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ABSTRACT

In this paper, Adomian decomposition method is applied to
solve system linear fractional integro-differential equations.
The fractional derivative is considered in the Caputo sense.
Special attentions are given to study the convergence of the
proposed method. Finally, some numerical examples are
provided to show that this method is computationally
efficient.
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Adomian decomposition offers certain advantages over
routine  numerical methods. Numerical methods use
discretization which gives rise to rounding off errors causing
loss of accuracy, and requires large computer power and time.
Adomian decomposition method is better since it does not
involve discretization of the variables hence is free from
rounding off errors and does not require large computer
memory or time. There are only a few techniques for the
solution of fractional integro-differential equations, since it is
relatively a new subject in mathematics. These methods are:
Adomian decomposition method ([2], [6], [7], [9]. [10]),
Iterative Decomposition Method [8], the collocation method
[3] and fractional differential trams form method ([1],[11]). In
this study presented, fractional differentiations and integration
are understood in Remann - Liouville sense.

The paper has been organized as follows. Section 2 gives
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1. INTRODUCTION

The Adomian decomposition method was first proposed by
Adomian and used to solve a wide class of linear and integral
differential equations. The method is very powerful in finding
the solutions for various physical problems. Some important
problems in science and engineering can usually be reduced to
a system of integral and fractional integro-differential
equations. Integro-differential equations has attracted much
attention and solving this equation has been one of the
interesting tasks for mathematicians. In this paper we try to
introduce a solution of system of linear fractional integro-
differential equations in the following form:

D%uy(r) = g1(x) + f;kl(j:?t, uq (t), ua(t), ..., up(t))dt,

D%us(x) = go(x) + f; Eo(z,t,uy (t), ug(t), ..., upy(t))dt,

(1.1)

D%uy(x) = gp(x) + ff kp(z,t,u (), ua(t), ..., up(t))dt,

(xo) =u45, i=1,2,...,p, =0,1,...,n; — 1. (1.2)

notations and basic definitions. Section 3 consists of main
results of the paper, in which Adomian decomposition of the
system of fractional integro-differential equations has been
developed. Some illustrative examples are given in Section 4
followed by the discussion and conclusions presented in
Section 5.

2. BASIC DEFINITIONS

In this section we introduce some basic definitions and
properties of fractional calculus.

Definition 2.1 A real function f (x), x>0, is said to
be in the space C,, aeR, if there exists a real number
p > cr, Such that £ (x) = xP fl(x)' where
fl(x) IS C[O,oo).
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(m) (¢
f () dt, 0<m-l<a<m,

Definition 2.2 A real function f (X), X> 0, is said to f
r‘(m_a) O(X t)a m+1

. K .
beinthespace CX, k € N, if fkeca_ D*f (x)=
d™f(x) CmeN
Definition 2.3 | ¢ denotes the fractional integral operator of daxm a=mel, 99
order o in the sense of Riemann-Liouville, defined by (2.2)
Or
f(t
( ) o >0,

.[ 1-o (2.1) m
17 (x) = F(a) (x—1) Dt (x)=1" 9 f(x), m=1,2 - .09
f(x), a=0, dx
Hence, we have the following properties:
Definition 2.4 Let f ecinl, m < N. Then the

Caputo fractional derivative of f (X), defined by

WDI“1PF(X)=17"P 1 (x)=17171 (x).

I—‘(y—l—l) o
r‘(a—l—y—l—l) ’

@D [ 17f (x) | = f(x).

(D17 D*f (x)|= f(x)_mz_lfk(o)ﬁ, O<m-l<a<meN.
k=0 k1

@)19x” =

J (2.4)

3. ADOMIAN DECOMPOSITION D% is the operator defined as (2.4). Operating with J% on
METHOD FOR SOLVING THE SYSTEM both sides of the equation (1.1) as follows:

Consider equations (1.1) with initial condltlons (1.2) where
s — k
up (z) = 30 .{ ) (07) & —|—J“gl(1 —|—J“f ky(z, t,uy (), ua(t), ..., up(t))dt,

ug(x) = 7t uS(0F) Zr 4 Toga(x) + T [ k(2 uy (£), ua(t), ..., up(t))dt,
4 X (3.1)

up () = 5y ub(0%) 2+ Jogy(x) + T [7 ky(@.t,ua (£), ua(t). ..o up(t))dt

\

In which

-

Fi(x) = S0 i (o+) =0 + Jog, (=),

Fa(x) = S0 wl 0oy =5 4+ Toga (o),

4 . (3.2)

ﬂl—- k‘:' [
IFp(x) = k:ol “g‘? (0 T +— T gp(x),

N

by substituting from (3.2) into (3.1), we get
[ wi(x) = fi(x) + T [2 k(2 b, un (1), ua(t), ..., up(t))dt,

uz(x) = fol(x) + J= f: Ea(x,t, wy(t), ua(t), ..., up(t))dt,
(3.3)

&%

Uup(x) = fplx) + J* ff Ep(x,t,w (), ua(t), ..., up(t))dt.

10
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Adomian decomposition method decomposed the solution of
ui(x) as the following:

ey (=) — > T o reaa (o),
() = > 77 o ez (),

- (3.4)
te, () — SSTT ., wes ().

by substituting from (3.4) into (3.3), we get

[ CZoun(x) = filx) + I [ k(D (1, i (), uai(t), ooy upi(t))dt,
oo b o0
Yoo uai(x) = falz) + T [ ko (3o (.t ugi(t), ugi(t), .., upi(2)))dt,
3 : (3.5)
oo . b oo
Z:’:D H‘Pi(I) - fP(I) + J fa kP(Z:‘:D(I: L, uli(t)r u?i(t)s seey H‘Pi(t)))dt:
We set
wio(x) = fi(x) = S0, s (07) Zr + J=gio(x).
Uz (x) = fa(x) = Z?:}l 1‘—"{2}5:‘ (0F) :;';—;ub + JFgzol(x),
4 . (3.6)
Upo () = fplx) = 37000 wld (0F) 27 + T%gpo(x),
And
[ a1 (:I‘) — J Jr‘; kl{::[::' L -ul'D(t}:- u?o{t)" ] uPD(t})dtﬂ
o1 () — T* [P ka(x, t, m10(2), 20 (1), ... 1po(t))dt,
3 . (3.7)
Up1 (I} = J=* .Jr; Cp (I= t:- W0 {.’t}" Uzo(t)z wees L {t] }dtz
And also we take
[ (x) = T [T R (ot wn < (8), vz < (E), ., g, < (2)) dE,
-HZ,S—FI(I) = J= Jr-; k?{xﬁ t’: '?J..]_,S(t}= -uz,s(t)= .- up,s(t}]dt"
4 . (3.8)
tp a1 (1) = T [7 cp(a, t,ur o (£), w2 s (), ..y 1y < (£))dE,
or generally we have recursive relations as follows:
wio () = S50 w5 (00) 2 + Tvgio(x),
i a1 () = T* [P hi(a,t, 1, o (£), o, o () ooy tip s (E))dL.

i=1,2,3,...p s=1,2,3,.....

11



4. NUMERICAL RESULTS

In this section, we have applied Adomian decomposition
method for solving system of linear fractional Integro-
differential equations with known exact solution. All the
results are calculated by using the symbolic computation

D%m(iﬂ) = g;rs \/: H ) E
D%yz(ir) = g 3 \/‘?_T I'Gz) +%
subject to g5(0) = =1, y(0) = 0 with the exact solution yy(x) =

The adomian decomposition method suggests that by applying

the inverse operator D = J which is the inverse of to
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software Maple 16.
Example 4.1

Consider the following system of fractional integro-
differential equation:

+ / 27 t(y1(t) + ya(t))dt, (4.1)
3 4 / 2 (ya (6) — ya(0))dt, (4.2)
-1, ple)=

both sides of (4.1), (4.2) and by using equation (2.4) we have

ok , 3T 2 ) 1
) =315y 00 5+ 80T i et o i) sy, 3)
o . 2) . L
) = 009 S + s OE IR L 3By s | - mw. @
By assuming
313%\/§F2 a1 QI%\/EFE 9 D
i =1+ IO il = RN il

And with starting of the initial approximation

fi(x) and y2o0(x) = fa2(x), we have

=2 (21o(t) — w2 () )de,

Yiol(xr) =

io(xr) —m = — 1 — 0. 11077321680 F
wool(x) — 2 4+ 0.3308723697x =

i () = TE XN fgl 2 (2o l(t) + w20(f))dt,
11 () = 0.1503413208x 2,

o () = —0.3865177110x "5

1z (a) — TE X fc.l 2 t(yllif}_ —+ w1 () )dE,
o) = —0.036165456 1505

Yoo (a) = J%Afgl 3 (211 () — 221 (F) ) dE,
Yoo (x) = 0.0567735935 1 =

wia(x) = J%Afgl 20 t(ylz':f}_—l— Yoo () )dE,
t1z(ax) — 0.0002067T363507Tx =

ez (o) = J%Afc,l w3 (212(t) — w2=2(t))dt,
os(x) = —0.01049300858a 5 |

12
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hance > 7 ,w#i:(x) = 10 + 211 + 12 + vz + ...

And Z;;D Y2: () = Y20 + Y21 + Yoo + Y2z + . - .

The approximation solution for a« = 2 /3 is

5

ilr) = o — 1 4+ 0.,.0036004348 x5 |

y1(x) = 22 — 0.0003647564x 5 .

Table 1, figure 1 and figure 2 show the comparison between
approximate and exact for Adomian decomposition method.

Table 1.
x | Exact y1 | Exact yo Approx Approzx ys Error Error ys
0 -1 0 -1 0 0 0
0.1 -0.9 0.01 -0.8999222371 | 0.009999921416 | 0.0000777629 | 7.8584 x 103
0.2 -0.8 0.04 -0.7997531181 | 0.03999900204 | 0.0002468819 | 9.9796 x 10~*
0.3 -0.7 0.09 -0.6995147399 | 0.08999558652 | 0.0004852601 | 0.00000441348
0.4 -0.6 0.16 -0.5992161989 0.1599873267 | 0.0007838011 | 0.0000126733
0.5 -0.5 0.25 -0.4988630903 0.2499712772 | 0.0011369007 | 0.0000287228
0.6 -04 0.36 -0.3984593951 0.3599439523 | 0.0015406049 | 0.0000560477
0.7 -0.3 0.49 -0.2980080920 0.4899013655 | 0.0019919080 | 0.0000986345
0.8 -0.2 0.64 -0.1975115867 0.6398390592 | 0.0024884133 | 0.0001609408
0.9 -1 0.81 -0.09697185465 | 0.8097521292 | 0.0030281453 | 0.0002478708
1.0 0 1.00 0.0036094348 0.9996352436 0.003609435 | 0.0003647564
Dl L, d L) » -
o2 0.2 0.6 0.8 s
x > s
-
-~
o2 ot
~
B
g
~
O.4 - P
-
=
O .6- /'/
g
/
e
0_S- //
ner e
- 5
s
S
I """ approxmmate (AN — — cxact(.AD.\,I)l

Figure 1: Numerical results of Example 4.1.
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Figure 2: Numerical results of Example 4.1.

Example 4.2

Consider the following system of fractional integro-
differential equation:

I 3y/_ 2 1
Din() = g T EIEEARD L Lot [t i+ mepa, @
1 (3)(8z -t
D) = 22 PTDEZD L [ s ) - mioar, @9

subject to y1(0) =0, 15(0) = 0 with the exact solution 4 (z) = 2 - 2%, yy(z) = 22 - 1.

The adomian decomposition method suggests that by applying

-
the inverse operator D = J which is the inverse of to
both sides of (4.7), (4.8) and by using equation (2.4) we have

Eoy 22t T(3)(-154 3% s !
) =Sy st T TR b byt [ o, 09

zk (23:1\/_F%8x— -

wle) = Sy (0) 5+

1
J%(%\/EHJ% /0 VI B (ui(t) - w(t))dt, (4.10)

Substituting from equation (3.4) into equations (4.9) and
(4.10) we get:

Zyu =0+Ji iﬂm(g)?ﬂ Sh I L /Ol(m)(i(yn(r)+yzl<t)))dt. (1)
Zym ~0 4 AGT RO, ikt [ A ) -, (412
By assuming
w{r e o1  nVIGR-5) o 1
1 J]—‘I'—I. l‘:ﬁ——‘l - Ji{=y/1),
filr)=J L : ) (90 D b Al (5 X ) (15\”

and with starting of the initial approximation

to(xr) = f1i(x) and yo0(x) = fz2(x), we have

yio(z) = = — 2% — 0.054403262632>/* — 0.0518126310827/4,
y2o0(r) = 22 —  — 0.10429238052°/4,

14



() =
2 () =

Yoy () =
oy (o) =

tie(ax) =
'.9"12{93) =

Yoo (a) =
Yoz (a) =

tial(xr) =
tial(xr) =

Yoz (x) =
Yoz () =

Yral(r) =
Yo () =

thsl(x) =
Yas5(x) =

Yie(xr) =
Yo (o) =

trl(ax) =
Yo7 () =

isl(r) =
Yas(xr) =

hance
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TEN [ (2 + ) (v10(t) + yzo(t))dE,
— 0017071384132+ 0_008050048391:}:7K4,

TEX Jrol Vv B2 (1o () — oo (E))dE,
0.1036071206>/1,

TEXN Jrol (r + ) (w11 () + w=2n (2))dE,
0.02550636332+3"1 + 0.020744201207/4,

TEXN [ T 2 (1 (B) — w2 (2))dE,
0.023954861204:5/1

TEX fc.l (r + ) (12(f) + we=(F))dE,
0.008126773648x3/1 4+ 0.007164T745169x7/ 1,

TEXN [ VT 2 (w12 (E) — we=())dt,
0.01316380036,>/1

0.00970142884023/* + 0.00814485512027/%,
0004522005183 x°5/ %,

0063530958133/ 4

.003281575848x5/1,

D051820552153/4

0038637150283/

0015068518135/,

0029846325383/ 4

0

0

0

0
0.00161260825025/4
0

0

0

0

0010685615245/ 4

And E:ﬁo t2:i(x) = Y20 + W21 + Yoz + Yoz + oo ..

The approximation solution for « = 3,/4 is
() = x — x® — 0.009665682203"1 _ 0.008197480771x"/*,

() = 2 — 2 — 0.0035544239,5/4,

Table 2, figure 3 and figure 4 show the comparison between
approximate and exact for adomain decomposition method.

+ 0.0054132285424,7/4

4+ 0.004387TRG58385,7/1

+ 0.0032791122209,7/1

—+ 0.002530500003x7/4,

> :?io i) = 1o + 11 + iz + wis + ...

Table 2.

r | Ezxacty, | Exact y, Approz Approz iy Error 1y, Error y,

0 0 0 0 0 0 0

0.1 0.099 -0.09 0.09713539751 | -0.09019987994 | 0.00186460249 | 0.0001998799
0.2 0192 -0.16 0.1886189631 | -0.1604753973 | 0.0033810369 | 0.0004753973
0.3 0273 -0.21 0.2680850392 | -0.2107891704 | 0.0049149608 | 0.0007891704
0.4 0336 -0.24 0.3204801734 | -0.2411306917 | 0.0065108266 | 0.0011306917
0.5 0375 —0.25 0.3668156253 | -0.2514944512 | 0.0081843747 | 0.0014944512
0.6 | 0384 -0.24 0.3740575007 | -0.2418769741 | 0.0099424903 | 0.0018769741
0.7 0357 -0.21 0.3452116030 | -0.2122758402 | 0.0117883970 | 0.0022758402
0.8 0288 -0.16 0.2742764486 | -0.1626892533 | 0.0137235514 | 0.0026892533
0.9 0171 -0.09 0.1552515251 | -0.00311581998 | 0.0157484749 | 0.0031158200
1.0 0 0 -0.01786316306 | -0.0035544239 | 0.017863163 | 0.003554424

15
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Figure 3: Numerical results of Example 4.2,
°® = 5 s
] \ 02 0.4 . 0.6 0.S F
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e
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25_ e i g
[ ----- approxmiate (ADN) — — exact( AD\I)I

Figure 4: Numerical results of Example 4.2.

Example 4.3
Consider the following system of fractional integro-
differential equation:

5 1q _ 1
Dhyu(r) = B2t Smn) ISz 1) | 88 | 2t = @), @13

125 2% sin(3m) T(%) 67 13 !
D= 5) -— = — +t t t))dt, (4.14
ya() = o0 S 6~ 31+ [ @00+ w3 (11

subject to y1(0) =0, yo(0) = 0 with the exact solution y (z) = 2* - 2%, y(z) = La?.

The adomian decomposition method suggests that by applying

-
the inverse operator D =J which is the inverse of to
both sides of (4.13), (4.14) and by using equation (2.4) we

have
2F y950% sn(in) T(4)(15z-11), !
wle)=Eyy )(0%, utk g;T nfs7) ; o) ))H (%IHJ /Qrf(yl(t)—yg(t))dt, (L15)

r (125x% sin(r) r(g)} (67 13
N W

L—I'-'—

Ik 1
wle)= 2 0% o+ et / )+ Oty (419

16
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Substituting from equation (4.2) into equations (4.15) and
(4. 16) we get:

542 % sin(im) T(2)(152 — 11 . !
th 25 2% sin(zm) ;J)( 5z ))-1_] (%T)—I—J / 9 (s () — yo(t))dt, (4.17)
= , 12525 sin(im) (2 . 67 13 s [
>ty =0+ sHEE G, gy B gt e+ w415
By assuming
(2505 sin(m) Tz -11) 4 83 L 1950% i) T(E). 4 67 13
1 =(JF— Ji V= 5 # Y - (R —
i) = (2 . JICD, Bl =) - F 4 )
and with starting of the initial approximation
tol(r) = f1(x) and yo(x) = f2(x), we have
olx) = 2 — xr? + 0.6188521902559/7
yzo(xr) = B2 — 0.4495008459xs — 0.32300552222%,
v () = T2 fg 27 t(v1o(t) — v20(t))de,

1) = —0. 131581574?:{?5,

y21(x) = J=A [ (x + ) (y10(2) + yoo(£))dt.
voq(x) = 0.3607635646x= + 0.2371121629x

o
5

viz(x) = T2 [ 22 t(y11 () — w21 (£))dt,
yi2(r) = —0.2694542668x % |

Yoo () = JTEA fol (r + ) (w11 () + woq (£))dt,
yoo(x) = 0.1420310210xF + 0.1681533800x7 ,

Yial(xr) = T3 fg 2x t(ylﬁ(f) — oo () ) dE,
v15(xr) = —0.20082470404-%

yoz(x) = TSN [ (2 4+ £)(v12(2) + yoo(£))dt,
yos3(x) = 0.02857769795xF + 0.02847628380x 7 |

y1a(r) = —0.084150096017x5 ,

youl(xr) = —0.02725731083x5 — 0.03774819730x 7,
[ H= ]

tis(xr) = —0.0017T7TR135567Tx =

Y25 (x) = —0.03624230409x 5 — 0.04595255620x % ,

yi6(x) = 0.03030810208x 3 |

Yoo () = —0.023327253040F — 0.02836318056x % ,

yi7(T) 0.02895092R96x % |

9 =3
frnd =1

Yo7 (o) 0.007292669174xr5 4 0.0088372116810x5
hance >°7 v1:(x) = y1o + y11 + v12 + v1a + - ..

And Z?ig Y2 (L) = Y20 + Y21 + Yoz + Y2z + ...

17
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The approximation solution for a« = 4/5 is
vil(r) = 2% — 2 — 0.0124167254x = .

v (r) = 222 + 0.0046075743xF + 0.0056911601x 7 .

Table 3, figure 5 and figure 6 show the comparison between
approximate and exact for Adomian decomposition method.

Table 3.
r | Eract Ezxact 35 Appror 1 Approz i, Error y Error iy
0 0 0 0 0 0 0
0.1 -0.009 | 0.01875000000 | -0.009196791836 | 0.01957045012 | 0.00019679184 | 0.00082045012
02| -0.032 | 0.07500000000 | -0.03268526897 | 0.07658553180 | 0.00068526897 | 0.00158553189
03] -0.063 0.1687500000 | -0.06442175687 | 0.1711602662 | 0.00142175687 | 0.0024102662
0.4 -0.006 0.3000000000 | -0.09838624516 | 0.3033074346 | 0.0023862452 | 0.0033074346
05| -0.125 0.4687500000 | -0.1285657680 | 0.4730307131 | 0.0035657680 | 0.0042807131
06| -0.144 0.6750000000 | -0.1480508450 | 0.6803311180 | 0.0049508450 | 0.0053311180
0.7 -0.147 0.9187500000 | -0.1535340665 | 0.9252086490 | 0.0065340665 | 0.0064586490
0.8 ] -0.128 1.200000000 -0.1363003883 1.207662867 | 0.0083093883 | 0.007662867
09| -0.081 1.518750000 | -0.00127172097 | 1.527693135 | 0.0102717300 | 0.008943135
1.0 0 1.875000000 -0.0124167254 1.885208734 0.012416725 0.010208734
= F, 02 ox ol o's |
% F.
\. ;..—
0.05- - \\ !‘{
£ iy
K 43
" £
N
0.10- 5'\1\ ({ =
]
S P
= i
-3:“§~ ) = '_/'_ i
O.15- = —"‘,
| """ approxmiate (ADMN) — — exact(.AD.\I)l
Figure 5: Numerical results of Example 4.3.
1.8 - /I
7
1.6 ot
&
1.4 o
4
1.2 o
e
1 £~ &
//
0.8 - L
0.6 _//
=
0.4 e
L
o2 i =
o _— . x v .
o o2 0.4 : 0.6 o8 1
I """ approxmiate (ADNI[) — — exact(.‘—'&D.\,I)I

Figure 6: Numerical results of Example 4.3.




5. CONCLUSION

In this article, Adomian decomposition method has been
successfully applied to find the solution of a system of linear
Fredholm fractional integro-differential equations are
presented in Table 1, 2 and 3, for differential result of x to
show the stability of the method. The approximate solution
obtained by Adomian decomposition method is compared
with exact solution.

6. REFERENCES

[1] A. Arikoglu, and I. Ozkol , Solution of fractional
differential equations by using differential transform
method, Chaos Soliton Fractals. 34(2007), 1473-1481.

[2] A. M. Wazwaz, The combined Laplace transform-
Adomian decomposition method for handling nonlinear
Volterra integro- differential equations, Appl. Math.
Comput. 216, 2010, pp. 1304-1309.

[3] E. A. Rawashdeh, Numerical of fractional integro-
differential equations by collocation method, Appl. Math.
Comput. 176 (2006) 1-6.

[4] I. Podlubny, Fractional Differential Equations, Academic
press, New York, 1999.

[5] I. Podlubny, 1999. Fractional differential equations: an
introduction to fractional derivatives, fractional

IJCA™ : www.ijcaonline.org

International Journal of Computer Applications (0975 — 8887)
Volume 121 — No.24, July 2015

differential equations, to methods of their solution and
some of their applications. New York: Academic press.

[6] Hashim I (2006). Adomian decomposition method for
solving BVPs for fourth-order integro-differential
equations. Journal of Computational and Applied
Mathematics 193, pp. 658"a_A _S664.

[71 R.C. Mittal, R. Nigam, Solution of fractional integro-
differential equations by Adomian decomposition
method, Int. J. of Appl. Math. and Mech, 4(2) (2008) 87-
94.

[8] O. A, Taiwo, and Odetunde, O. S., Approximation of
Multi-Order Fractional Differential Equations by an
Iterative Decomposition Method, Amer. J. Engr. Sci.
Tech. Res., 1 (2):1-9, (2013).

[91 Momani, S. and A. Qaralleh, 2006. An efficient method
for solving systems of fractional integro-differential
equations, Applied Mathematics and Computation, 52:
459-470.

[10] Momani, S. and M.A. Noor, 2006. Numerical methods
for fourth order fractional integro-differential equations,
Applied Mathematics and Computation, 182: 754-760.

[11] Rawashdeh, E.A., 2006. Numerical solution of fractional
integro-differential equations by collocation method,
Applied Mathematics and Computation, 176: 1-6.

19



