
International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.21, July 2015

28

Survey on RTOS: Evolution, Types and Current

Research

Nandana V.

Dept.of Computer Science
LBS Institute of Technology for

Women
Trivandrum, India

Jithendran A.
QuEST Global Engineering

Services Pvt. Ltd.

Trivandrum, India

Shreelekshmi R.
Dept.of Computer Science

LBS Institute of Technology for
Women

Trivandrum, India

ABSTRACT

Traditionally in embedded systems, real time tasks are

implemented using a simple scheduling algorithm. Embedded

systems are mostly constrained in size and resource

requirements, hence scheduling algorithm is preferred. Due to

the remarkable advancement in the embedded area, numerous

real time operating systems (RTOS) have been developed in

the recent years. This paper presents the literature survey

which gives an overview about the evolution of real time

systems and its current scenario. Differences between RTOS

and General Purpose Operating System (GPOS) are listed.

The challenges faced by developers while using an RTOS are

also explored.

Keywords

RTOS, Evolution, GPOS

1. INTRODUCTION
RTOS is an OS that produces results in real time. Efficiency

of the system depends on the logical correctness as well as the

time at which result is produced. Unlike GPOS which focuses

on the amount of work done within a given time frame, an

RTOS is more focused on the criticality of timeliness. If the

result is delayed even for a millisecond, it is considered as a

system failure. Thus RTOS is mostly used for time critical

applications which require minimum buffering delays.

This paper is organized as follows. Initially the evolution of

real time systems is discussed with a description of rate

monotonic scheduling. This is followed by differences

between RTOS and GPOS and different types of RTOS.

Finally challenges and current research are listed followed by

conclusion. A number of surveys have been done before in

this area, but this is the first wherein the evolution, challenges

and the current research work in the area of RTOS is

consolidated.

2. EVOLUTION
The concept of real time systems was introduced almost

seventy years back. James Martin who was a famous British

information technology consultant and author, proposed one

of the first definitions for real time systems – A real time

computer system may be defined as one which controls an

environment by receiving data, processing them and taking

action or returning results sufficiently quickly to affect the

functioning of the environment at that time [1]. In the initial

years, there was no operating system developed that was

inherently real time. Whenever there was a requirement for a

real time task, the whole system, both the hardware and

software was designed in such a way that it is customized to

that particular real time task alone. The origin of real time

systems can be traced back to two major areas; operations

research and queuing theory [2, 3]. The roots of real time

systems are deeply embedded in these two areas. Operations

research is mainly involved in decision making process. By

the use of advanced analytical models, it helps in strategic

decision making. In the context of real time systems, it helps

us to decide which task should be run next by an operating

system. Queuing theory, as the name implies, deals with the

learning of queues. The amount of time an element should

wait in the queue, the average length of the queue etc is

studied in this area. Queues play a major role in real time

systems as a number of real time tasks will be ready to run in

a particular instance, all of which will be waiting inside a

queue. Operating system should use data structures in such a

way that it minimizes the waiting time of the tasks, and no

high priority task should be kept waiting while a lower one is

being executed.

In the past, computers used to execute tasks in batch mode.

Inputs are predefined and the system produces the complete

set of results after a particular amount of time. This model

was not suited in situations where inputs are constantly

changing and cannot be predicted beforehand. There came a

need to develop systems that produce time critical as well as

safety critical results. This led to the concept of real time

systems.

Whirlwind I was the first system that produced results in real

time [4]. It was developed in the late 1940s. During the cold

war, U.S. Navy required a flight simulator to train bomber

crews. The requirement was that the aerodynamics model

used by then system should be adapted to any plane. An

analog computer was developed initially which was huge and

inflexible. Later focus was shifted to digital systems. It took

three years to build the vacuum tube computer, which went

online on April 20, 1951. The computer takes control input

from pilots and updates a simulated instrument panel.

After three years, Navy lost interest but Air Force took over.

Air Force tried to use computers to help the task of ground

controlled interception, and Whirlwind was the prospective

candidate. Thus Whirlwind I directly led to the development

of Whirlwind II design which was used in Semi-Automatic

Ground Environment (SAGE). United States Air Force SAGE

air defense system was developed in 1957 [5]. SAGE helped

in capturing the bird’s eye view of the target area so that

bombers can easily target with less amount of time. Numerous

small images were captured from various radar sites and

unified by the real time system to produce one large image of

the area. Communication between sites was carried out

through teleprinters.

After Navy and Air Force, American Airlines took interest in

real time systems. Initially airline ticket booking was a tedious

task. Entire process was done manually were eight operators

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, ___________ 2015

29

used to sit around a table. Whenever a ticket was booked, the

operator placed a mark on the side of the corresponding card.

A fully booked flight will have its entire card marked. Thus

the availability of a flight was seen visually. The process was

not time consuming due to the number of flights, but the

manual process of checking the availability, marking the card,

and printing out the ticket at times took more than an hour.

Also due to space constraints, no more than eight operators

can be placed around a file. This called for the need of a real

time system and SAGE design was considered the most

appropriate candidate.

In 1959 Semi-automated Business Research Environment

(SABRE) was developed [6]. It automated the American

airline reservation system. Ticket availability was checked

automatically by the system and tickets were printed out

instantly. The teleprinters used in SAGE were used here to

receive request and send responses.

In 1960s non military interests in real time systems were

developed and the first commercial real time operating

systems were developed for mainframe computers. IBM

developed Basic Executive in 1962 which provided diverse

real time scheduling. It was followed by Basic Executive II. In

1970s focus changed to mini computers. RT-11 was

developed which was a small, single-user real-time operating

system for the Digital Equipment Corporation (DEC) PDP-11

family of 16-bit computers. Real-time systems, process

control, and data acquisition were the most important

applications of RT-11. Later RSX-11 was developed. It was

designed for and much used in process control and program

development.

2.1 Rate Monotonic Scheduling
Before real time systems came into existence, round robin and

time sharing algorithms were the prominent ones used. Since

those were not suitable for time critical and safety critical

applications, rate monotonic scheduling was introduced [7]. It

was invented by Liu and Leyland in 1973. This scheduling

formed the core kernel of the initial real time systems. In rate

monotonic scheduling, the run time modeling of threads are

studied. Using the previous history, the amount of time

required by a thread to execute is computed and it is checked

whether the thread will complete its execution within the

prescribed deadline. Accordingly static priorities are assigned.

Job having the smallest cycle duration will have the highest

priority.

The main drawbacks of rate monotonic scheduling were

priority inversion and deadlock. This was caused due to

resource sharing. Deadlock is a situation where each process

is waiting for the other process in a cycle. At least one

resource required by each process is currently acquired by the

next process in the cycle. Thus every process waits for each

other in an infinite loop. Priority inversion is a situation where

a higher priority process is preempted by a lower priority

process since a resource required by the former is held by the

latter. One of the solutions to prevent the above drawbacks is

to disable preemption. As there are only limited resources

available for use, it is impossible to avoid resource sharing in

real life. Hence the above solution was not efficient. Instead

of preventing resource sharing, methods were devised to

prevent or control the drawbacks caused by it. Many

algorithms were developed for the same including deadlock

avoidance, deadlock recovery etc. Priority inheritance

protocol is a prominent one among them in which a lower

priority process will temporarily acquire the higher priority of

the process it is currently blocking. Until 1980s, there was no

particular language dedicated to the development of real time

applications. Numerous programming languages were used by

different programmers depending on their individual comfort

level and knowledge. A need for unified language was

recognized and ADA was developed [8]. It was initially

licensed to United States Department of Defense (DoD). Due

to its safety critical features it was later adapted to commercial

applications in embedded systems were missing even a single

deadline could result in catastrophic failures including human

loss e.g. air traffic control. 1980s also witnessed another

major change in trend. Microprocessors started finding a place

in real time systems. Versatile Real-Time Executive (VRTX)

is one among the prominent ones that was developed initially.

VRTX runs the Hubble Space Telescope.

Since then the embedded technology has come a long way.

With the advent of ICs, microprocessors, microcontrollers,

SoC etc embedded technology found application in large

number of areas. Initially focus was only on military and

space applications mostly funded by the government. Later

with cheaper technologies, embedded systems found place in

a large no of consumer products. It plays a prominent role in

our day to day life now e.g. smart homes. Technology is so

advanced that day by day the hardware is becoming smaller

and processing power is becoming higher. Currently

numerous microcontrollers and processors are available in

market optimized for a variety of applications. With the

increase in the number of microprocessors and controllers,

numerous RTOS started being developed, each customized to

one or more no of the processors. A variety of RTOS is

currently available in market. Developers choose RTOS based

on the license, availability of ports, availability of

development tools, familiarity with the language etc.

3. RTOS vs. GPOS
RTOS and GPOS are distinct from each other because of the

following characteristics.

 Time criticality vs. throughput: Main goal of RTOS is to

achieve deterministic behavior. Results have to be produced

within strict deadlines. Usually RTOS is used only for

customized applications. Hence focus is more on the

timeliness rather than the amount of work done, whereas in

GPOS main aim is to achieve high throughput. GPOS is

dedicated to a large number of tasks. Hence maximum amount

of work has to be completed within a given amount of time.

Scheduling Algorithms: GPOS has the liberty to use any

scheduling algorithm as long as the throughput is met.

Whereas in RTOS, algorithm is always priority based. A

higher priority task is never made to wait. Hybrid algorithms

can be used but priority based algorithm must be one among

them.

 Latency: In GPOS there is unbounded dispatch latency. The

more number of threads to schedule, more latency will get

added. In RTOS, processes and threads in it has got bounded

latencies due to the application of queuing model.

 Hardware: RTOS is light weight and small in size compared

to a GPOS. A GPOS is made for high end, general purpose

systems. An RTOS is usually designed for a low end, stand

alone device. It is economical to port an RTOS to an

embedded system of limited expectations and functionalities.

4. TYPES OF RTOS
One of the important characteristic of RTOS is jitter. Jitter is

the consistency in the amount of time with which an OS

produces the result for a given input. Main goal of RTOS is to

achieve minimum amount of jitter. An input should always

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, ___________ 2015

30

produce results within the exact same time, no matter how

many times it is executed or when it is executed. This

characteristic contributes to the deterministic behavior of an

RTOS. RTOS can be broadly classified as follows [9].

4.1 Hard RTOS
Hard RTOS has the least amount of jitter among all types of

RTOS. Missing even a single deadline is considered as total

system failure. It might even cause human loss. Design of

such RTOS requires considerable effort and it must undergo

rigorous testing before put into use. E.g. RTOS used in

airplane control systems. Failure of even a single task or delay

of even a microsecond in enabling a function might result in

plane crash.
4.2 Firm RTOS
In firm RTOS, missing a deadline can cause catastrophic

results, but not human loss. With more number of failures,

performance degrades heavily. E.g. RTOS used in ATM

machines. The delay in execution of function results in

displeasure of customer. Crashing of system midway might

even result in monitory loss of the customer.

4.3 Soft RTOS
Soft RTOS has the least amount of jitter among all the RTOS.

The performance level required is determined beforehand, and

the system is expected to satisfy only the prescribed

requirements. Failures are tolerated if the performance is

above the prescribed level. E.g. RTOS used in live video

streaming. Delay or loss in connection for a small period of

time is tolerated as long as the speed and clarity requirements

are met for the remaining time.

5. CHALLENGES
Before choosing an RTOS, developer needs to confirm which

hardware platform he is going to work on. Changing the

hardware midway might force a change in the RTOS as the

new hardware might not be optimized for the previously

chosen RTOS. Also the developer should be familiar with the

development tool used. Not all development tools will be

supported by every RTOS. Certain RTOS has wide range of

developmental support provided by different communities and

choice of such RTOS results in easier development of

programs. Peripheral support and stack availability also varies

widely from one RTOS to another. Jerry Krasner has

enumerated some of the RTOS selection challenges as follows

[10].

 Importance of time to market: Competition is very high in

the embedded market. It is not only important to develop

quality products, but also to deploy it within the specified

timeline so that we are ahead of our market competitors.

Hence it is better to invest more in the beginning of the

project rather than identifying the bottlenecks at a later time

thus getting far behind in the competition.

Comparing design outcomes: Different RTOS have distinct

characteristics of its own. Some will be more suited to certain

applications than the other. Determining the correct RTOS has

a direct influence on the time to market.

Avoiding overqualified RTOS: Avoiding overqualified

RTOS is as important as choosing the correct RTOS. It might

result in over complexity. Once the performance requirements

are met, providing extra amount of memory or higher speed is

of no use. Also unnecessary training will be required to

understand the functionalities. Sometimes overqualified

RTOS can even lead to misuse.

Problem of delays in embedded applications: Unlike

normal projects embedded projects have problems of its own.

The choice of hardware is of utmost important. It should have

the capability of executing the functionalities implemented by

the software. If care is not taken in the design phase, project

will face difficulties in midway. A change in hardware might

lead to change in software and the development tool used and

at times the project has to be begun from scratch.

6. CURRENT RESEARCH
Table 1 details some of the prominent RTOS that currently

exist in the market [11].

Table 1. List of RTOS

Name License Platforms

FreeRTOS Modified

GNU GPL

ARM, AVR, AVR32,

ColdFire, HCS12, IA-32,

Cortex-M3, MicroBlaze,

MSP430, PIC, PIC32,

Renesas H8/S, 8052,

STM32, EFM32

LynxOS Proprietary Motorola 68010, x86/IA-32,

ARM, Freescale PowerPC,

PowerPC 970, LEON

RTLinux GNU GPL Same as Linux

TI-RTOS BSD license Primarily Texas Instruments:

MSP430, MSP432, C2000,

C5000, C6000, TI's ARM

families (Cortex M3/4F,

Cortex R4, Cortex A8,

Cortex A15), SimpleLink

Wireless MCUs (CC2xxx,

CC3xxx)

ThreadX Proprietary ARC, ARM/Thumb,

AVR32, BlackFin, 680x0-

ColdFire, H8-300H,

Luminary Micro Stellaris,

M-CORE, MicroBlaze,

PIC24-dsPIC, PIC32, MIPS,

V8xx, Nios II, PowerPC,

SH, SHARC, StarCore,

STM32, StrongARM,

TMS320C54x, TMS320C6x,

x86/x386, XScale,

Xtensa/Diamond, ZSP

VRTX Proprietary ARM, MIPS, PowerPC,

RISC

VxWorks Proprietary ARM, IA-32, Intel 64,

MIPS, PowerPC,SH-4,

StrongARM, xScale

WindowsCE Proprietary

x86, MIPS, ARM, SuperH

Extensive amount of research work is carried out in the field

of RTOS. Flexible and energy aware scheduling is one main

area. Real Time virtualization focuses on virtual machines

with real-time performance requirements. Improving the

design and development methods for safety-critical embedded

systems is another area of focus. Electronics designers and

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, ___________ 2015

31

manufacturers are also focusing on real time systems. Certain

semiconductor companies are developing RTOS on their own

to be in par with the emerging trends and gain advantage over

their market competitors. TI-RTOS is one such RTOS

developed by Texas Instruments (TI) intended only for TI

microcontrollers.

There are many research groups solely focused on real time

systems. .DIstributed and Real-Time systems (DiRT) is a

research group maintained by Department of Computer

Science at University of North Carolina. They mainly focus

on single and multiprocessor real-time operating systems.

University of Waterloo has a Real-time Embedded Software

Group that concentrates on research on real-time embedded

software systems. Real-Time Systems Research Group at

York has been conducting research in this area since 1990.

Several other universities such as University of Pennsylvania,

University of Texas etc. also has groups dedicated to real time

systems alone.

Performance of RTOS is measured using various metrics. One

such metric is provided by ThreadX, known as Thread-Metric

benchmark suite. The suite contains distinct tests that checks

most commonly used RTOS features. The number of RTOS

events that can be processed within a given time interval is

calculated. The more the number of events, higher is the

efficiency. Table 2 details the performance comparison of

ThreadX and FreeRTOS using Thread-Metric benchmark

suite [12]. The tests were run on a Microchip 40 MIPS

PIC24HJ256GP610 PIC24 16-bit microcontroller.

Table 2. Performance comparison of ThreadX and

FreeRTOS

Test ThreadX FreeRTOS

Cooperative

scheduling

11,847,800 Not supported

Preemptive

scheduling

4,870,885 3,717,913

Interrupt

processing

6,918,050 1,881,892

Interrupt

preemption

processing

3,052,151 2,400,967

Message

processing

6,928,383 484,691

Synchronization

processing

15,337,354 1,989,999

7. CONCLUSION
RTOS has evolved to a great extent in the recent years. Every

RTOS has a distinct feature of its own. But the growth in this

field is not fully utilized by the developers yet as most of the

RTOS is licensed and highly expensive. Peripheral support

and stack availability also varies widely from one RTOS to

another. Out of the few available free/open source RTOS,

support for proprietary protocols is minimal. Developers do

not have the luxury of time to adapt RTOS to project

requirements. Hence they are unwilling to change from their

current working condition. It would be greatly beneficial if all

the project requirements are listed in the beginning itself, so

that the developer can ensure that the RTOS chosen has

support for all the necessary drivers and protocols.

8. REFERENCES
[1] Phillip A. Laplante, Seppo J. Ovaska, 2011., “Real-Time

Systems Design and Analysis: Tools for the

Practitioner”, Edition 4

[2] https://en.wikipedia.org/wiki/Operations_research.

[3] https://en.wikipedia.org/?title=Queueing_theory.

[4] https://en.wikipedia.org/wiki/Whirlwind_I.

[5] https://en.wikipedia.org/wiki/SemiAutomatic_Ground_E

nvironment

[6] https://en.wikipedia.org/wiki/Sabre_(computer_system)

[7] https://en.wikipedia.org/?title=Rate-

monotonic_scheduling

[8] https://en.wikipedia.org/wiki/Ada_(programming_langua

 ge)

[9] https://en.wikipedia.org/wiki/Real-time_operating_

 system

[10] Jerry Krasner,2007, RTOS Selection and Its Impact on

Enhancing Time-To-Market and On-Time Design

Outcomes

[11] https://en.wikipedia.org/wiki/Comparison_of_real-time_

 _operating_systems

[12] http://rtos.com/news/detail/Express_Logics_Thread

XMCU_RTOS_Scores_Top_Marks_in_Microchip_Tech

nologys_PIC24_Benchmarks/

IJCATM : www.ijcaonline.org

