
International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.22, July 2015

17

Preference Analysis for Enumeration of the Most

Influential Attribute of Compute Nodes

R. Arokia Paul Rajan

Research Scholar
Department of Computer
Science & Engineering

Pondicherry Engineering
College

Pondicherry

S. Ganapathy
Professor

Department of Mathematics
Pope John Paul II College of

Education

Pondicherry

F. Sagayaraj Francis
Professor

Department of Computer
Science & Engineering

Pondicherry Engineering
College,

Pondicherry

ABSTRACT

Request assignment with compute nodes in a large scale

distributed computing environment is a challenging research

area. To devise a fitting solution, need to identify the

impacting parameters and pertinent constraints originating

from such an environment. This paper introduces a novel

method that helps to ascertain the level of influence of each

parameter among the set of parameters of cloud

configurations. This work used conjoint analysis, a

mathematical statistical method for enumerating the impact

level of the parameters. After identifying the most influencing

parameter, This work used Z-Score statistical method to

quantify the capacity of the compute node into the unit of

percentage. Based on this percentage split-off, the users’

requests are assigned to the compute nodes. Thus the nodes

are assigned to the requests based on their capacity

proportion. The focus of this paper is to present the method of

conducting conjoint analysis for the virtual machines’

configuration in cloud. This work is the first attempt that

applies conjoint analysis for identifying the impact level of

parameters in the cloud architectures.

General Terms

Distributed computing

Keywords

Cloud computing, Conjoint analysis, Part-worth utility, Z-

score

1. INTRODUCTION
Cloud is not a particular product, but a way of delivering IT

services that are consumed on demand, elastic to scale up or

down as needed, and follow a pay-for-usage model [1]. Cloud

applications receive requests from geographically widespread

global users. Request scheduling for such a large scale

distributed computing environment is always a difficult task.

Because, assigning the requests with compute nodes directly

impact the performance of the system. Before designing an

effective request scheduling algorithm, it is predominantly

important to identify impacting parameters and constraints

that are prevailing in the environment. Request scheduling is

influenced by the load balancing principles because, these

strategies actually binds the requests with the computing

resources [2].

This work focused on weighted task distribution load

balancing scheme that distributes the incoming requests onto

the computing resources in the cluster using weights. In this

principle, the system designer has to specify the weight of

tasks a server should receive relative to other servers. This

strategy is effective for the compute nodes in the cluster do

not all have the same capacity. For example, if one of three

nodes only has 2/3 capacity of the two others, it can be

represented as 3, 3, 2 as their weights. It means the first

compute node can be assigned with 3 requests, the second

node with 3 requests, and the last node with only 2 tasks, for

every 8 requests received. That way the server with 2/3

capacity only receives 2/3 tasks compared to the other servers

in the cluster. Figure 1 illustrates the weighted task

distribution scheme.

Fig 1: Weighted load balancing principle

Thus, weighted task distribution load balancing principle is

effective for request assignment with compute resources of

heterogeneous capacity. But the question is, based on what

parameter the weight can be determined?

This paper presents a novel approach of applying a statistical

method for identifying the most influencing parameter out of

a group of parameters. Conjoint Analysis is a mathematical

statistical technique used to assess the different contributions

aspects of a product or service make to individuals in the

purchasing decision [3]. This work used conjoint analysis for

enumerating the impact level of the parameters [4]. After

identifying the most influencing parameter, this work used Z-

Score or standard score statistical method to find the

measurement of a value’s relationship to the mean in a group

of values of that parameter [5]. This work converted this score

into a percentage. This percentage represents the capacity

proportion of a node. Now the consolidated request at a unit

time is split according to this percentage. According to the

percentage split-off, requests are assigned to the compute

nodes.

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.22, July 2015

18

The rest of the paper is organized as follows: Section 2

discusses different contributions on request scheduling

algorithms that are having major relevance with the proposed

strategy. Section 3 presents and elaborates major parameters

in the cloud architectures. Section 4 introduces conjoint

analysis with an illustration. Section 5 presents the method of

implementing conjoint analysis with the sample test data.

Section 6 describes the significance of identifying parameter

using conjoint analysis and section 7 discusses conclusion

with future expansion possibilities.

2. RELATED WORKS
This section discusses some of the relevant contributions on

conjoint analysis and load balancing algorithms in large scale

computing environments. The Empirical study analyze has

been carried out for evaluating whether revenue management

models can be applied to Cloud Computing. The conjoint

analysis reveals that operating system, price and support level

of an IaaS offer have a major impact in the customers'

selection process [6]. A qualitative study was carried out on

SaaS selection factors that takes into account both the

customers' and the vendors' perspectives. According to our

findings, selection factors differ across customer segments

[7].

There are three load balance policies used for request

scheduling in Cloud Analyst. The round robin algorithm

assigns the requests to the virtual machines in an orderly

manner. In throttled load balancing policy, each virtual

machine is assigned with a throttling threshold [8]. The

request scheduling algorithm inspired by the honey bees’

behavior strives to achieve a load balance among virtual

machines. The optimization of the throughput and waiting

time of the job queue is achieved by adjusting the priorities of

the tasks [9]. The work accommodated the demands of

different users by delivering the services at different levels of

quality. Therefore, the user is guaranteed of the services that

he seeks [10]. Queuing game model for service scheduling

schemes was compared and studied for job scheduling [11].

This principle maximizes the Cloud Computing platform’s

payoff through controlling the service requests, whether to

join or balk, based on the value of the CCP’s admission fee.

A dynamic balancing algorithm was introduced in which the

requests are queued to a computing node based on the

capacity of the machine [12]. Ant colony optimization

principle can be adoptable for workload distribution with the

pool of nodes in the cloud [13]. There is an improvised

Dynamic Round Robin (DRR) algorithm for energy-aware

virtual machine scheduling which yielded better results

comparing with greedy, round robin and power save strategies

[14].

3. IMPACTING PARAMETERS IN

CLOUD
To construct a request scheduler in cloud, it is essential to

enumerate various impacting parameters arises from its

structural components. Fig. 2 depicts the typical cloud

architecture with different components. Computing nodes,

users, requests, services and networks are the five constituting

domains from which a set of parameters has been derived

[15].

The virtual machines are the computing nodes in cloud based

applications. In fact, there are many influencing parameters

which are having a major impact over the system design [16].

This work designed the proposed requests scheduler principle

based on the following parameters [17]:

• Load capacity: Number of parallel sessions a node can

sustain. It is limited by the server’s hardware configuration as

well as the network operating system. This work considered

server’s load capacity as one of the limiting constraint in job

allocation.

• Storage capacity: Maximum Memory capacity of a node

which accommodates the service instances measured in terms

of bytes. It restricts the number of services instantiated into

the computing node.

• Geographical proximity: Groups the users’ requests and

assign them to the nearest geographically located server. This

algorithm adapted DNS based grouping of users.

• Preference of node: Many web service providers are

allowing the users to choose their server. This will have an

adverse effect with the actual principle of scheduling. This

algorithm has accommodated such options by directing those

requests to the preferred server. These guest requests are

served in the host server along with its own request's pool. But

they are appended with the queue of the same priority level.

• Suitability of node: There are services which requires

suitable server when get executed. Even if the job scheduler

assigns that particular request to some other sever node, that

request need to be re-directed to a suitable node. For example,

Windows Azure virtual machines with OLTP are suitable for

mission-critical transactional services.

• Participation policy of a node: A server may incline or evade

some requests due to the request’s geographical origin place

or type of data encompassed with the service. Those requests

are actually additional load of the newly assigned server.

• Processor speed: It is the measure of the number of

instructions executed per second by the computer termed in

megahertz or gigahertz.

• Demand: It is the consolidated number of requests collected

for a time frame between Ti to Ti+1. It directly signifies the

value earned by a service.

• User type: Based on the user classification prioritization can

be ascertained. Many cloud services, especially SaaS

application categories their users, namely free users,

subscribers and privileged users. According to their

classification, strategy for rendering the services is

differentiated.

• Arrival time: Time at which the request received by the

scheduler.

• Stay time: Time taken by the server to complete the

submitted job. This work assumes that burst time is distinct

for each request. This nature makes the proposed model fitting

to cloud applications where the same service is invoked by

different users but varying in burst time.

• Nature of request: Read and write are the primitive

operations performed for the requests in common. Certain

servers are specialized to perform those requests with better

performance. For example, ESX server family is an apt

selection for assigning I/O intense requests.

• Bandwidth: In a network, it is the rate at which the data is

transferred from one point to another in a particular unit of

time. Response time measurement involves the time delay

assessment which is influenced by the bandwidth.

• Connection cost: This is the measure of network costs

specifies how long a bit of data takes to travel across the

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.22, July 2015

19

network from one point to another, measured in

microseconds. It includes processing delay, queuing delay,

transmission delay and propagation delay.

• Traffic rate: Requests are highly populated at peak hours

which will be differing from region to region. Therefore the

mutual sharing of workload between peak-on servers with

peak-off servers will reduce the traffic congestion. The

proposed model not extended this exchange of workload

between the servers.

• Queue size: It is the request pool being populated with

compute nodes before execution of the requests scheduling

principle. The queue is unavoidable in any scheduling

strategy, but it is minimized in this model. Because, this

model assigned the work load to the servers proportionate to

the capacity of each computing node.

4. INTRODUCTION TO CONJOINT

ANALYSIS
Conjoint analysis or stated preference analysis is a statistical

technique that originated in mathematical psychology. Today

it is used in many of the social sciences and applied science,

including marketing, product management and operations

research [3].

Let's assume a customer goes to shop to buy an MP3 player.

The salesperson tells him, he can get the models 32 GB, off

the shelf or get a model 64 GB, but then he has to wait one

week for the delivery. Now the question is what is his

preference? His preference for one of the alternatives will

reveal the part-worth utilities of individual attributes. In this

example, attribute one is the memory size and attribute two,

the delivery time. When he chooses model A, it will show he

put higher emphasis on shorter delivery time. Choosing model

B will reveal he gave higher emphasis for large memory size.

So in a conjoint analysis, the part-worth utilities of individual

attributes, in this case, memory size and delivery time are

calculated based on the selection or ranking for the defined set

of combinations of attribute values.

5. CONJOINT ANALYSIS FOR

CLOUD PARAMETERS
Let us consider a simple cluster of virtual machine's

configuration panel of the cloud architecture. This work take

into consideration of only three attributes as presented in

Table 1. They are, operating system - Windows or Linux, load

capacity - 8 users or 6 users, and memory size - 4 GB or 8

MB.

Table 1. Chosen attributes

Factor Server1 Server2

Operating System

(OS)

Windows Linux

Load capacity

(SC)

8 Users 6 Users

Memory (Mem) 4 GB 8 GB

Combine all attributes with their individual values will result

in 8 different combinations as presented in Table 2.

The combinations are given as,

Table 2. Model derived from the attributes

Model Conjoint attributes

Model 1 Windows, 6 users, 32 GB

Model 2 Linux, 6 users, 32 GB

Model 3 Windows, 6 users, 64 GB

Model 4 Linux, 6 users, 64 GB

Model 5 Windows, 8 users, 16 GB

Model 6 Linux, 8 users, 16 GB

Model 7 Windows, 8 users, 64 GB

Model 8 Linux, 8 users, 64 GB

In order to solve this problem with a mathematical model,

code the levels by -1 and +1 for each. For example, Windows

is coded as -1 and Linux is coded as +1. Here the list of

combinations with their coding and this is called the design

matrix presented in Tab. 2. For k attributes, there are 2k

possible combinations. Using all possible combinations is

called a full factorial design shown in Table 3. Treat the 3

attributes as variables, each of them with the value of -1 to +1.

Table 3. Design matrix with levels

Model OS (X1) LC(X2) Mem(X3)

Model 1 -1 -1 -1

Model 2 1 -1 -1

Model 3 -1 1 -1

Model 4 1 1 -1

Model 5 -1 -1 1

Model 6 1 -1 1

Model 7 -1 1 1

Model 8 1 1 1

With a graphical notation presented in Fig. 5, each

combination is represented as a point in a corner of the cube.

One dimension of the cube shows OS, the second shows load

capacity and the third memory size.

Fig 5: Models represented as a cube

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.22, July 2015

20

The next step in a conjoint analysis is to ask the system

architect for ranking the possible combinations. For example,

to give 1 for most preferred combination, going down to 8 for

the least preferred combination as presented in Table 4.

Table 4. Ranking the preferences

Model Conjoint attributes Preference

Model 1 Windows, 6 users, 32GB 8

Model 2 Linux, 6 users, 32GB 7

Model 3 Windows, 6 users, 64 GB 4

Model 4 Linux, 6 users, 64GB 3

Model 5 Windows, 8 users, 16GB 6

Model 6 Linux, 8 users, 16GB 5

Model 7 Windows, 8 users, 64GB 2

Model 8 Linux, 8 users, 64GB 1

Use linear regression model function to describe the ranking

to find the part-worth utilities which is given as,

Ranking = Part-worth of attribute1 * Attribute1 level + Part-

worth of attribute2 * Attribute2 level + Part-worth of

attribute3 * Attribute3 level + Constant

Using multi-linear regression function, it is given as,

 321 *** XXXY MemLCOS (1)

The ranking is expressed as part-worth of attribute1, OS,

multiplied by the level for attribute 1, -1 or +1, plus the part-

worth of attribute 2, multiplied by the level for attribute 2,

plus part-worth of attribute 3 multiplied by level for attribute

3 plus a constant as given (1). As a mathematical equation, it

is shown in Table 5.

Table 5. Calculating part-worth utilities

Rank Part-worth utilities

8)1(*)1(*)1(* MemLCOS

7)1(*)1(*)1(* MemLCOS

4)1(*)1(*)1(* MemLCOS

3)1(*)1(*)1(* MemLCOS

6)1(*)1(*)1(* MemLCOS

5)1(*)1(*)1(* MemLCOS

2)1(*)1(*)1(* MemLCOS

1)1(*)1(*)1(* MemLCOS

Now, set up a system of linear equations, using the coded

combinations and the ranking for each combination given by

the investigator. This system of linear equations can be solved

as a multi-variant linear regression. In this illustration,

calculate the part-worth utilities in the following way: To find

the main effect for attribute 1, OS, take the average ranking

for all model combinations vs. X1 equals +1, that means,

Linux OS and subtract the average ranking of all

combinations vs. X1 equals -1. That represents Windows OS.

In the cube, it corresponds to the sum of the ranking values

for all points on the right side of the vertical plane, minus the

sum of ranking for all points on the left side of the vertical

plane as shown in Fig. 6.

Divide by 4 because, this work take the average of 4 points

each and set it in relation to total variation of x value of -1 to

+1. So divide by 2. As a result, part-worth utility for OS of

-0.5.

2]2018[
4

1
OS (2)

In the same way, proceed for the other two dimensions

to calculate part-worth utilities for load capacity and memory

size.

2]2012[
4

1
LC (3)

2]2610[
4

1
Mem (4)

Part-worth utilities are calculated from (2), (3), and (4) and

given in the Table 6.

Table 6. Design matrix with levels

Parameter Part-worth

Operating System

-0.5

Load Capacity

-1

Memory

 -2

The ranking calculated by substituting the values of Table 5

in (1) and is expressed in (8). It is observed that the model

function fits exactly the actual ranking presented in Fig. 8.

5.4*)2(*)1(*)5.0(321 XXXY (5)

To calculate the relative preference for each individual

attribute given in (8), The total range of variations for level

x=-1 and +1 which is 7 in the example. Calculating the

variations for the attributes (Xi) as follows,

15.0.1 OS

(6)

42.1 Mem (7)

21.1 LC (8)

Total variation 1 4 2 7 (9)

Therefore, relative preference for individual attributes can be

calculated as,

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.22, July 2015

21

Individual preference
Relative preference =

Total preference (10)

Using equation (13), the relative preference ares calculated

and the results are given in Table 6.

Table 6. Design matrix with levels

Parameter Relative preference

Operating System

14%

Load Capacity

57%

Memory

 27%

Figure 8 shows the comparison of the actual ranks given by

the respondents and the calculated rank by the linear

regression function.

Fig 8: Rank calculated by linear regression correlation

From the Table 3.5, it is concluded that the attribute with

highest percentage value reveals that it is the most influencing

attribute out of the other attributes. In this illustration, load

capacity is the most influential attribute comparing with

operating system and memory capacity.

6. USE OF CONJOINT ANALYSIS

RESULT
The conjoint analysis brings out the most influencing

parameter out of a set of configuration attributes. Based on

that parameter, percentage split-off is enumerated using Z-

score method. Standard score or Z-Score is a statistical

method to find the measurement of a value’s relationship to

the mean in a group of values of that parameter. This work

converted this score into a percentage. This percentage

represents the capacity proportion of a node. The total

incoming requests computed to split according to this split-

off. The request scheduler now assigns the proportioned

requests to each compute resource. The percentage split-off

represents the capacity proportion of the compute node in a

cluster of nodes. This work termed this improvised load

balancing principle as capacity proportioned compute nodes

load balancing principle. This work developed a simulator

namely Request Assignment Simulator (RAS) and conducted

experiments. The results are encouraging when compared

with round robin and throttling load balancing principles [18].

The consolidated requests at unit time are splitted according

to this percentage and then the split-off requests are assigned

to the compute nodes. Thus the nodes are assigned to the

requests based on their capacity proportion. The focus of this

paper is to present the method of conducting conjoint analysis

for the virtual machines’ configuration in cloud.

7. CONCLUSION
The main focus of this paper is to present a method how

conjoint analysis can be carried out to identify the most

influencing parameter. There are few approaches that are

adopted to enumerate the capacity of a node based on the

computing node’s attribute, The authors are confident that this

paper is the first attempt which incorporated conjoint analysis,

a mathematical psychology concept fitting to the cloud

deployments. Using the results enumerated by this work,

weighted task distribution load balancing scheme using

Z-Score can be extended as the future work. The designed

solution is more generic and can be extendable to grid, cluster

and P2P architectures. Also, careful inclusion of new

attributes for cloud architectures has got the potential to

extend the existing model in future.

8. REFERENCES
[1] Anthony Velte, Toby Velte & Robert Elsenpeter. 2009

Cloud Computing, A Practical Approach. McGraw-Hill

Education.

[2] Armbrust, M., Fox Griffith, A. R., Joseph, A. D., Katz,

R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A.,

Stoica, I. & Zaharia, M. 2009. Above the Clouds: A

Berkeley View of Cloud Computing. Retrieved

November 16, 2014, from the website of University of

California, Berkeley: EECS Department:

www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-

28.pdf

[3] Panneerselvam., R. 2014. Research Methodology (2nd

ed.). New Delhi: Prentice-Hall of India.

[4] Darius Singpurwalla, A Handbook of Statistics. An

overview of statistical methods. Available online at:

http://www.e-

booksdirectory.com/details.php?ebook=9440.

[5] Gupta., S. C., Kapoor, V. K. 2000. Fundamentals of

Mathematical Statistics (10th ed.). New Delhi: Sultan

Chand & Sons.

[6] Anandasivam, A., Best, P., & See, S. 2010. Customers'

Preferences for Infrastructure Cloud Services,

Proceedings of Twelfth Conference on Commerce and

Enterprise Computing. pp.144- 149.

[7] Polyviou, A., Pouloudi, N. & Rizou, S. 2014. Which

Factors Affect Software-as-a-Service Selection the

Most? A Study from the Customer's and the Vendor's

Perspective, Proceedings of the 47th Hawaii

International Conference on System Sciences. pp.5059-

5068.

[8] Wickremasinghe, B., Calheiros, R. N., & Buyya R. 2010.

CloudAnalyst: A CloudSim-Based Visual Modeller for

Analysing Cloud Computing Environments and

Applications, Proceedings of the 24th IEEE International

Conference on Advanced Information Networking and

Applications. pp. 446-452.

[9] Dhinesh Babu, L. D., & Venkata Krishna, P. 2013.

Honey bee behavior inspired load balancing of tasks in

cloud computing environments, Applied Soft

Computing, 13 (5), pp. 2292–2303.

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.22, July 2015

22

[10] Huankai Chen, F. Wang, Helian, N. & Akanmu, G. 2013.

User-priority guided Min-Min scheduling algorithm for

load balancing in cloud computing, Proceedings of the

National Conference on Parallel Computing

Technologies. pp. 1-8.

[11] Fuhong Lin, Xianwei Zhou, Daochao Huang, Wei Song

& Dongsheng Han. 2014. Service Scheduling in Cloud

Computing based on Queuing Game Model, KSII

Transactions on Internet and Information Systems, Vol.8

(5), pp. 1554-1566.

[12] Bo, Z., Ji, G., & Jieqing, A. 2010. Cloud loading balance

algorithm, Proceedings of the IEEE 2nd International

Conference on Information Science and Engineering. pp.

5001–5004.

[13] Nishant, K., Sharma, P., Krishna, V., Gupta, C., Singh,

K. P., Nitin, N., & Rastogi R. 2012. Load balancing of

nodes in cloud using ant colony optimization,

Proceedings of the 14th International Conference on in

Computer Modelling and Simulation. pp. 3–8

[14] Ching-Chi Lin, Pangfeng Liu &Jan-Jan Wu. 2011.

Energy-Aware Virtual Machine Dynamic Provision and

Scheduling for Cloud Computing, Proceedings of the

IEEE International Conference on Cloud Computing.

pp. 736-737.

[15] Kashyap, S. R. 2007. Algorithms for Data Placement,

Reconfiguration and Monitoring in Storage Networks,

Ph.D. dissertation report, University of Maryland.

[16] Ito, R. 2009. Job Scheduler Parameter Analysis for

Evaluation of Effectiveness. Proceedings of the 17th

Euromicro International Conference on Parallel,

Distributed and Network-based Processing. pp.62-69.

[17] Arokia Paul Rajan & R., Sagayaraj Francis, F. 2014.

Dynamic Scheduling of Requests Based on Impacting

Parameters in Cloud Based Architectures, Proceedings of

the 48th Annual Convention of Computer Society of

India, Advances in Intelligent Systems and Computing,

Springer International Publishing, Vol. I (248). pp. 513-

521.

[18] Arokia Paul Rajan, R. and Sagayaraj Francis, F. 2014.

Experimenting with Request Assignment Simulator

(RAS), International Journal on Computer Science and

Engineering, vol. 6, issue 11, 363-373.

[19]

IJCATM : www.ijcaonline.org

