one of the important and inseparable gadget in the life of the
people. Lot of audio, video, image and text data are generated and
communicated using these mobile phones have made significant
changes in the life style of the people. Organizations which deploy
web applications for the use of people are pondering over the issue
of storage and subsequent access of the data. Large storage capacity
and faster access of data are the two important factors considered by
these organizations for choosing a storage solution to get adapted.

Distributed file systems (DFSs) are currently being used in most
of the search engines for storage and faster access of both struc-
tured and unstructured data. Cluster-based file systems like Hadoop
DFS (HDFS)[9] has become more popular to cater the needs of the
data intensive applications. With the support of parallel and dis-
tributed programming framework namely MapReduce framework,
the HDFS has become an ideal storage solution for data intensive
applications. Note that, most of the web applications in this type
of environment performs read operations on the data and less fre-
quently the data is updated. So, improving the the performance of
the read access has become one of the major research issues in the
emerging Big Data scenario.
Many pre fetching and client side caching techniques are proposed
in the literature for improving the performance of the read opera-
tions in the DFS. [2] [5] [8] [6] [7][4], [3] and [1]. Pre fetching tech-
nique is used for pre fetching the requested data and store the same
in the local caches maintained in the data nodes. Caching technique
permits the client application program to read the requested data
from the local cache (client side cache) if it is available there; Oth-
erwise the requested data will be fetched from the file server sys-
tem’s disk. The advantage with caching technique is that it will
reduce the number of disk accesses and network communication
overhead.
Since the data is distributed and stored in the DFS, researchers have
made efforts to carry out parallel or speculative processing for im-
proving the performance of the read operations in the DFS. In [6],
the authors proposed a speculation-based read technique for im-
proving the performance of the read operations in the DFS. This
technique considers the presence of the local caches in the data
nodes for proposing speculation-based read algorithm. In the litera-
ture cooperative and collaborative caching algorithms are proposed
for improving the performance of the DFS.
In this paper, we have proposed an anticipated parallel processing-
based algorithm which considers the presence of multi level caches
namely local cache, local cache of neighbouring node (nearby
cache) and global cache and the possibilities of parallel executions.
We have carried out the performance evaluation of the algorithms
using mathematical analysis and simulation modeling. The results
of the analysis indicate that the proposed algorithm performs better
than the speculation-based algorithm proposed in the literature.
This paper is organized as follows. In the next section, we discuss
the architecture of the DFS that we have considered for proposing
our algorithm. In section 3, we discuss the details of the proposed

1



International Journal of Computer Applications (0975 - 8887)
Volume 121 - No.3, July 2015

algorithm. In section 4, we describe the performance evaluation
of the algorithms through mathematical and simulation modeling.
Section 5 concludes the paper.

2. ARCHITECTURE OF DISTRIBUTED FILE
SYSTEM

In this paper, we have considered cluster-based DFS. This DFS
consists of one name node (NN) where the meta data (global di-
rectory) of the files stored in the DFS are available. A secondary
NN may be used optionally to support fault tolerance purpose. In
this type of DFS, one or more data nodes (DNs) are present. These
DNs are used for two important purposes. The first purpose of a
DN is to store the data and the second purpose is to execute client
application programs. Each DN maintains a local cache (client side
cache). Note that, the operations of the local cache are managed by
the cache manager program running in that DN. This cache man-
ager maintains a cache directory where the meta data of the files
stored in the local cache are available. In this cache directory, ad-
dress of the nearby DN is also stored We have considered that only
file level caching is followed in the DFS. The client application pro-
gram getting executed in a DN can access the file blocks with the
help of the DFS client program running in that DN. The requests
given by the DFS client program will be served by the DFS server
program running in the NN. The data nodes and NN will commu-
nicate with each other quite frequently to know the functioning sta-
tus of the data nodes and to know the file blocks stored in the data
nodes. This communication is essential for balancing the work load
of the data nodes. Note that, a file is replicated three times and these
replicas are kept in three different DNs so that the reliability feature
can be implemented in the DFS. Note that, replicating files is also
useful for improving the performance of the DFS by providing the
opportunities for parallel processing. We have also considered that
the DFS maintains a global cache in a separate server system.

3. PROPOSED ALGORITHM
In this section, we cove the assumptions that we have made for
proposing the algorithm. The details of the proposed algorithm are
covered next.

3.1 Assumptions
(i) Cache synchronization or invalidation protocol is not used in
order to avoid the communication overhead.
(ii) The DFS client program communicates with the NN to collect
the addresses of the DNs where the requested file copies are
available.
(iii) Caching is done only during read operations and write
operations do not initiate any caching activity.
(iv) Least recently used (LRU) policy is followed to replace a file
in the cache. The local, global and nearby caches present in the
DFS follow this LRU policy.

3.2 Proposed Algorithm
Whenever a client application program running in a DN requests
for a file the local cache manager simultaneously verifies with the
local cache, nearby cache and global cache by communicating with
the appropriate cache managers by creating anticipated parallel ex-
ecutions (APEs) . Simultaneously, the DFS client program run-
ning in that DN communicates with the NN to read the meta data
(addresses of the data nodes where the file is available and time

stamp of the file). Next, the time stamp value returned by the NN
is checked up with the time stamp values of the copies in the local,
nearby and global caches. If the time stamp value of any one of the
cached copies is matching then the APE meant that cache will be
allowed to continue and the APEs meant for the remaining caches
will be terminated. If time stamp value is not matching with that
of all the cached copies then the file content will be fetched from
one of the DNs which is very near to the host DN where that file
content is available. Next, we describe the algorithm in detail.
The proposed algorithm:
This algorithm creates four threads namely main thread to read the
file from the disk and anticipated parallel executions (APEs) for
reading from local, global and nearby caches.

/* A client application program (CAP) running in a data node
(DN1) has issued read request to read the contents of a file F1 */
/* The threads MT, APE1, APE2 and APE3 are created. After the
creation these threads are executed simultaneously. */
Step 1. (a) APE1 reads F1 from local cache if F1 is available in that
cache and time stamp value of F1 is T1; else APE1 is terminated.
(b) APE2 reads F1 from the nearby cache if F1 is available in that
cache and time stamp value of F1 is T2; else APE2 is terminated.
(c) APE3 reads F1 from the global cache if F1 is available in that
cache and time stamp value of F1 is T3; else APE3 is terminated.
(d) The DFS client program running in DN1 contacts the name
node (NN) to get the addresses of the data nodes (DNs) where F1 is
stored. Time stamp of F1 given by NN is T. (This is the main thread
of execution and we name this as MT)
/* All the four operations specified in this step are executed in par-
allel. */
Step 2. (a) If T1 is not equal to T then APE1 is terminated; else
APE2, APE3 and MT are terminated. After reading is completed
APE1 will return the F1 content to the CAP.

(b) If T2 is not equal to T then APE2 is terminated; else APE1,
APE3 and MT are terminated. After reading is completed APE2
will return the F1 content to the CAP.

(c) If T3 is not equal to T then APE3 is terminated; else APE1,
APE2 and MT are terminated. After reading is completed APE3
will return the F1 content to the CAP.

(d) If APE1, APE2 and APE3 (all anticipated parallel executions)
are terminated then (i) The DFS client program contacts one of the
nearest data node among DNs to read the contents of F1 from the
disk storage system of that data node.
(ii) The content of F1 is delivered to CAP and copy of F1 is stored
in the local cache of DN1.

Step 3. Stop.

4. PERFORMANCE EVALUATION
4.1 Assumptions
We have made the following assumptions for mathematical analy-
sis and simulation modeling.
(i) File block size is 4 KB.
(ii) Data nodes and name nodes are connected in a local area net-
work.
(iii) Average communication time required to transfer a 4 KB block
from a remote node to the host node is 4 ms.

2



International Journal of Computer Applications (0975 - 8887)
Volume 121 - No.3, July 2015

(iv) Meta data transfer time from name node to data node is 0.125
ms.
(v) Time required for Reading 4 KB of data from local disk is 12
ms.
(vi) Main memory access time is 0.0006 ms.
(vii) Local cache hit ratio is called as lc.
(viii) Global cache hit ratio is called as gc.
(ix) Cache hit ratio of nearby cache is called as nc.
(x) The client application program is getting executed in the data
node CDN.
Next, we describe the results of our mathematical analysis of the
proposed and speculation-based algorithms. In the last subsection,
we discuss the results of the simulation experiments.

4.2 Mathematical Analysis
Average read access time for a 4 KB data block of DFS (without
caching and anticipated parallel processing) = time required to ac-
cess name node to collect meta data + reading 4 KB data block from
a specific data node from the disk + reading 4 KB data block from
the main memory of source data node + transferring the 4 KB data
block to the destination data node + time required for transferring
the data block to client’s address space).
Average read access time for a 4 KB data block of DFS (with
speculation-based approach) = lc * (time required to access the
local memory + time required to access name node to collect time
stamp) + (1-lc) * (time required to access the local memory + time
required to access name node to collect time stamp+ time required
to access name node to collect meta data + reading 4 KB data block
from a specific data node from the disk + reading 4 KB data block
from the main memory of source data node + transferring the 4 KB
data block to the destination data node + time required for transfer-
ring the data block to client program’s address space).
For the proposed approach we have to calculate the time required
to access 4 KB of data block from global cache or nearby cache
which is equivalent to time required to access main memory + time
required to transfer the data from the remote node to the local node
+ time required for transferring the data block to client’s address
space.
Average read access time for a 4 KB data block of DFS (proposed
approach = lc* (time required to access name node to collect time
stamp) + nc * (time required to transfer the 4 KB data from the
remote memory to CDN’s memory + time required for transferring
the data block to client program’s address space and local cache)
+ gc * (time required for transferring data block to CDN from the
global cache + time required for transferring the data block to client
program’s address space) + (1-lc- nc - gc) * (time required to access
name node to collect meta data + reading 4 KB data block from a
specific data node’s the disk + reading 4 KB data block from the
main memory of source data node + transferring the 4 KB data
block to the CDN + time required for transferring the data block to
client’s address space and local cache)
Based on the formulas discussed above we have evaluated the per-
formance of the proposed anticipated parallel processing-based and
the speculation-based algorithms proposed in the literature.

In Figure 1, we have fixed the lc and nc values as 0.2 and ob-
served the performance of the algorithms by varying the gc val-
ues from 0.1 to 0.5. For the gc values 0.1 and above the proposed
algorithm (APMC) performs better than the speculation-based al-
gorithm (SP). As we use multi level caches, the hit ratio has been
improved and hence the proposed algorithm performs better than
the speculation-based algorithm proposed in the literature.

Fig. 1. Global cache hit ratio versus Average access time.

Fig. 2. Global cache hit ratio versus Average access time

Fig. 3. Global cache hit ratio versus Average access time

In Figure 2, we have fixed the lc and nc values 0.2 and 0.1 respec-
tively and observed the performance of the algorithms by varying
the gc values from 0.1 to 0.6. We can observe that for gc values 0.1
and above the proposed APMC performs better than the SP.
In Figure 3, we have fixed lc and nc values as 0.3 and observed
the performance of the algorithms by varying the gc values from
0.1 to 0.3. For the gc values 0.1 and above the proposed algo-
rithm (APMC) performs better than the speculation-based algo-
rithm (SP).
We can observe similar trends in Figures 4 and 5.

3



International Journal of Computer Applications (0975 - 8887)
Volume 121 - No.3, July 2015

Fig. 4. Global cache hit ratio versus Average access time

Fig. 5. Global cache hit ratio versus Average access time

4.3 Simulation Results
We have conducted simulation experiments for the proposed and
and anticipated parallel processing-based algorithm. We have fixed
the number of files available in the DFS, the number of cache
blocks maintained in the local, nearby and global caches and varied
number of blocks available in the file to measure the performance.
We can see the performance of the proposed algorithm (APMC)
and the speculation-based algorithm proposed in the literature (SP)
in Figure 6. Here, we have fixed the number of files present in the
DFS as 50, capacity of local and nearby caches as 100 blocks and
capacity of global cache as 1000 blocks. The number of blocks
present in the files are varied from 25 to 100. We can observe that
the proposed APMC algorithm requires less average read access
time than SP for all the cases.
The performance of the proposed APMC and SP algorithms is de-
picted in Figure 7 for a different scenario. Here, we have fixed the
number of files present in the DFS as 50, capacity of local and
nearby caches as 200 blocks and capacity of global cache as 2000
blocks. We have varied number of blocks present in the files from
25 to 100 and observed the performance. We can observe that,
APMC requires less average read access time than SP for all the
cases.
Figure 8 shows the performance of the proposed algorithm
(APMC) and SP algorithms. Here, we have fixed the number of
files present in the DFS as 50, capacity of local and nearby caches
as 300 blocks and capacity of global cache as 3000 blocks. We have
varied number of blocks present in the files from 25 to 100 and ob-

Fig. 6. Number of blocks versus Average access time.

Fig. 7. Number of blocks versus Average access time.

Fig. 8. Number of blocks versus Average access time.

served the performance. We have observed that APMC requires less
average read access time than SP for all the cases.
We can observe similar trends in Figures 9 and 10.

Overall, we conclude that the proposed algorithm performs bet-
ter than the speculation-based algorithm proposed in the literature.
This performance enhancement is due to the usage of multi level
caches and anticipated parallel processing.

4



International Journal of Computer Applications (0975 - 8887)
Volume 121 - No.3, July 2015

Fig. 9. Number of blocks versus Average access time.

Fig. 10. Number of blocks versus Average access time.

5. CONCLUSION
Distributed file systems are used to provide scalable storage so-
lutions in cloud computing systems. Improving the performance
of the read operations in the distributed file systems is one of the
important research issues. In this paper, we have proposed an an-
ticipated parallel processing-based read algorithm for improving
the performance of the distributed file system by considering the
presence of multi level caches. We have done simulation experi-
ments and carried out mathematical analysis. The results indicate
that the proposed algorithm performs better than the speculation-
based algorithm proposed in the literature. Modern computer sys-
tems which are used in distributed environment support multi-core
processors which provide abundant processing power and hence
implementation of our algorithm in distributed file systems is fea-
sible. As a part of future work, we wish to implement the proposed
algorithm in Hadoop distributed file system to prove its efficiency.

6. REFERENCES
[1] B. S. S. X. Chen, Y. Data access history cache and asso-

ciated data prefetching mechanisms. In Proceedings fo the
AMC/IEEE Conference on Supercomputing, Reno, NV, pages
1–12, November 2007.

[2] M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A. Patterson.
Cooperative caching: Using remote client memory to improve
file system performance. In Proceedings of the 1st USENIX
Conference on Operating Systems Design and Implementation,
OSDI ’94, Berkeley, CA, USA, 1994. USENIX Association.

[3] V. O. G. S. F. Isaila, G. Malpohl and W. Tichy. Integrating col-
lective i/o and cooperative caching into the clusterfile parallel
file system. In In the 18th annual international conference on
Supercomputing, page 5867, June 2004.

[4] S. Jiang, F. Petrini, X. Ding, and X. Zhang. A locality-aware
cooperative cache management protocol to improve network
file system performance. In Distributed Computing Systems,
2006. ICDCS 2006. 26th IEEE International Conference on,
pages 42–42, 2006.

[5] W.-k. Liao, K. Coloma, A. Choudhary, L. Ward, E. Russell,
and S. Tideman. Collective caching: application-aware client-
side file caching. In High Performance Distributed Computing,
2005. HPDC-14. Proceedings. 14th IEEE International Sym-
posium on, pages 81–90. IEEE, 2005.

[6] E. B. Nightingale, P. M. Chen, and J. Flinn. Speculative execu-
tion in a distributed file system. In Proceedings of the Twentieth
ACM Symposium on Operating Systems Principles, SOSP ’05,
pages 191–205, New York, NY, USA, 2005. ACM.

[7] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and
J. Zelenka. Informed prefetching and caching. In Proceedings
of the Fifteenth ACM Symposium on Operating Systems Prin-
ciples, SOSP ’95, pages 79–95, New York, NY, USA, 1995.
ACM.

[8] P. Sarkar and J. Hartman. Efficient cooperative caching us-
ing hints. In Proceedings of the Second USENIX Symposium
on Operating Systems Design and Implementation, OSDI ’96,
pages 35–46, New York, NY, USA, 1996. ACM.

[9] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop
distributed file system. In Mass Storage Systems and Tech-
nologies (MSST), 2010 IEEE 26th Symposium on, pages 1–10.
IEEE, 2010.

5


	Introduction
	Architecture of Distributed File System
	Proposed Algorithm
	Assumptions
	Proposed Algorithm

	Performance Evaluation
	Assumptions
	Mathematical Analysis
	Simulation Results

	Conclusion
	References

