International Journal of Computer Applications (0975 - 8887)
Volume 121 - No.20, July 2015

Client-side Automated Sanitizer for Cross-Site
Scripting Vulnerabilities

D. K. Patil

Department of Computer Engineering,
VIIT, Pune
Affiliated to SPPU University

ABSTRACT

Web applications are useful for various online services. These web
applications are becoming ubiquitous in our daily lives. They are
used for multiple purposes such as e-commerce, financial services,
emails, healthcare services and many other captious services. But
the presence of vulnerabilities in the web application may become
a serious cause for the security of the web application. A web appli-
cation may contain different types of vulnerabilities. According to
OWASP TOP 10 vulnerability report, Cross-site Scripting (XSS)
is among top 5 vulnerabilities. So this research work aims to im-
plement effective solution for the prevention of cross-site scripting
vulnerabilities. In this paper, we implemented a novel client-side
XSS sanitizer that prevents web applications from XSS attacks.
Our sanitizer is able to detect cross-site scripting vulnerabilities at
the client-side. It strengthens web browser, because modern web
browser do not provide any specific notification, alert or indication
of security holes or vulnerabilities and their presence in the web
application.

Keywords

Web application, Cross-site scripting, Vulnerability, Sanitizer

1. INTRODUCTION

Security is the important factor to be considered in the web engi-
neering. A web application may contain different types of vulnera-
bilities. For example: if a web application is vulnerable, it may con-
tain vulnerabilities like Injection, Broken Authentication and Ses-
sion Management, Cross-Site Scripting (XSS), Insecure Direct Ob-
ject References, Security Misconfiguration, Sensitive Data Expo-
sure, Missing Function Level Access Control, Cross-Site Request
Forgery (CSRF) [23]], Using Components with Known Vulnerabil-
ities, Unvalidated Redirects and Forwards. Among these vulnera-
bilities, Cross-site scripting is among top 5 web application vulner-
abilities [4].

In general, cross-site ccripting may happen due to insertion of un-
trusted script code into a web page. For preventing cross-site script-
ing attacks existing systems contain Sanitizers like Xss Sanitizer
Plugin, Jsoup Sanitizer and Haskell-xss-sanitize. Xss Sanitizer Plu-
gin has used the OWASP ESAPI library to sanitize request param-
eters. Xss Sanitizer Plugin is able to detect XSS attacks, but they
did not specify exactly which type of XSS may be detected by their
sanitizer. Next Jsoup Sanitizer is allowing known-safe tags and at-

K. R. Patil, Ph.D

Department of Computer Engineering,
VIIT, Pune
Affiliated to SPPU University,

tributes and values through into the cleaned output. This Jsoup San-
itizer works only with whitelist provided to it. Haskell-xss-sanitizer
uses Tagsoup for parsing HTML, but it does not maintain all white
spaces.

This research work implements an idea by considering the limita-
tions of the existing cross-site scripting sanitizers. Our technique
considers all possible scripts for cross-site scripting vulnerabilities.
According to a survey [[6] conducted by Cenzic Inc. 96 percent of
tests web applications in 2013 have at least one or more serious se-
curity vulnerability. The application layer is continuously targeted
by attackers as a soft way for attack. 99 percent of vulnerabilities
found in their tested web applications in year 2012 and 96 per-
cent of vulnerabilities found in the year 2013. A median of these
vulnerabilities per web application is 13 for year 2012 and 14 for
year 2013 respectively. Cross-site scripting is the topmost vulner-
ability among web applications. Most of the web applications are
vulnerable due to unawareness of web application developers about
security practices. Current browsers are having the extensions for
detecting specific vulnerability attack, but none of the browser hav-
ing all in one solution for the detection of all these web vulnerabil-
ities. Our proposed system makes a path for developing all-in-one
solution for the detection of the web application vulnerabilities.

In summary, we make the following three contributions to enhanc-
ing web security:

(1) We study the web application vulnerabilities and identified
their security mechanisms with limited solutions.

(2) We build robust and client-side based security mechanism to
protect web application from cross-site scripting vulnerabili-
ties.

(3) Our evaluation result shows the effectiveness of the system.

In the remaining sections of this paper, Section 2 describes back-
ground of the web application working scenario, Section 3 de-
scribes the motivation for choosing this research work, Section 4
describes different types of cross-site scripting vulnerabilities, Sec-
tion 5 describes research works on cross-site scripting Vulnerabili-
ties and their preventive measures. Section 6 describes our observa-
tions on this entire topic of the cross-site scripting vulnerabilities,
Section 7 describes proposed system with its architecture, Section
8 describes Implementation details, Section 9 describes the results
of the implemented system, Section 10 describes the limitations of
the implemented system in discussion and section 11 describes a
conclusion about this research work on cross-site scripting vulner-
abilities.

2. BACKGROUND

Web application is the software that is able to run in a web browser.
Such web applications can be developed with the help of program-
ming languages (for example: HTML, CSS and JavaScript, etc.)
that are supported by the web browser. These programming lan-
guages rely on the web browser for rendering web applications.
Due to the ubiquitous nature of the web browser web applications
are becoming more popular. Another reason for the popularity of
the web application is its attractive graphical user interface. The
main reason for becoming popular of the web application is that to
maintain its updatability excepting the trouble of installing the soft-
ware on strongly millions of web client computers. Web application
borrows itself towards multi-tiered perspective by its occurrence.
Figure [T]shows a web application with its working on the client-
side mechanism and server-side mechanism. The client-side mech-
anism can be used by web browser for rendering web application.
It may contain JavaScript, Flash, etc. and by using this Client-side
mechanism user can use a web browser for searching the content
on the web or to do his intended work. Web users may use mul-
tiple web browsers like Mozilla Firefox, Google Chrome, Safari
and many more for making requests to the web server [17]. Web
browser works at the interface between web application user and
web server. Web user enters a URL into the address bar of the web
browser for making requests to the web server or web user can use
the search engine for making requests to the web server and using
web application. In between web browser and web server once the
web user enters a keyword into the search engine at that time web
browser generates HTTP request and sends it to the web server.
Here security of the generated request depends on the HTTP head-
ers used by the web application developers as well as policies used
by the web application developers. So it is necessary to focus on
the Client-side mechanism to make stronger protection for the web
application to save important data from cyber criminals. Continu-
ous growth in web application development without considering its
vulnerable status is an important factor for web security. Web ap-
plication is useful for e-commerce services, financial organizations,
governmental websites and social media like Facebook, twitter etc.,
all these service providers and information users require online se-
curity for their important information, but due to different types of
vulnerabilities present in the web application, attacker can easily
access this valuable information of user or of the organization.

3. MOTIVATION

Web applications are becoming popular and ubiquitous in our daily
lives due to their importance in the current era of digital world. It is
necessary to use web browser for web application user to access the
web application. And these web applications are useful in follow-
ing important fields: Online Banking, Government Services, Social
Media Websites, e-commerce. All these fields are important for
maintaining fast online transactions with their intended purposes,
but these services must have a secure mechanism to handle their
services for the web application users. But todays web applications
are mostly vulnerable to cross-site scripting. On the other hand web
application, web browser and web developers are the motivating
factors for this research work. Because if web application has not
implemented security policies for preventing XSS attacks, then it
will be vulnerable to the XSS attacks. Browser is also important
to consider because it is responsible for executing untrusted code
provided by the user. Further, how these factors are important for
web security are explained as:

International Journal of Computer Applications (0975 - 8887)
Volume 121 - No.20, July 2015

Web Application \

/_ Static HTML Executable, Dynamic
e e.g. Java HTML page
JavaScript, 4 Servlet e.g. PHP, ISP
Flash,
Etc.
/ Runtime, Interpreter, e.g. VM,
\ Zend
Web Browser | yy7p Web Server
€ J
Client-side Server-side

Fig. 1: Web application working scenario

1. Web Application: Before deploying web applications on the
server, it must implement security policies for avoiding attacks like
cross-site scripting. Otherwise that web application may be vulner-
able to the cross-site scripting attacks as well as vulnerable to other
possible attacks. Therefore, web application should have security
policies for avoiding cross-site scripting attacks.

2. Web Browser: The web browser is the medium for accessing web
applications. When a user enters input to the web application, web
browser executes it, if it contains executable scripts otherwise treats
that input as plain text.

For example: suppose we took URL form vulnerable web site

“http :// public—firing —range . appspot.c
om/reflected/parameter/body?q=a”

This web page has source code as

<html>
<body>
a
</body>
</html>

When a user enters script in the URL field, it will be executed di-
rectly at the client-side by the web browser.

http :// public —firing —range . appspot.c
om/reflected /parameter/body?q=a<scri
pt>alert ("U r Attacked”)</script>

it will directly affect the source code of the web page as given be-
low:

<html>
<body>
a<script>alert ("U r Attacked”)</script>
</body>

</html>

Here browser does not considers URL as the only URL but it
treated that URL as executable code. Hence browser does not have
a specific mechanism for treating user given input on the basis of
their contents.

On the other hand, there are multiple web browsers available for
accessing web applications like Mozilla Firefox, Google Chrome,
Internet Explorer and so on. But all of these available web browsers
do not provide any specific alert related to web application vulner-
ability to the user

3. Web Developer: A web developer may use multiple web tech-
nologies for developing web applications like HTML, JavaScript,
CSS, VBScript, PHP and many more. But Web developers are de-
veloping web applications continuously without considering the
factor of security of the web application and this may become cause
for an attacker to steal sensitive information of the web user or
the valuable information about the organization. There are alterna-
tive security practices available for developing web applications,
but web application developers are not aware about these security
practices. So it is necessary for web application developers to pay
attention towards secure practices for developing web applications
which will reduce risks of web application vulnerabilities.
Cross-site scripting is the most effective vulnerability among web
vulnerabilities. Existing solutions for XSS are weak for protect-
ing web applications. Next section gives brief idea about cross-site
scripting vulnerabilities.

4. CROSS-SITE SCRIPTING

Cross-site scripting vulnerabilities are common vulnerabilities in
most of the web applications. Following are the types of cross-site
scripting attacks:

4.1 Stored XSS Vulnerabilities

Stored cross-site scripting vulnerability is the most powerful type
of the XSS attack. When web application user provides informa-
tion to the web application that information is stored permanently
on the server and later displayed on the webpage of the web ap-
plication without encoding it with entity encoding of the HTML
language. Stored XSS vulnerability is also known as second order
vulnerability [3]|. Figure 2] shows mechanism for stored XSS.
Unstrusted data accepted from the web user through web browser
may be stored on the server-side database permanently. In this sce-
nario, if user gives executable script as an input it will be stored on
the server-side database permanently and will be executed always
whenever request come to that webpage. A real world example of
this vulnerability is Samy Myspace Worm.

4.2 Reflected XSS Vulnerabilities

When data provided by the web application user are used for reflec-
tion by the server according to the requested web page for gener-
ating the expected result, then this mechanism can become sources
for the reflected XSS type of the vulnerability. It can be used for
denial of service attacking.

For example, consider the following case: By using ?meta? tag .php
page can be reloaded

International Journal of Computer Applications (0975 - 8887)
Volume 121 - No.20, July 2015

Unstrusted @ 0 Unstrusted
I | T

Web &
Browser

Web User Unstrusted

Data - Web Server

N . P
SN—r’

Database
Fig. 2: Stored XSS

As shown in the above script in PHP, particular page will be re-
freshed after each second. So it will become as an infinite loop
for refresh requests which will cause database server down due to
flooding of requests. In this way denial of service attack may hap-
pen on web application.

4.3 DOM-based XSS Vulnerabilities

DOM-based XSS vulnerabilities can occur in web page?s client-
side script itself. Suppose JavaScript accesses a URL request pa-
rameter and takes that information to write some HTML to its own
page which is not encoded using HTML entities, then DOM-based
XSS vulnerability will be present there. This written data will be
reinterpreted by web browsers that can include additional client-
side script [4f]. For example: We have web application as

http :// yourwebsite .com/entity5/worldencaps
ultaed/forigendata/returnpagell .php

an attacker can write code for DOM-based attack for above men-
tioned url as

?http :// yourwebsite.com/entityS/worlden
capsultaed/forigendata/returnpagell .php?<
script >alert (?DOM-BASED_XSS_ATTACK?) </
script >?

<META HTTP-EQUIV=Refresh CONTENT="1;
URL=http ://www. somethingonursite .c
om/ururl.php?>

So the above code will generate DOM-based XSS attack for that
particular webpage.

5. LITERATURE SURVEY

Literature survey is broadly classified into three categories:

5.1 Existing XSS Sanitizers

XSS Sanitizer Plugin [8], Jsoup Sanitizer [5] and Haskell-xss-
sanitize [[7] are the existing XSS sanitizers. XSS Sanitizer Plugin

[8]] has used the OWASP ESAPI library for sanitizing request pa-
rameters. This XSS sanitizer plugin automatically works for clean-
ing the browser from XSS code but it does not provide information
whether it detects all types of XSS or detects only particular XSS.
Jsoup Sanitizer [5] is the XSS sanitizer that performs by parsing the
input HTML by creating a safe sand-boxed mechanism. Later on it-
erating through parse tree and only permitting known secure tabs
and attributes through the sanitized output. Haskell-xss-sanitize is
the XSS sanitizer that allows user to accept html from untrusted
sources initially filtering it through a whitelist. The whitelist fil-
tering is comprehensive with including support of CSS style at-
tributes. Haskell-xss-sanitize uses the TagSoup parser to parse the
HTML. But this TagSoup does not maintain all white space. For
Example: TagSoup is not able to distinguish between the following
cases:

,
<a href >, <a href>
<a>, <al>

5.2 String solvers for web application security

S3 [25]] and Z3-str [29] are the string solvers for web applica-
tion vulnerability detection and analysis respectively. S3 [25] is the
symbolic string solver based on its own constraint language. Their
algorithm initially makes use of a symbolic representation in such a
way that membership in a set termed by the regular expression may
be encoded as equations of strings. Z3-str is nothing but the general
purpose string solver. It treats strings as a primitive type that avoids
the inherent shortcomings observed in many existing solvers which
encode strings in terms of other primitives. Their logic of the plu-
gin is in three sorts boolean, int and string. String sorted terms are
having functions as replace, concatenation and sub-string. String
sorted terms are included with the string constant and variables of
arbitrary length.

5.3 JavaScript based vulnerability detection systems

Yue, C. and Wang, H. [27], M. Cova, Kruegel, G. Vigna [12] and
Finifter M., Weinberger J., Barth, A. [14] have considered vulner-
abilities occurring due to the JavaScript programming language.
Yue, C. and Wang, H. [27] presented analysis of insecure JavaScript
practices and suggested alternative JavaScript practices for it. They
examined 6805 unique websites for the measurement and an anal-
ysis of JavaScript. According to their analysis they found 66.4%
of analyzed websites convicts unsafe practices with inclusion of
JavaScript into the top level documents of their webpages. 44.4%
of their measured websites used eval() function for dynamic gener-
ation and execution of JavaScript codes in their web pages. And
they also found the function document.write() of the JavaScript
and property of innerHTML are very popular instead of alterna-
tive secure practices for them. But they have specific solutions for
avoiding web application vulnerabilities that are related to avoiding
insecure JavaScript practices. M. Cova, Kruegel, G. Vigna [[12] pre-
sented the solution for detection of the attacks which are possible
due to execution of the online downloaded files. For implementa-
tion they have developed a system that uses machine learning tech-
niques and number of features to establish the features of the usual
JavaScript code. Their system is also capable to detect behavior of
abnormal JavaScript code by imitating its behavior and equating it
to launch prominence [4f]. This solution presented by authors can-
not protect web applications from JavaScript malware.

International Journal of Computer Applications (0975 - 8887)
Volume 121 - No.20, July 2015

Finifter M., Barth, A. [[14] introduced special solution for pre-
venting capability leaks of the subsets of JavaScript. In this pa-
per they proposed new technique for preventing capability leaks of
JavaScript by improving statically verified JavaScript subset [14].
They explained about one-third of Alexa Top 100 web applications
are exploitable by an advertisement by the ADsafe which is veri-
fied. They proposed an updated mathematically verified subset of
the JavaScript which uses namespaces. It is only possible to pre-
vent web application from capability leaks of JavaScript codes it
means the authors have considered only capability leak problem of
JavaScript.

5.4 Other web vulnerability detection systems

Prophiler [9]], SecuBat [[17]], [13]], [15[], [11], [28] are the web appli-
cation vulnerability detection systems. Prophiler [9] is the filter that
executes fast for detecting malicious web pages. It explains con-
cept of the attacks that are happening at the time of downloading
and prevention techniques for it. For preventing drive by download
attacks, they have build a filter named as ’Prophiler’ which is used
for detection of the harmful web pages. SecuBat [[17] is the web
application vulnerability scanner. SecuBat gives way for how to
find potentially vulnerable websites. By usefulness of the SecuBat
authors were able to detect many potential vulnerable websites.For
validating the performance and accurateness of the SecuBat authors
picked 100 interesting websites from the potential list of victim for
the purpose of further analysis as well as to confirm exploitable
flaws in the recognized web pages. They also mentioned all of their
victims were from well known industrial companies and of a vul-
nerable web sites about possible security problems. The only lim-
itation of this proposed solution is we have to submit websites to
this scanner means it is not based on client-side approach. [[13] pro-
poses solution for analysis of websites for the design flaws that
are visible to user. User visible security design flaws may contain
flaws that can become risk for web user. Further authors examine
that the influence of user visible security by examining websites
from 214 United States commercial institutes. They intentionally
chose commercial web applications because of their high demand
for security [[13]]. After experimentation they found lots of faults
which may direct web clients to make worse security permissions.
According to their survey, 76 percent of their examined websites
containing a minimum one design fault which indicates that these
design flaws have not understood widely even experts who have
information about security and responsibility of security. There-
fore finally they implemented solution to recover from these se-
curity design flaws which are user visible design flaws. This pa-
per detecting only design flaws which are user visible. [15] ex-
plains the concept of web password habits of web users. It gives
protection to the password given by user to his system and which
stored on a web browser [[15]]. This system is having client-side
approach, but related to protection of passwords that are stored
in web browsers. [[11]] is the research work over security flaws in
GUI logic. As per their perspective for achieving security at the end
point, conventional security techniques are incapable if the integrity
of HCI is compromised by third party. Authors are totally focusing
on the vulnerabilities which are only related to GUI logic means
they have implemented their solution with the specific considera-
tion of the problem. [28] is the research work related to browser
saved passwords. According to their perspective web application
users are facing problems with the intimidating challenges of form-
ing, memorizing and using safe as well as strongest passwords for
maintaining their important assets on respective web applications.
They have suggested that their system can be implemented in other

global browser. They have implemented a different approach for
the protection of browser saved passwords rather than the conven-
tional password manager systems. [24] explains analysis of exist-
ing malware detection systems. [20] is the system that maintains
security for personal information. [[16] is the practical approach by
applying mathematical formulation of web vulnerabilities. [26] is
the research work related to reduction of denial of service attacks
using web service filters. [18]] is the system for analyzing relation-
ship between customer and organization on the Internet. [[10] is the
novel technique for web page classification on the basis of specific
domain. [21]] is the system that predicts the navigation of user by
using weighted association rules. [22] is the research work related
to the reliability assessment of the web application. [[19] is the sys-
tem prevents web application from forgery attacks.

5.5 Motivational Survey

[HsTS
[csp

[¥-Frame-Options
[M x-X3S-Protection

Percentage use inweb applications

Security Headers

Fig. 3: Security Headers Analysis

For checking different security headers provided by web applica-
tions, we have calculated statistics shown in figure [3]. Strict Trans-
port Security (HSTS) header is used for HTTPS connections and it
is used in 12 percent of our tested web applications. Only 8 percent
web applications are using content security policy for protection
from cross-site scripting vulnerabilities. X-Frame-Options headers
are used for preventing web application from clickjacking attacks.
X-Frame-Options are applied for 60 percent of our tested web ap-
plications. X-XSS-Protection is the security header used in 40 per-
cent of tested web applications.

6. OUR OBSERVATIONS

Existing solutions for XSS vulnerabilities are very specific and
these mechanisms are easily breakable. On the other hand recent
web applications are consisting very complex structures but due to
security loopholes inside these structures, they are prone to var-
ious web application vulnerabilities. Web development teams are
not aware about secure web development practices and they are de-
veloping web applications without considering the security factor.

International Journal of Computer Applications (0975 - 8887)
Volume 121 - No.20, July 2015

Therefore, it is necessary to construct all-in-one solution for web
application vulnerabilities in the web applications.

7. PROPOSED SYSTEM

Proposed system architecture consists of modules DOM, Input field
capture, Input analyzer, Links, Text area, Sanitizer and XSS Noti-
fication.

7.1 System Architecture Overview

Our proposed system architecture gives the exact idea about pre-
vention of cross-site scripting vulnerabilities. DOM module will
access the current webpage’s DOM and that DOM will help to In-
put field capture module for capturing different inputs. The further
Input analyzer will analyze each input field data from the input field
capture module. Analyzed data will be forwarded for Links mod-
ule, and Text area module. Next Sanitizer is used to sanitize user
provided input with the help of Links module and a Text area mod-
ule. Finally, the XSS notification module generates a notification
for the user about input provided by the user.

7.2 System Architecture

Figure [shows system architecture. Following are the modules of
the proposed system.

1. DOM (Document Object Module):

A programmer can build documents, navigate their structure or
delete elements and contents with the help of the DOM. Anything
found in a HTML or XML document can be manipulated using the
DOM. It creates a DOM tree for each document.

2. Input field capture:

The input field capture module accepts inputs provided by the web
user. Input provided may be link or text area by the web user.

3. Input Analyzer:

This module takes all input fields of the current loaded web page.
Further, it categorizes inputs into links and Text area fields and for-
wards it to the next module according to the inputs categorization.

4. Links:

The links module maintains a queue for links present on the loaded
web page. Further, it feeds these links one by one to the sanitizer
module for XSS vulnerability checking.

5. Text area:

The text area module accepts texts entered by the web user through
previous modules and maintains queue for all text area fields
present on the current web page.

6. XSS Notification:

Once the XSS vulnerability is detected in that webpage, the XSS
Notification module will generate a notification message for the
web user. For capturing the user’s attention we are applying a red
border to the XSS vulnerable web page. These all notifications will
be generated automatically when a web user will access web appli-
cations through the web browser.

7.3 Algorithm

Algorithm of the proposed architecture gives an exact working sce-
nario of the system. Input is text entered by the web user or link
provided by the web user.

Algorithm 1 : DetectXSS

Input: User entered text or link.

Output: Notification to the user about XSS vulnerability.

The user may request by giving input through the URL address bar.
The user may also input through text box or by clicking on the link

DOM Web Browser

Input Input Sanitizer

I
: |
| I
| 1
| I
| I
| I
' |

I
: |
! | Field —— Analyzer |
1

|
| I
| I
| I
| 1
| I
| I
| I
| 1
| I

Capture
| Text Area —l XSS

Notification

Web Server

Fig. 4: System Architecture

Algorithm 1 :DetectXSS

(1) Initialize user request
//Take input from web user and it will either text area or link.
(2) Capture input fields
//Text area or link entered by user and forward these fields to
input analyzer
(3) Analyze input fields
//categorization of the input fields into text area and links
(4) Links or text area
if user enters link as input
Feed this link to sanitizer
else
Feed text area to sanitizer
endif
(5) Sanitization
process user entered input and generate msg for XSS notifier
(6) XSS notifier
At last notify to the user whether the current web page is vul-
nerable or not

present on the web page or user may enter text in text area fields
present on the web page.

Once the request is initialized by web user it will be fed to the
input capture module of the system. Further that inputs will be ana-
lyzed through input analyzer. Input analyzer will categorize inputs
into the links and text area fields. Further Sanitizer processes input
fields and forwards message to XSS notifier about the status of user
entered input.

8. IMPLEMENTATION DETAILS

We have implemented a browser extension for prevention of cross-
site scripting vulnerability at the client-side. Total lines of code

International Journal of Computer Applications (0975 - 8887)
Volume 121 - No.20, July 2015

is approximately 2200. We have used Jetpack framework for im-
plementation of the system. JavaScript is the programming lan-
guage used for implementation. APIs [2] used in the system are
tabs, page-mod, page-worker and notifications. tabs API is used for
checking currently loaded tab in the web browser. page-mod and
page-worker API are used for running scripts in the context of web
pages and for creating invisible pages and accessing its DOM.

9. RESULTS ANALYSIS

Our implemented system gives effective results for prevention of
cross-site scripting vulnerabilities. We tested our system for the in-
puts given by a web user. If the user provides normal input to the
web application, then our system will work normally. But if the
user gave executable scripts as normal input to the web application
then our system generates notification about vulnerable status of
web applications to the user.

9.1 Effectiveness

As we explained example in motivation for web browser that have
url as:

“http :// public—firing —range . appspot.c
om/reflected/parameter/body?q=a”

when user will try to insert XSS vulnerable script in URL at the
same time our implemented system will give notification to the user
about it’s vulnerable status. This shows effectiveness of our system.
We have also considered following example for checking effective-
ness of our system.

] WEEKLY PROGRESS REPQ.., % ‘ ™ sglvulnerable web sites - .., x’,-' Lyrics Hub x|
themusic.pk/albums.php?ID=40 ¢
/ Browse
4 THEMUSIC.PK
;.) The World best Lyrics Website
SONGS MOVIES ALBUMS SINGERS

Latest Bollywood Latest Albums Populars

Find for Songs Lyrics & Artist Here

What would you like to Enter? Gensius \t2325

Select Your Gensius ¥

Fig. 5: Vulnerable web application before user input

Figure 5] shows web application that is vulnerable to the cross-site
scripting attacks. Initially when user enters URL into address bar it
loads web application into web browser.

Figure |§| shows how our proposed system will protect user from
cross-site scripting. Once the URL is loaded and if the user tried
to insert cross-site scripting attackable scripts as an input to the
web browser. It will mark web page by red colored border for user
attention. And it will also create notification to the user about web
application’s vulnerable status as shown in Figure[7] Notification to
the user may be seen at the right-bottom corner of the web browser
or at the right-top corner of the web browser.

Figure[Bpxplains details about exact location of the XSS attackable
script in the user input. We have used Linux operating system for
implementation of the system. JavaScript is the programming lan-
guage for developing the system.

Home | About us | Contact u

Script Inserted

International Journal of Computer Applications (0975 - 8887)
Volume 121 - No.20, July 2015

9.2 Performance Overhead

e by user We checked performance of the system using Dromaeo [[1].
Cyberoam CaptvePotall X | M joumal papes - reariten - d... X ~ons Manager X | Lyrics Hub x4 Test Names Without With
I themusic.pk ‘ Oul' Oul'
System System
i (runs/s) (runs/s)
r <) THEMUSIC.PK Artays 1046.97 110737
‘ D Base 64 1716.55 T611.21
Encoding and
ALEU?'1_S S{_N_':_; ERS | Aboutus | Contact us Decoding
Code Evalua- 594.74 497.75
Applied red tion
borderto the Compute Bits 24375.40 24372.80
webpage for in Byte
user’s attention DOM At- 2787.35 3253.39
tributes
Fig. 6: Vulnerable web application after user input DOM Modi- 385.14 389.73
fication
3 DOM Traver- 508.86 515.66
Find Lyrics sal
Validate User 814.22 822.92
HOME » ALBUMS Input

.atest Bollywood Albums

atest Hollywood Albums

© oVma v

D0 E Sk Ol

Latest Pakistani Albums

You are accessing Vulnerable Website!

Notification to the
user

=

Fig. 7: Notification

1 This site nakes use of a SH-1 Certificate; it's recomended you use certificat
that use hash functions stronger than -1, [Learn bore]

; This site nakes use of a SHA-1 Certificate; it's recomendad you use certificat

Absence of XSS script

that use hash functions stronger than SHA-1. [Learn Hore]

4 This site nakes use of a SHA-1 Certificate; it's recomended you use certificates with signature algorithas

that use hash functions stronger than SA-1, [Learn More

Typeoror: §(...) medizelesentplayer is not 3 function

Presence of XSS script

Fig. 8: Occurrence of the XSS String

Table 1. : Performance testing of our system

Above table summarizes performance of our implemented system
with real world web browser.

9.3 Compatibility

We tested our approach with 100 real world web applications. In
our tested environment, it doesn’t affects the working of real world
web applications. None of our tested web applications have af-
fected, this shows compatibility of the system.

10. DISCUSSION

The user may give input to the web application through two ways:
Links and Text area.

Considering these input fields we have implemented our system.
Once user gives input to the web application that input will be
examined through the implemented system and finally notification
may be generated on the basis of the vulnerable status of the web
application.

This implemented system is limited to the capture and analyze user
inputs from the web user. It is able to detect vulnerable scripts
present in the system. User may enter script in any scripting lan-
guage so we have considered this issue for implementation. Our
system may become more powerful by adding features like Artifi-
cial Intelligence techniques to input capture module and input de-
tection module of the system. This system may become a path for
prevention of the all web application vulnerabilities.

11. CONCLUSION

Existing solutions for web application vulnerabilities are specific
for particular vulnerability and applicable to particular web appli-
cations. Our proposed system is the state-of-the-art solution for the
detection of the cross-site scripting vulnerabilities among the web
applications. The future scope of the proposed system will be the
all-in-one solution for all kinds of the web application vulnerabil-
ities. Our proposed system system may also use artificial intelli-
gence algorithms to detect web application vulnerabilities.

12.
(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]
(9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

Dromaeo javascript performance testing. Available at http:
//dromaeo . com/} JavaScript Performance Testing.

Mozilla developer network. Available at |https:
//developer.mozilla.org/en-US/Add-ons, Mozilla.

Mozilla firefox extensions. Available at https:
//addons .mozilla.org/en-US/firefox/extensions/,
Mozilla Firefox.

New international project on web vulnerabilities. Available at
https://www.owasp.org/index.php, OWASP.

Prevent xss with jsoup jsoup sanitizer. Available at
http://jsoup.org/cookbook/cleaning-html/
whitelist-sanitizer, JSOUP.

Survey by cenzic inc. application vulner-
ability report. Available at https://www.
info-point-security.com/sites/default/files/
cenzic-vulnerability-report-2014.pdf, Vulnerabil-
ity Report 2014.

The xss sanitize package. Available at https://hackage.
haskell.org/package/xss-sanitize, The XSS Sani-
tizer.

Xss sanitizer plugin. Available at https://grails.org/
plugin/xss-sanitizer,XSS Sanitizer Plugin.

Davide Canali, Marco Cova, Giovanni Vigna, and Christopher
Kruegel. Prophiler: A fast filter for the large-scale detection of
malicious web pages. In Proceedings of the 20th International
Conference on World Wide Web, WWW °11, pages 197-206,
New York, NY, USA, 2011. ACM.

Vivek Chandra and Nidhi Saxena. Article: An improved tech-
nique for web page classification in respect of domain spe-

cific search. International Journal of Computer Applications,
102(4):7-10, September 2014. Full text available.

Shuo Chen, Jose Meseguer, Ralf Sasse, Helen Wang, Yi min
Wang, Shuo Chen, Jos Meseguer, Ralf Sasse, Helen J. Wang,
and Yi min Wang. A systematic approach to uncover gui logic
flaws for web security, 2006.

Marco Cova, Christopher Kruegel, and Giovanni Vigna. De-
tection and analysis of drive-by-download attacks and mali-
cious javascript code. In Proceedings of the 19th International
Conference on World Wide Web, WWW 10, pages 281-290,
New York, NY, USA, 2010. ACM.

Laura Falk, Atul Prakash, and Kevin Borders. Analyzing web-
sites for user-visible security design flaws. In Proceedings of
the 4th Symposium on Usable Privacy and Security, SOUPS
’08, pages 117-126, New York, NY, USA, 2008. ACM.

Matthew Finifter, Joel Weinberger, and Adam Barth. Prevent-
ing capability leaks in secure javascript subsets. In Proceed-
ings of the Network and Distributed System Security Sympo-
sium, NDSS 2010, San Diego, California, USA, 28th February
- 3rd March 2010, 2010.

Dinei Florencio and Cormac Herley. A large-scale study of
web password habits. In Proceedings of the 16th International
Conference on World Wide Web, WWW °07, pages 657-666,
New York, NY, USA, 2007. ACM.

Mohamed Ghazouani, Sophia Faris, Hicham Medromi, and
Adil Sayouti. Article: Information security risk assessment a
practical approach with a mathematical formulation of risk.
International Journal of Computer Applications, 103(8):36—
42, October 2014. Full text available.

International Journal of Computer Applications (0975 - 8887)
Volume 121 - No.20, July 2015

[17] Stefan Kals, Engin Kirda, Christopher Kruegel, and Nenad
Jovanovic. Secubat: A web vulnerability scanner. In Proceed-
ings of the 15th International Conference on World Wide
Web, WWW ’06, pages 247-256, New York, NY, USA, 2006.

ACM.

[18] Navjot Kaur and Himanshu Aggarwal. Article: Web log anal-
ysis for identifying the number of visitors and their behavior
to enhance the accessibility and usability of website. Interna-
tional Journal of Computer Applications, 110(4):25-30, Jan-

uary 2015. Full text available.

[19] M. V. Kishore, G. Pandit Samuel, N. Aditya Sundar, M. Enay-
ath Ali, and Y. Lalitha Varma. Article: A novel methodology
for secure communications and prevention of forgery attacks.
International Journal of Computer Applications, 96(22):5—

12, June 2014. Full text available.

[20] Anuradha K. Kudlikar and Meghana B. Nagori. Article:
Refinement in personalize web search system with privacy
protection. International Journal of Computer Applications,

117(6):1-6, May 2015. Full text available.

[21] Zeynab Liraki, Ali Harounabadi, and Javad Mirabedini. Ar-
ticle: Predicting the users’ navigation patterns in web, using
weighted association rules and users’ navigation information.
International Journal of Computer Applications, 110(12):16—

21, January 2015. Full text available.

[22] Laxmi Shanker Maurya and Anil Kumar Malviya. Article:
Web application reliability assessment using error and work-
load data obtained from server error and access logs. Inter-
national Journal of Computer Applications, 97(15):6-9, July

2014. Full text available.

[23] D. K. Patil and Dr. K. R. Patil. A survey on web application

vulnerabilities. I/JRAET, 3:20-26, 2015.

[24] Smita Ranveer and Swapnaja Hiray. Article: Comparative
analysis of feature extraction methods of malware detection.
International Journal of Computer Applications, 120(5):1-7,

June 2015. Full text available.

[25] Minh-Thai Trinh, Duc-Hiep Chu, and Joxan Jaffar. S3: A
symbolic string solver for vulnerability detection in web ap-
plications. In Proceedings of the 2014 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS 14,

pages 1232-1243, New York, NY, USA, 2014. ACM.

[26] Sonali Utsai and Ram B. Joshi. Article: Dos attack reduction
by using web service filter. International Journal of Computer
Applications, 105(14):4-9, November 2014. Full text avail-

able.

[27] Chuan Yue and Haining Wang. A measurement study of in-
secure javascript practices on the web. ACM Trans. Web,

7(2):7:1-7:39, May 2013.

[28] Rui Zhao and Chuan Yue. All your browser-saved passwords
could belong to us: a security analysis and a cloud-based new
design. In Elisa Bertino, Ravi S. Sandhu, Lujo Bauer, and Jae-
hong Park, editors, CODASPY, pages 333-340. ACM, 2013.

[29] Yunhui Zheng, Xiangyu Zhang, and Vijay Ganesh. Z3-str: A
z3-based string solver for web application analysis. In Pro-
ceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2013, pages 114—124, New

York, NY, USA, 2013. ACM.

http://dromaeo.com/
http://dromaeo.com/
https://developer.mozilla.org/en-US/Add-ons
https://developer.mozilla.org/en-US/Add-ons
https://addons.mozilla.org/en-US/firefox/extensions/
https://addons.mozilla.org/en-US/firefox/extensions/
https://www.owasp.org/index.php
http://jsoup.org/cookbook/cleaning-html/whitelist-sanitizer
http://jsoup.org/cookbook/cleaning-html/whitelist-sanitizer
https://www.info-point-security.com/sites/default/files/cenzic-vulnerability-report-2014.pdf
https://www.info-point-security.com/sites/default/files/cenzic-vulnerability-report-2014.pdf
https://www.info-point-security.com/sites/default/files/cenzic-vulnerability-report-2014.pdf
https://hackage.haskell.org/package/xss-sanitize
https://hackage.haskell.org/package/xss-sanitize
https://grails.org/plugin/xss-sanitizer
https://grails.org/plugin/xss-sanitizer

	Introduction
	Background
	 Motivation
	 Cross-site Scripting
	Stored XSS Vulnerabilities
	Reflected XSS Vulnerabilities
	DOM-based XSS Vulnerabilities

	 Literature Survey
	Existing XSS Sanitizers
	String solvers for web application security
	JavaScript based vulnerability detection systems
	Other web vulnerability detection systems
	Motivational Survey

	 Our Observations
	 Proposed System
	System Architecture Overview
	System Architecture
	 Algorithm

	IMPLEMENTATION DETAILS
	Results Analysis
	Effectiveness
	Performance Overhead
	Compatibility

	Discussion
	Conclusion
	References

