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ABSTRACT
The general fuzzy min-max neural network (GFMMN) is capable
to perform the classification as well as clustering of the data. In
addition to this it has the ability of learning in a very few passes
with a very short training time. But like other artificial neural net-
works, GFMMN is also like a black box and expressed in terms of
min-max values and associated class label. So the justification of
classification results given by GFMMN is required to be obtained
to make it more adaptive to the real world applications. This pa-
per proposes the model to extract classification rules from trained
GFMMN. These rules justify the classification decision given by
GFMMN. For this GFMMN is trained for the appropriate value
of θ. The min-max values of all the hyperboxes are quantized and
these are expresses in the form of rules. Each rule represent the
the kind of patteres falling in that hyperbox. These rules are read-
able and represents the trained network. Experiments are conducted
on eight different benchmark datasets obtained from UCI machine
learning repository. These results prove the applicability of the pro-
posed method.
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1. INTRODUCTION
Data mining (DM) is the process of extracting the meaningful
knowledge from huge databases [1]. Alternatively, it is also known
as knowledge discovery in databases (KDD). It is an application
area that can provide significant competitive advantages for making
the right bussiness decisions. Any specific data mining algorithm
is usually an instantiation of the model preference search compo-
nents. The more common functions in the current data mining pro-
cess include the following [2].

(1) Classification: It classifies a data sample into one of the several
predefined classes.

(2) Regression: It maps a data sample to a real-valued prediction
variable.

(3) Clustering: It maps a data sample into a cluster, which are ho-
mogenous groupings of data samples based on similarity met-
rics or probability density models.

(4) Association rules: It describes association relationship among
different data samples.

(5) Summarization: It gives a compact description for a subset of
data.

(6) Dependency modelling: It describes the important dependen-
cies among variables.

(7) Sequence analysis: It models the sequential patterns like time-
series analysis. In addition to this, the goal is to model the state
of the process that generates the sequence and also to extract
and report deviations or trends over time.

The proposed work presented in this thesis focuses on classification
task of data mining. Classification is one of the most frequent de-
cision making tasks performed by human beings. A classification
problem occurs when an object needs to be assigned to a predefined
class based on the number of observed attributes related to that ob-
ject [3]. Classification problems involve assigning a classCi from a
predefined set of classes C = {C1, C2..., CM} to an object which
is described as a point in a certain feature space. The problem of
designing a classifier is to find a optimal mapping in the sense of a
certain criterion that determines the classifier performance [4]. The
final goal is of designing a classifier that assigns a class label with
the smallest possible error across the whole feature space.
There are number of techniques that perform the classification like
k-nearest neighbor classifiers, Bayesian networks, decision trees,
support vector machines, genetic classifiers, artificial neural net-
works, fuzzy systems, etc. Following subsections describe each of
these techniques in brief.

1.1 k-Nearest Neighbor Classifiers
The k-nearest-neighbor (k-NN) classification is one of the most
fundamental and simple classification method. This classifier is
preferred when there is little or no prior knowledge about the dis-
tribution of the data [5].
It assumes all the instances are points in n-dimensional pattern
space and a distance measure is needed to measure the closeness
of the instances. It classifies an instance by searching itsk nearest
neighbors and selecting the most popular class among the neigh-
bors. The neighbors are taken from a set of instances for which the
class is known. This set of instances can be thought of as the train-
ing set for the algorithm and no explicit training step is required.
The drawback of this simple approach is the lack of robustness that
characterize the resulting classifiers and also the accuracy of the k-
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NN algorithm can be severely tainted due to the presence of noisy
or irrelevant features.

1.2 Bayesian Classifiers
Bayesian classifiers store the probabilistic summary for each class
and this summary includes the conditional probability of each at-
tribute value to the given class and also the probability of the
class i.e. to use Bayesian decision theory a priori probabilities and
the conditional probability density of all classes should be known
[6, 7]. This data structure describes a single decision boundary
through the instance space and when the algorithm encounters a
new instance, it updates the probabilities stored with the specified
class. This process is not dependent on the order of the training in-
stances. For the given test instance, the classifier uses an evaluation
function to rank the alternative classes based on their probabilistic
details and assigns the instance to the highest scoring class.
Both of the evaluation function and the summary descriptions used
in Bayesian classifiers suppose that all the attributes in the dataset
are statistically independent on each other. But this seems unreal-
istic for many natural domains; many researchers have concluded
that the algorithm will behave poorly in comparison to other induc-
tion methods.

1.3 Decision Trees
The decision tree is an example of a predictive model and it can
be viewed as a tree. In decision tree, each branch of the tree is a
classification question and the leaves of the tree are partitions of
the dataset with their classification. The approach of decision tree
is used in many areas because it has several advantages [8, 9].
In the late 1970s J. Ross Quinlan introduced a decision tree algo-
rithm named iterative dichotomiser 3 (ID3) [10]. ID3 picks predic-
tors and their splitting values based on the gain in information that
the split or splits provide. The information gain is the difference
of the amount of information that is needed for making a correct
prediction before and after the split has been made.
A main drawback of decision tree is its instability and also the
structure of the decision tree is very sensitive to the changes in the
datasets. To overcome this problem, some scholars have suggested
Fuzzy Decision Tree (e.g. FuzzyID3) [11, 12, 13] by utilizing the
fuzzy set theory.

1.4 Support Vector Machines
A support vector machine (SVM) is a discriminative classifier for-
mally defined by a separating hyperplane. In other words, given a
labeled training data, the algorithm outputs an optimal hyperplane
which categorizes new data samples. In the SVM, a m-class prob-
lem is converted into m two-class problems in which one class is
separated from the remaining classes [14]. For each of these two
class problem, the original input space is mapped into the multi di-
mensional dot product space called feature space and in this feature
space, the optimal hyperplanes that maximizes the generalization
ability is constructed.

1.5 Genetic Classifiers
A genetic algorithm (GA) is a search algorithm based on the me-
chanics of natural selection and natural genetics. It efficiently uses
the historical information to obtain new search points with target
enhanced performance. In each generation, a new set of artificial
individuals is created by using the information from the best of the
old generation. GA combines the survival of the fittest from the old

population with a randomized information exchange that helps to
form new individuals with higher fitness than the old ones.
The implementation of GA has some issues for selecting the
representation of chromosomes, population size, mutation rate,
crossover or mutation operators, termination criteria, etc. In addi-
tion to this, GA suffers with the drawback of having limited scala-
bility.

1.6 Artificial Neural Networks
Artificial neural networks (ANNs) are considered as simplified
mathematical models of human brain and they function as paral-
lel distributed computing networks. In this, computations are per-
formed by a dense mesh of computing nodes and connections.
These nodes operate collectively and simultaneously on all the in-
put data and due to this they are considered as a synchronous sys-
tem that gives possibility to speed up the calculations. The basic
processing elements of neural networks are called artificial neu-
rons, or simply neurons. Sometimes they are also called the nodes.
These nodes perform as summing and nonlinear mapping junctions.

1.7 Fuzzy Systems
Fuzzy set and logic theory [16] is one of the most prominent tools
to handle uncertainty in decision-making. The major advantages of
fuzzy system models are their robustness and transparency. Fuzzy
system modelling achieves robustness by using fuzzy sets which in-
corporates imprecision to system models. Also unlike some system
models like neural networks, the fuzzy system models are highly
descriptive.
Fuzzy logic and ANN are considered as complimentary rather than
competitive [17, 16]. This is because when the neural networks and
fuzzy systems are combined together, they join their advantages
and reduce their individual drawbacks. ANNs introduce its learn-
ing ability in the fuzzy systems and receive the interpretation and
clear way of knowledge representation from fuzzy systems. In this
way the disadvantages of the fuzzy systems are compensated by
the capabilities of the neural networks and vice versa. Due to this
reason the combination of the flexibility of fuzzy sets and the com-
putational efficiency of ANNs has created a great amount of interest
in pattern recognition problems [18, 19].
The fuzzy min-max neural network (FMMN) proposed by Simp-
son [20] is a special type of neuro fuzzy system that has high
efficiency compared to the other machine learning methods [21].
FMMN utilizes fuzzy sets as pattern classes and each fuzzy set is
an aggregate of fuzzy set hyperboxes. Each fuzzy set hyperbox is
an n-dimensional box defined by min and max point with a corre-
sponding membership function (MF). FMMN is used in wide range
of applications [22, 23, 24]. It has the capability of learning only in
few passes and it is online-adaptive.
Simpson [25] has proposed fuzzy min-max clustering neural net-
work (FMMCN). The pattern clusters are implemented as fuzzy
sets using a MF with a hyperbox core that is constructed from a
min point and a max point. The min-max points of hyperboxes are
determined by learning. He has presented results of clustering using
Fisher Iris data.
Gabrys and Bargiela [26] have proposed the general fuzzy min-max
neural network (GFMMN) that can be used for clustering and clas-
sification. This method uses supervised and unsupervised learning
within a single learning algorithm. They have presented limitations
of hyperbox membership function proposed by Simpson [20, 25]
and proposed the new MF. Additional features of the algorithm are;
(i) input patterns can be fuzzy hyperboxes or crisp points in the pat-
tern space, (ii) hyperbox expansion constraint has been modified
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and (iii) the parameter regulating the maximum hyperbox size can
be changed adaptively.
In [27], fuzzy hyperline segment neural network (FHLSNN) is pro-
posed and its performance is found superior than the FMMN al-
gorithm. In [28], fuzzy hypersphere neural network (FHSNN) is
presented wherein hypersphere instead of hyperbox is used to rep-
resent the fuzzy subset in the n-dimensional pattern space.
An improved version of basic FMMN based on the adaptive resolu-
tion classifier (ARC) technique is proposed in [29]. Unlike FMMN,
in this method the training result is independent on pattern’s pre-
sentation order and also the hyperbox expansion is not limited by a
fixed maximum size.
In FMMN, covering of the training data with hyperboxes is con-
strained to have their boundary surfaces parallel to the coordinate
axes of the chosen reference system. In [30], a more precise cover-
ing of each data cluster is obtained by rotating the hyperboxes with
a suitable local principal component analysis with the intention of
arranging the hyperboxes orientation in any direction of the data
space.
The drawback of FMMN of having low automation degree is re-
moved in [31] and the two novel learning algorithms for fuzzy
min-max neural classifiers are proposed namely the ARC and its
pruning version (PARC). ARC/PARC is characterized by a high au-
tomation degree and agrees to achieve networks with a remarkable
generalization capability.
The algorithm proposed in [32] improves the FMMN performance
by putting the thresholds on the dimension of the hyperboxes and
sensitivity parameters. Due to this the classification result does not
depend on the presentation order of the patterns in the training set,
and at each step, the classification error in the training set cannot
increase.
In [33], two new algorithms for classification and regression that
are based on Simpson’s FMMN are proposed.
A weighted FMM neural network presented in [34] assigns a
weight value to each of the dimensions of each hyperbox so that
membership can be assigned considering not only the occurrence
of patterns but also the frequency of occurrences within that di-
mension.
One of such method is given in [35]. It uses a combination of ex-
clusion and inclusion hyperbox sets to approximate the complex
topology of the data. In this, the inclusion hyperbox is the type of
hyperboxes that we have considered so far and represents data be-
longing to a class.
To overcome with the problem of overlapping area, the concept of
compensatory neurons (CNs) which are created dynamically is in-
troduced in fuzzy min-max neural network with compensatory neu-
ron (FMCN) [36].Because of this more number of hyperboxes are
created and this leads to a complex network structure and wastage
of time.
A fuzzy minmax neural network based on data core (DCFMN) is
given in [37]. A new MF is defined which considers the effect of
noise in the data, the geometric centre and the data core of the hy-
perbox. In DCFMN, instead of using the contraction process, a new
kind of neuron called overlapped neuron with its MF based on the
data core is proposed. Each of the overlapped neuron represents an
overlapping area of hyperboxes belonging to different classes.
Although the FMCN and DCFMN makes the use of special neu-
rons to deal with overlapping problem efficiently, these methods
cannot classify a high percentage of samples that are located in
overlapping regions correctly and also have some structural prob-
lems in their learning algorithms. These problems lead to increased
complexity and reduced efficiency. To overcome these problems, a
multi-level fuzzy min-max (MLF) classifier is proposed in [38].

Although all above mentioned neural networks gives high classifi-
cation accuracy, the knowledge gained by them is in terms of a large
number of numerical values and complex network architectures.
This knowledge is in a form that is not easily interpretable by hu-
mans beings [39]. To solve this problem, many rule extraction tech-
niques have been developed which gives the rules that portrays the
humanly understandable representation for neural networks [40].
In this paper the rule extraction technique from general fuzzy min-
max neural network given in [26] is proposed.
The organization of the paper is as follows. Section 2 describes
the general fuzzy min-max neural network. Section 3 gives the rule
extraction from GFMMN. Experimental results and discussions are
given in Section 4. Finally, the concluding remarks are given in
Section 5.

2. GENERAL FUZZY MIN MAX NEURAL
NETWORK

Following Subsections describe the general fuzzy min-max neural
network used for clas- sication proposed by Gabrys et al:

Fig. 1. 2-D hyperboxes created for two class-classification problem

Fig. 2. 3-D hyperbox structure

2.1 General Overview
The general fuzzy min-max classification neural network builds the
decision boundaries by creating fuzzy subsets of the n-dimensional
pattern space as given in Figure 1. Each of these subset is called the
hyperbox which is characterized by a pair of min-max points and
the MF. The 3-dimensional hyperbox structure with its min-max
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points is shown in Fig. 2.
Mathematically each hyperbox Bj is defined by

Bj = {Xh, Vj ,Wj , f(Xh, Vj ,Wj)} (1)

where Xh={x1, x2, . . . , xn} is the hth input pat-
tern, Vj={vj1, vj2, . . . , vjn} is the min point,
Wj={wj1, wj2, . . . , wjn} is the max point and f(Xh, Vj ,Wj) is
the MF.
The MF f(Xh, Vj ,Wj) for hyperbox Bj is represented as bj(Xh)
and its value is in the range 0 ≤ bj(Xh) ≤ 1, measures the degree
to which Xh falls outside of hyperbox Bj . Its value is always one
when pattern Xh falls inside or on boundaries of Bj and decreases
as the pattern goes away from that hyperbox.
Due to the fact that the fuzzy membership function proposed by
Simpson and used in FMMN algorithms can assign a relatively
high membership value to an input pattern which is quite far from
the class prototype, Gabrys et al. have proposed new membership
function that is defined as

bj(Xh) = min
i=1...n

(min([1− f(xuhi − wji, γi)],

[1− f(vji − xlhi, γi)])) (2)

where

f(r, γ) =

{
1 if rγ > 1
rγ if 0 ≤ rγ ≤ 1
0 if rγ < 0

where Xh = [Xl
h,X

u
h ] is the hth input pattern in a form of

lower, Xl
h, and upper, Xu

h , limits vectors contained within the n-
dimensional unit cube, Vj = {vj1, vj2, . . . , vjn} is the min point
forBj ,Wj = {wj1, wj2, . . . , wjn} is the max point forBj , and γi
is the sensitivity parameter that controls how fast the membership
values decreases as the distance between Xh and Bj increases.

2.2 GFMMN Architecture
The architecture of GFMMN consists of three layers of nodes, as
shown in Fig. 3. This architecture grows adaptively to meet the

demands of the problem. It consists of an input layer (FA), hy-
perbox layer (FB) and the output layer (FC). The input layer has
2∗n-input nodes, two for each of the n-dimensions of input pattern.
The output layer contains nodes equal in number to the number of
classes. The hyperbox layer which is also called the hyperbox layer
wherein, each node represents a hyperbox fuzzy set. All FA to FB

connections are the min−max points. The FB layer transfer func-
tion is the hyperbox MF defined in (2). The min and max points
are stored in matrices V and W respectively. The min point matrix
V is applied to the first n-input nodes representing the vector of
lower bounds of the input pattern and the max point matrix W is
applied to the other n-input nodes representing the vector of up-
per bounds of the input pattern. The connections between the FB

and FC nodes are binary-valued and are stored in matrix U . The
equation for assigning the values from FB to FC connections is

uji =

{
1 If Bj is a hyperbox of class ci
0 otherwise (3)

where Bj is the jth node in the hyperbox layer with j =
(1, 2, . . . ,m) and ci is the ith node in the output layer with i =
(1, 2, . . . , k). The output of the FC node represents the degree to
which input pattern Xh fits for class ci. The transfer function of
each FC node performs the fuzzy union operation on the appropri-
ate hyperbox fuzzy set values which is defined as

ci =
m

max
j=1

bjuji (4)

where bj is the membership value of Xh to the jth hyperbox and
uji is the binary value as defined in (3). Equation (4) gives the
membership value of pattern Xh to each of the ith class. This is
the soft classification decision given by GFMMN and can be used
wherever required. If hard decision is required then the maximum
value among all values of ci is set to unity.

2.3 Learning in GFMMN
Learning in GFMMN creates the collection of hyperboxes. Prior to
learning only input and output layer exists and the hyperbox layer
is constructed during learning by adding hyperboxes one by one.
When each input pattern Xh is presented, it is checked for the pos-
sible expansion of the existing hyperbox of the same class as that
of pattern Xh. If expansion is not possible then new hyperbox is
created. This continues till all patterns are finished. So the learning
process consists of four steps: initialization, expansion, overlaps
test and contraction. These are summarized as below

(1) Initialization: Before training starts Vj and Wj are initialized
with

Vj = 0 and Wj = 0. (5)

When jth hyperbox Bj is adjusted for the first time using the
input pattern, the min and max points of this hyperbox would
be

Vj = Xl
h and Wj = Xu

h . (6)

(2) Expansion: In this step the membership values of input pattern
Xh to all the hyperboxes of same class as that ofXh are calcu-
lated. The hyperbox with the highest membership value,Bj , is
selected and tested for possible expansion. The expansion test
is given by

∀i=1...n(max(wji, x
u
hi)−min(vji, x

l
hi)) ≤ θ (7)
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where 0 ≤ θ ≤ 1 is the user defined threshold value that deter-
mines the maximum size of the hyperbox. The larger value of
θ gives the small number of hyperboxes and small value gives
the large number of hyperboxes. If the expansion condition for
hyperbox Bj is satisfied then it is expanded by adjusting min
and max points in each dimension i by using the equations

vnew
ji = min(voldji , x

l
hi) ∀i = 1, 2, . . . , n, (8)

wnew
ji = max(wold

ji , x
u
hi) ∀i = 1, 2, . . . , n. (9)

If neither of the existing hyperboxes can expand to include the
input pattern, then a new hyperbox is created.

(3) Overlap Test: After expansion of the hyperbox Bj , its over-
lap is tested with each different class hyperbox Bk. For every
dimension i, if any one of the following four case is satisfied
then overlap exists between two hyperboxes. With δold = 1
initially, the four test cases and the corresponding minimum
overlap value for the ith dimension are as follows.

Case 1 : vji < vki < wji < wki,

δnew = min(wji − vki, δold). (10)

Case 2 : vki < vji < wki < wji,

δnew = min(wki − vji, δold). (11)

Case 3 : vji < vki ≤ wki < wji,

δnew = min(min(wki − vji, wji − vki), δold). (12)

Case 4 : vki < vji ≤ wji < wki,

δnew = min(min(wji − vki, wki − vji), δold). (13)

If δold − δnew > 0, then ∆ = i and δold = δnew. If not,
the testing stops and the minimum overlap index variable is set
to indicate that the next contraction step is not necessary, i.e.
∆ = −1.

(4) Contraction: If overlap between the hyperboxes exists and ∆
be the selected dimension for contraction, then by using the
minimal disturbance principle these hyperboxes are adjusted
by the following four cases corresponding to the overlap oc-
curred.

Case 1 : vj∆ < vk∆ < wj∆ < wk∆,

wnew
j∆ = vnew

k∆ =
wold

j∆ + voldk∆

2
. (14)

Case 2 : vk∆ < vj∆ < wk∆ < wj∆,

wnew
k∆ = vnew

j∆ =
wold

k∆ + voldj∆

2
. (15)

Case 3a : vj∆ < vk∆ ≤ wk∆ < wj∆

and (wk∆ − vj∆) < (wj∆ − vk∆),

vnew
j∆ = wold

k∆. (16)

Case 3b : vj∆ < vk∆ ≤ wk∆ < wj∆

and (wk∆ − vj∆) > (wj∆ − vk∆),

wnew
j∆ = voldk∆. (17)

Case 4a : vk∆ < vj∆ ≤ wj∆ < wk∆

and (wk∆ − vj∆) < (wj∆ − vk∆),

wnew
k∆ = voldj∆ . (18)

Case 4b : vk∆ < vj∆ ≤ wj∆ < wk∆

and (wk∆ − vj∆) > (wj∆ − vk∆),

vnew
k∆ = wold

j∆ . (19)

3. RULE EXTRACTION FROM GFMMN
All the techniques of rule extraction from ANN are grouped into
three approaches namely decompositional, pedagogical and eclec-
tic. In the decompositional approach, the activation values and
weights of the hidden layers of the neural network are analyzed.
The pedagogical approach treats the ANN as a black box and ex-
tract the rules only in terms of input and output relationships that
are understood by the ANN. Not all of the rule extraction tech-
niques fit in exactly one of these two categories, so there is a third
category called the eclectic approach which is the hybrid category
and it is based on internal architecture and/or weight vectors in a
trained ANN and input-output relationships.
The proposed classification model aims to extract the rules from the
GFMMN using eclectic category where each hyperbox layer node
is analyzed and the rules stating the global relationships between
input and output of the GFMMN are extracted. As the GFMMN
is trained using continuous and discrete attributes, the rule an-
tecedents are formed by using the conditions for both continuous
and discrete attributes.
For each hyperbox Bj , the min-max values are used to form the
rule conditions. Min-max values of all the hyperboxes are quan-
tized and due to quantization of the min-max values, the rules can
be described in words rather than real numbers and such rules are
more readable.The rule conditions of all attributes are connected by
logical ‘and’ operator to form an antecedent of if − then rules.
A quantization level Q is defined as the number of feature values
in the quantized rules. For example, with Q = 3, feature values are
described as low, medium or high in the fuzzy rules. Quantization
by round-off distributes, Q quantization points evenly, with one at
each end point given by

Vq =
q − 1

Q− 1
(20)

where q = 1, 2 . . . Q. This method then rounds off a min-max val-
ues to the nearest Vq value.

4. EXPERIMENTATION RESULTS AND
DISCUSSION

The experiments are conducted on eight different datasets found in
the UCI machine learning repository. The detailsof these datasets
regarding the number and type of attributes and number of patterns
can be obtained from the website of UCI machine learning reposi-
tory [41]. All these datsets are the good mixture of small number of
attributes, large number of attributes, continuous attributes and dis-
crete attributes etc. These datasets includes credit, iris, bupa liver
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disorder, heart disease, wine, thyroid, ionosphere and glass dataset.
Experiments are conducted on each of these datasets for θ = 0.1
to 1 with the step size of 0.01. Initially to observe the learning ca-
pability, percentage accuracy values for all of these datasets are
recorded by training them with 50% data and testing with the same
50% data.
The minimum, maximum and average values of percentage accu-
racy and number of hyperboxes are recorded in Table 4 and Table
4 respectively.

Table 1. Minimum, maximum and
average percentage accuracy for 50%

train-100%test data
Dataset GFMMN

Min Max Avg

Credit 78.26 78.84 78.72
Iris 94 97.33 95.58

Liver 55.94 81.74 62.23
Heart 80 81.85 81.14
Wine 86.52 91.57 89.58

Thyroid 82.79 85.58 83.64
Ionosphere 58.40 96.29 82.25

Glass 71.49 56.07 61.34

Table 2. Minimum, maximum and
average number of hyperboxes for

50% train-100%test data
Dataset GFMMN

Min Max Avg

Credit 262 334 276.9
Iris 3 39 10.3

Liver 2 106 21.4
Heart 94 135 107.6
Wine 3 89 228.4

Thyroid 3 38 10.2
Ionosphere 42 160 85.7

Glass 6 59 19

The rules are extracted for the maximum accuracy of 97.33% of the
iris dataset. This accuracy is obtained for the θ = 0.06 with total 34
hyperboxes. After quantization of min-max values of these hyper-
boxes, 16 duplicate rows were found. Rules for the remaining 18
hyperboxes are defines as given in Table 4. These rules are pruned
and it gives only four rules as given in Table 4.

5. CONCLUSION
General fuzzy min-max neural network has the capability to learn
the input data in a very few passes and when it is combined with
rule extraction then it can be easily adapted in sensitive applica-
tions. In this paper, we have proposed the rule extraction method
from general fuzzy min-max neural network. These rules justify
the classifcation decision given by GFMMN. For this, GFMMN is
trained for the input data and resulting min-max values are quan-
tized. Due to the quantization of the numeric min-max values, rules
are expressed in terms of words and these rules are more under-
standable.

Table 3. Unpruned rules extracted from GFMMN for iris dataset
with 100% train-100% test data size and θ = 0.1

Rules
1. If a1=Low and a2= Medium and a3=Low and a4=Low then Class=1
2. If a1=Low and a2=Low and a3=Low and a4=Low then Class=1
3. If a1=Low and a2= Low and a3=Medium and a4=Medium then Class=2
4. If a1=Low to Medium and a2=Medium and a3=Low and a4=Low then Class=1
5. If a1=Medium to High and a2=High and a3=Low and a4=Low then Class=1
6. If a1=Medium and a2=Medium and a3=Low and a4=Low then Class=1
7. If a1=Medium and a2= High and a3=Low and a4=Low then Class=1
8. If a1=Medium and a2= Medium and a3=Medium and a4=Medium then Class=2
9. If a1=Medium and a2=Low and a3=Medium and a4=Medium then class=2
10. If a1=Medium and a2=Low to Medium and a3=Medium and a4=Medium then class=2
11. If a1=Medium and a2=Medium and a3=Medium and a4=Medium to High then class=3
12. If a1=Medium and a2=Low and a3=Medium and a4=High then class=3
13. If a1=Medium and a2=Medium and a3=Medium and a4=High then class=3
14. If a1=Medium and a2=Medium and a3=Medium and a4=Medium3
15. If a1=Medium and a2=Low and a3=Medium and a4=Medium then class=3
16. If a1=Medium and a2=Medium and a3=High and a4=Medium then class=3
17. If a1=Medium and a2= Medium and a3=High and a4=High then class=3
18. If a1=Medium and a2=Medium and a3=High and a4=High to Medium then Class=3

Table 4. Pruned rules extracted from
GFMMN for iris dataset with 100%

train-100% test data size and θ = 0.1

Rules

1. If a3=Low then Class=1

2. If a4=Medium and a2=Medium then Class=3

3. If a2=Medium then Class=3

otherwise class=2
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