
International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.20, July 2015

13

Enhanced Teaching Model (ETM) for Teaching

Programming Languages

Fawaz Alajmi
De Montfort University

Ahmad AA Alkhatib
Alzaytoonah University of Jordan

ABSTRACT

Expectations from academics and the industry, to have

students and employees who are independent and capable of

quickly writing code to resolve work-related issues, are

growing high. However, teaching and learning programming

is certainly not easy and very challenging. Literature shows

that a lot of work has been done to improve this. Nonetheless,

it is evident that little effect of this work has had impact on

the actual practice of teaching and learning of Software

Development programming skills. This gap has been

addressed in this paper to enhance the teaching and learning

process of programming to students. Furthermore, teaching

programming literature research has been classified into 3

categories; teaching approach, teaching model and teaching

tool. As a result, this paper proposes the following objectives

to tackle this problem:

Identify what research has found out about how to teach and

learn programming and other aspects of Software

Development

Investigate how and why this research has not been applied

to teaching Software Development

How more use could be made of it to improve teaching?

Finally, an Enhanced Teaching Model (ETM) has been

proposed, which combines several teaching approaches and

models from literature. In addition, this model uses teaching

tools to provide goal-focused exercises, assess students'

performance and obtain feedback from the learning

community. Last but not least, a discussion about the future

work required in order to assess the model and thus improve

it.

Keywords

Enhanced Teaching Model (ETM), Intelligent Teaching

System (ITS), Teaching Approach, Teaching Model,

Teaching Tool, Software Development.

1. INTRODUCTION
Computers are ubiquitous and our needs to implement things

are pretty much dependent on them. Therefore, the demand

for calibres to develop software and write efficient code is

souring high, i.e. T. Hüsing et al. (2013). Unfortunately, the

rate of ICT University dropouts has been increasing over the

last decade, i.e. Kori, Külli, et al (2015).

Programming languages are used to solve problems.

However, problem solving is beyond the syntax of

programming languages (Linn & Dalbey (1985) and Perkins,

Schwartz & Simmons (1988)). We believe that the following

two questions remain unanswered and will form the space of

the research subject:

 Investigate how and why this research has not been

applied to teaching Software Development?

 How more could be made of it to improve teaching?

Researchers have been successful in identifying what has been

causing the dropouts. Teaching and learning programming has

always been challenging for all parties involved, especially to

novices (Blayney (2009); Ramalingam, LaBelle and

Wiedenbeck (2004); Robins, Rountree and Rountree (2003)).

Interestingly, Sleeman (1986) described programming as the

new Latin of the school syllabus. One does not have to look

far to prove this crystal-clear fact. In reality, most students

and teachers, who take part in this skill-building cycle, can

simply approve this view. But one might wonder why this is

the case where there are as complex subjects, if not more than

programming, such as physics. Literature shows that there are

issues with the teaching of programming languages to

students, which can be briefly highlighted as below:

 Lack of interest and appreciation in programming

languages by students

 Individual learning of programming is not practical and

tedious

 Use of unsuitable languages to teach programming

concepts

 Lack of visual programming

 Too much theory and emphasis on the language syntax

itself rather than the programming concepts

 Lack of emphasis on the teaching of programming

solving techniques

 Lack of feedback from students and teachers

 Tools are only based on tutorials and quizzes

 On the other hand, researchers provide solutions for

those issues, which can be summarised as follows:

 Orient students with the aspects of programming

 Adopt LET US DO IT ALL TOGETHER approach,

Ngo-Ye and Park (2014).

 peer programming, peer tutoring and problem solving

strategies

 The language should be selected based on pedagogical

suitability and not popularity in the industry

 Only calibre teachers should teach programming

 Programming courses should be flexible to all students to

learn in different ways

 visual is essential to learning programming

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.20, July 2015

14

A lot of research has been done on: Why programming is

challenging and How programming skills can be taught

effectively in Software Development. However, it is evident

that little effect of this work has had impact on the actual

practice of teaching and learning Software Development

programming skills; Students dropouts is still increasing since

2006, according to Kori, Külli and et al (2015). (Ford and

Venema, 2010; Thomas, Ratcliffe, Woodbury, et al., 2002;

Bornat, Dehnadi and Simon, 2008) have proved that most

graduates do not seem to be able to write good code and do

not have good understanding of programming concepts. Most

of the research is usually done locally and a sample of

students and results get published with no official authority to

adopt it. Literature is full of examples on this.

2. SUMMARY OF RELATED WORK
Since 1970s, researchers have been providing different

approaches to teaching programming. This might seem

reasonable since technology evolution introduces complex

concepts in programming languages. However, many of these

approaches are based on theory or teacher’s expertise. In

addition, some even developed teaching models and used

them locally to provide statistical results that prove their

models. However, there is no evidence that these models are

used anywhere else. Developers introduced ITS tools as an

alternative approach to one-to-one teaching to reduce cost.

However, these tools do not seem to kick off and there has

been no sign of replacement to traditional teaching. Based on

all above, we classified the research, on teaching

programming, into 3 categories:

 Teaching Approach

 Teaching approach is made of one or a set of methods.

There methods collectively will help reach to successful

teaching results. For example, Adopt LET US DO IT

ALL TOGETHER approach, by Ngo-Ye and Park

(2014), is made of several methods, i.e. pear

programming, interactive exercises in classrooms and

hands-on-teaching. An approach is defined by a teacher

or authority and they decide on the methods that this

approach is made of.

 Teaching Model

 Teaching model is made of one or multiple

approaches. In addition, it contains a process on how they

should be implemented, a process on how feedback should be

obtained and a process on how to integrate this feedback into

the model for improvement. In other words, Teaching

Approach is part of the Teaching Model For example, let’s

build on the ‘Adopt LET US DO IT ALL TOGETHER’

approach. If this method is used, there will also be some

processes that explain how the method’s approaches are

implemented, feedback obtained from teachers and students

and finally how feedback is integrated into the model

 Teaching Tool

 It is basically a tool that is used to teach

programming to students. This tool could sometimes be used

to gather feedback from students. For example, online

teaching tools such as SCRATCH.

 A teaching tool on its own is not efficient as it

usually only contains exercises, guidelines and sometimes

animations to learners. However, if used as part of a model,

then it becomes much more helpful to the teaching of

programming languages.

2.1 Teaching Approach
With regards to teaching methods, Pears, Seidman, Malmi,

Mannila, Adams, Bennedsen, Devlin and Paterson (2007)

report that individual learning of programming is no longer

efficient. Also, Sarpong, Arthur and Amoako (2013) seem to

agree with this since they report that peer programming, peer

tutoring and problem solving strategies are key to improve

students' knowledge and interest. In addition, Ngo-Ye and

Park (2014) report that hands-on approach has proved to be

the best.

With respect to programming languages, Mannila & Raadt

(2006) provide good evidence that Python and Eiffel are ideal

languages to use when teaching programming to students. On

the contrary, BRUSILOVSKY, CALABRESE, HVORECKY,

KOUCHNIRENKO and MILLER (1997) believe that mini

languages should be designed and used for teaching

programming as scope of the languages will be more focused.

When it comes to human minds, MILNE and ROWE (2002)

confirm that students learn better and more efficiently when

they visualise objects. They believe that visual programming

approach and tools are critical to teaching programming.

But, these approaches are not applied on a wide scale. In

addition, some of these approaches could be combined to get

an enhanced teaching approach for CS programming teaching.

Table 1 is a summary of teaching approach.

2.2 Teaching Model
Researchers have spent time and energy designing what they

claim different teaching models. Personally speaking, they all

present differently and use interestingly varied terminology.

However, the core is the same.

 Horváth and Javorský (2013), Brito and Sá-Soares (2013),

Vihavainen, Paksula and Luukkainen (2011) and Caspersen

and Bennedsen (2007) all seem to present models that revolve

around the following steps:

 Provide relevant teaching material

 Hands on teaching

 Group interaction

 Obtain feedback constantly

 Scaffold the feedback into the model

 All these teaching models are only implemented in few

universities or schools. There do not seem to be any serious

impact of these models on a large scale. Table 2 presents the

teaching models summary.

2.3 Teaching Tools
Unfortunately, there is not much literature on CS

programming tools contrary to what tools one might find

online. Apparently, there are tools that may be used for

teaching multiple languages as Quinson and Oster (2014)

claim. While, Soares (2014) describe a tool for teaching

languages that can be used for novice and experienced

students. However, these tools do not seem to be very popular

or adopted on wide scale. Table 3 is the summary of the

founded tools:

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.20, July 2015

15

Table 1: Teaching Approach

Paper Approach Advantages

Ngo-Ye and Park (2014)
- Orient students with the aspects of programming

- Adopt LET US DO IT ALL TOGETHER approach

Students show better appreciation and interest in

learning programming

Sarpong, Arthur and

Amoako (2013)

- peer programming, peer tutoring and problem solving
strategies

Improve students’ interest and knowledge which
therefore will reflect positively on their performance

Pears, Seidman, Malmi,

Mannila, Adams,

Bennedsen, Devlin and

Paterson (2007)

- Conduct a large-scale research to provide a better long-

term understanding of how to teach programming to

learners

Proves that individual learning of programming is no
longer efficient

Mannila & Raadt (2006)
- Identified criteria for identifying and analysing ultimate

languages for teaching programming

Python and Eiffel are more suitable for teaching

programming as good care was taken during their
design

Jenkins (2002)

- Programming must not be taught before University 2nd

year

-The language should be selected based on pedagogical

suitability and not popularity in the industry

- Only calibre teachers should teach programming

- Programming courses should be flexible to all students to

learn in different ways

- No continuous assessment to ease pressure on students

- Adequate support should always be available to students

Identify what institutions should do to refine their

teaching approach to programming

MILNE and ROWE (2002) - Visualization is essential to learning programming
It helps students understand what happens in memory

when program executes

Warren (2001)

Students should be started with Scripting languages such as
Java Script. Never with system programming languages

such as Java or C++

Scripting languages are simpler and more flexible

Gal-Ezer and Zeldes (2000)

- Integration between the theoretical and practical aspects of
programming

- Theory should always be available and extensive;

however teachers do not have to follow it to the letter

- Competent teachers should be able to work out what level

of depth should they go for when teaching students

Strongly helps students’ understand how to design

software solutions for algorithmic problems

BRUSILOVSKY,

CALABRESE,

HVORECKY,

KOUCHNIRENKO and

MILLER (1997)

- Design mini languages to use over general purpose

languages for teaching programming

It will help control the behaviour and content of the
software and ensure that students are learning exactly

what they need

SHNEIDERMAN (1976)

Spiral approach of teaching involves:

- The syntactic knowledge is constructed by frequent

rehearsal and repletion which helps anchoring knowledge

- The semantic knowledge is built by meaningful teaching

in small partitions

Psychological principles are very critical and go in

parallel with successful teaching programming for
novice students

Table 2: Teaching Model

Paper Model Advantages

Horváth and Javorský

(2013)

- Get first hand-feedback from students on the current Java
course being taught using interviews

- Modify the course structure immediately and roll it over

in the syllabus straight away so that students can benefit

- Teachers’ interpretation simplification

- Give more time for problem analysis presented in
class

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.20, July 2015

16

from it

- This loop of review, modification and roll-out was done
over three-year period on University students

- Continuously review curriculum

- Creation of electronic learning materials

- Giving more emphasis on the home work

- Quick puzzles at the beginning of each class

- Continuously encourage students to work together

Brito and Sá-Soares (2013)

- Students should always read the reference book first

- Students should participate in the class

- Students should try everything

- Students should use the lab classes to self-assessment

- Assessment

- Tutorial guidance

- Use surveys to gather feedback about the process from
students

- Students achieve better results

- Students are more aware of the course content and
structure

- Students drop-outs decrease significantly

Vihavainen, Paksula and

Luukkainen (2011)

Extreme Apprenticeship model involves:

- Learn by doing

- Continuous feedback

- Continuous practice

- Avoid tons of preaching during the lectures

- Relevant topics and exercises during lectures

- Start exercises as early as the first lecture

- Help in the labs should always be available in the labs by
competent instructors

- Small goal exercises

- Exercises are mandatory

- High amount of exercises and repetition

- Exercises should have clean guidelines

-Encourage students to look for information

- Feedback on what is being taught and scaffolding it
straight into the teaching method is vital to the

learning and teaching cycle of programming

languages

- Extreme Apprenticeship can be used as a model for

teaching at Universities since it has been

experimented and proved successful

- Increase students’ interest and motivation in

learning programming.

Caspersen and Bennedsen

(2007)

Based on psychological theories, i.e. cognitive load theory,

cognitive apprenticeship and worked examples, the course

model is organised into six phases:

- Getting starter

- Learning the basics

- Conceptual framework and coding recipes

- Programming method

- Subject specific assignment

- Practice

- The use of psychological theories is important to
ensure good quality of learning and delivery.

Leutenegger and Edgington

(2007)

- Teaching game programming course

- Use surveys to gather data about student’s knowledge and

understanding of programming concepts, interest and level
of satisfaction

- Using games to teach introductory programming to
students increases their motivation and interest

- It helps them learn the concepts of programming

more effectively since they can visualise the mistakes
they make in the code manifested in the resultant

graphics

Keefe, Sheard and Dick

(2006)

Extreme Programming (XP) practices to teaching OO

programming to Students

Improves students' programming skills, however,

their problem solving technique remains the same

Pillay (2003)

- Present and explain programming concepts

- Provide different type of programming problems to

students to test different programming aspects

- Assist students to develop solutions

- Automatically assessing programs written by students

Describes a generic architecture of how ITS can be

used to develop viable intelligent teaching tools to
programming students

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.20, July 2015

17

- Assessing students to debug programs for semantic errors

Kanemune, Nakatani,

Mitarai, Fukui and Kuno

(2002)

Dolittle model which involves:

- Simple syntax programming language

- Incremental programming, where one line of code can do

the job. Students do not have to write functions or classes

which make code complicated

-Text-based programming, which provide freedom and

flexibility in writing code

OO, where students can manipulate objects using
instructions

- Open expandability, where objects can be controlled

remotely over networks

- Use graphics to illustrate the impact of code changes on

objects

Students enjoy their programming experience,

achieve the tasks they are supposed to implement and
find the overall concepts easy to follow and

comprehend

Deek and McHugh (1998)

Most Teaching model(s) have the following issues:

- Absence of problem solving software frameworks

- Too much emphasis on language syntax

- Inadequate user interfaces

- Incomplete systems

- Complex examples

Investment in developing intelligent teaching tools
have not paid off since it cannot provide good

problem solving comprehension techniques

Table 3: Teaching Tool

Paper Tool Advantages

Quinson and Oster (2014)

Programmer’s Learning Machine (PLM):

- It provides flexibility in designing lessons and grouping them

- It provides flexibility in designing exercises and grouping them

- It has a total available exercises are 12,000

- It integrates both the teaching and programming elements

- 3 different languages can be used in this tool, i.e. Java, Python

and Scala

- Freely available project online

- Tool can be used for teaching multiple
programming languages

- It saves students time and energy in learning

about different educational tools

- Tool itself can be run on multiple environments,

i.e. windows and linux

Soares (2014)

- Inventor App. is a teaching programming tool that has been

developed by Google and currently hosted by MIT

- It can be used to teach students how to develop Android
applications

Tool is simple and flexible and can be used by

both novice and non-novice students

Meerbaum-Salant,

Armoni, & Ben-Ari (2013)

- Scratch is a visual programming environment that is used to

teach CS programming concepts

- Scratch holds a community of 1.5 members who use this
environment for learning programming

- Tool is made of scripts and those scripts are created by drag-

drop of blocks that represent programming components such as
expressions, conditions, etc

- Tool eliminates syntax errors and gives immediate visual

feedback. In other words, students do not have to write code to
understand programming

- Students achieved good level of understanding of
CS programming concepts

- Some topics were still difficult to students, such

as repeated execution and variables, however, there
could be encountered with careful and more

detailed teaching.

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.20, July 2015

18

3. METHOD
Generally, there are few research methods available for use.

A researcher can mix more than one method to achieve the

research objectives. Decision, on which one to use, could be

challenging. However, McNamara (2007) presents a very

interesting comparison between all research methods

available. His conclusion on the effectiveness of the research

methods is illustrated in Figure 1.

Figure 1: Effectiveness of Research methods

Interestingly, this indicates that Meta-Analysis research

method is highly recommended due to its proven

effectiveness. In fact, this makes a lot of sense as synthesis

of the results of others’ relevant studies will help identify

interference and gaps in the research subject area. But what

is Meta-Analysis ?

It a methodology that is based on synthesising results from

multiple studies to identify the impact it might have across

the actual study. This will be illustrated in this work by:

Synthesising the results of multiple teaching approaches,

models and tools that have proven to be efficient in their

own right- this shown in the tables 1,2 and 3 in ‘Related

work’ part.

Then, identifying similarity and interference between them

and how that would impact the subject of research

In order to ensure quality and good research coverage,

significant attention has been paid to the selection criteria of

papers. Based on academic experience, the following list has

been compiled:

Only academic papers must be used.

Mostly journal papers will be used. However, to avoid bias,

some conference papers will be used too.

The research must be relevant to the field.

Papers should provide supporting evidence. Although,

some papers have been chosen which have good arguments

that are based on relevant experience of researchers

Papers should have been cited by other researchers.

Based on the above list, there has been a limit on the number

of papers available for this research subject. Unfortunately,

the Teaching Tools papers have been the least available

papers in literature.

 A list of critique criteria has been compiled, which has been

used to critique the papers. This list is a combination of

several online resources, such as Wood (2003) and personal

experience. The list is shown in Table 4.

Table 4: Research Critique Criteria

Critique steps Answer(s)

Purpose of Author/Article

Why does the researcher intend to do this

research?

What methods/techniques/approach has been

used?

Why were these methods used?

How was each method performed?

What data were obtained from those

methods?

Constraints encountered by Author?

How author mitigated the constraints?

Evidence of data from each method?

What tool/environment has been used by the

Author? And Why?

How were data interpreted?

What results were obtained from each

method?

Has the article met its purpose?

Article’s coverage?

Article’s usefulness?

Article’s bias?

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.20, July 2015

19

4. ANALYSIS

4.1 Discussion
The heading of subsections should be in Times New Roman

12-point bold with only the initial letters capitalized. (Note:

For subsections and subsubsections, a word like the or a is not

capitalized unless it is the first word of the header.)

Overall, the research done on the teaching models of

programming languages has provided better quality literature

than teaching approaches and tools. Tables 5, 6 and 7, in

APPENDICES, clearly illustrate that. We believe that such a

conclusion is fair since a teaching model involves approach(s)

with method(s) that are applied strategically on a sample over

some time. Then, obtaining results and feedback to assess the

model and thus improve it. This is an ideal way, which has

standards that are certainly higher than the other two

categories.

 Teaching Approach

Most interestingly, it is evident from literature that most

researchers, teachers and students are not aware of the major

difference between the teaching of programming and the

teaching of a programming language. This point is critical

since the teaching of programming could be done using a

simple language or script where the focus would be on the

principles of programming and problem solving techniques

but never on the actual syntax of the language. However, the

teaching of a programming language would focus on the

syntax and features of the language itself. Table 1, illustrates a

detailed analysis of all the teaching approach literature.

What seems to be clear is that all approaches are incomplete

and there is a lack of collective vision and coverage to

encounter all teaching approaches issues. As a result, an

enhanced approach is required to combine those several

methods and languages together.

 Teaching Model

Interestingly, literature provides pretty much similar models

with few methods variations. However, those methods are not

complete or as not thorough at those provided in the teaching

approach literature. Therefore, an enhanced model is required.

Table 2, illustrates all the teaching approach literatures

analysis.

 Enhanced teaching tool

Unfortunately there is no evidence of tool variety in literature.

We believes that tools are usually developed for commercial

reasons and this is why literature does not focus much on this.

It is clearly seen that each model tries to automate the

teaching of programming. This is simply done by providing

exercises and assessments on each feature of the programming

language. However, these tools can probably help teach the

syntax and features of a language, but never able to develop

the learner's problem solving skills. Table 3, illustrates a

detailed analysis of all the teaching tool literature.

We believe that time and effort should be spent in developing

tools that assess the performance of students and obtain

feedback to enhance the teaching approach within the

teaching model. In other words, an enhanced teaching tool is

required too.

 It is certain that further improvements to any research in this

field should always involve discussion of constraints and how

to mitigate them and evidence of data and their interpretation.

Finally, it is crystal clear that software development industry

has not witnessed great deal of this research field and not

benefited from it. We believe this is caused by the following

factors:

• No authority available to enforce particular

practices and standards on how teaching models

and tools should be used

• No official standards and guidance are available

• All successful results from tools and models only

represent a small sample of people and is not

representative of the learning community

• Most of the literature results does not provide

real statistics to support their claims

• A lot of the tools and models are based on

experience or on psychological learning theories.

However, an integration between both is never

seen anywhere

So, what more can be done?

4.2 Proposed solution
In literature, there has been no collective solution towards a

model that combines multiple proven approaches with a tool

that provides exercises, content and feedback. Figure 2 clearly

proposes an enhanced teaching model, which innovates than

all other models by:

 Using a combination of proven teaching approaches to ensure

perfection and completeness.

 Using a scaffolding approach which loops feedback, from

students and staff, back into the approach and teaching

content, then rolling it directly to the learning community.

 Using teaching tool to provide goal-focused exercises, assess

students' performance and obtain feedback from the learning

community. This tool would be integrated as part of the

teaching model.

However, if the focus of the teaching approach is to teach a

specific programming language, then a challenge rises to

develop a tool that provides exercises, assessment and

feedback for specific required programming language.

The proposed Enhanced Teaching Model (ETM) involves the

following:

1. Approach identification

Based on the teaching objectives, the teaching authority will

decide on one of the following approaches:

a) Teaching of programming

The sole focus of this approach is to teach programming

concepts, i.e. OOP, etc. As a result, the teaching authority can

either use traditional scripting languages, such as JavaScript,

or specifically designed mini languages for teaching purposes.

b) Teaching of Specific language

The sole focus of this approach is to teach a specific

programming language, i.e. Java, Python, etc.

2. Orient students with aspects of programming

This ensures students appreciation and interest in learning

programming. This involves explaining:

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.20, July 2015

20

a) Why programming is important and how it impacts our

lives

b) The tools, IDEs and frameworks used

c) The overall cycle of software development

d) Applicability of course content in practice and industry

3. Apply teaching methods

Several teaching methods have been adopted from literature.

The combination of these methods is the key of this enhanced

model.

a) Peer Programming and Peer Teaching

Sarpong, Arthur and Amoako (2013) have proved that this

method improves students’ interest and knowledge, which

therefore will reflect positively on their performance.

b) Problem Solving Techniques

There are many problem solving techniques available to use.

This paper is not focused on naming a specific one. However,

this method should focus on teaching the analysis and

debugging techniques of requirements and issues.

c) Calibre Teachers

Having calibre teachers to teach programming is vital in

delivering the teaching material to the students. In addition, it

increases the students’ interest in learning programming.

Jenkins (2002) proved this in his model.

d) No Continuous Assessment

Students dread assessments. It adds more pressure on them

and distracts them from the main goal of the course. Jenkins

(2002) argues this case as he believes it eases the teaching

process. The writers believe that reducing assessments and

using the tool focused exercises to obtain indirect feedback on

students’ performance in the way forward.

e) Visualisation

MILNE and ROWE (2002) discuss how visual programming

helps students in understanding what happens in memory

when a program executes. In addition, visual programming

makes it much more interesting and easier to grasp complex

programming concepts.

f) Frequent Rehearsal

Practice makes perfection is a way of thinking about this.

Also, SHNEIDERMAN (1976) proved how rehearsal

anchors knowledge in students’ minds during the teaching of

programming.

g) Teaching in small partitions

This will keep the students interested and focused. In addition,

this technique is significant when teaching complex concepts.

Vihavainen, Paksula and Luukkainen (2011) and

SHNEIDERMAN (1976) have all agreed on the importance

of this method.

h) Intensive theory with focus on practice

The writers believe that theory is important and should be

available extensively for students on the actual programming

tool as a learning material. However, the main focus should be

on practise during the lectures and labs as they are the

ultimate way for learning programming.

i) Start Exercises as early as first lecture

The writers believe the traditional way of teaching

programming is not appropriate anymore. Going on for weak

teaching students theoretical concepts of programming is not

right at all. In fact, the writers advocate for practical exercises

to be used as early as the first lecture. In literature, many

agree with this too. Vihavainen, Paksula and Luukkainen

(2011) experimented this on a sample of students and the

research results proved the importance of this method.

j) Exercises should be small goal

This method goes hand in hand with the ‘Teaching in small

partitions’ method. Small exercises usually would focus on

particular concept, and will eliminate any complexities that

could divert the students’ from the main exercise objective.

SHNEIDERMAN (1976) is an advocate of this approach too

and his research proves how positive this method on the

teaching process.

k) Applying game programming

Game programming is the ultimate way for teaching

programming. It is a method that keeps students not only

interested, but also excited and joyful about programming. In

literature, Leutenegger and Edgington (2007) provided

evidence from this research that proves this too.Obtain and

assess feedback

This involves using the actual teaching tool to obtain feedback

directly from the students on the actual teaching material,

exercises and delivery approach. Then, analyse the students’

answers to the exercises as well as the feedback. In addition,

feedback could be obtained from staff directly on how the

students have performed.

4. Integrate feedback into teaching methods and tool

Finally, make decisive changes, which are required to modify

the teaching methods or tool exercises in order to improve the

quality of teaching and delivery to students. This should be a

continuous and prompt process. The feedback, obtained from

staff and students is essential to this ETM.

4.3 ETM in Practice
In practice, a teaching authority, such as a school, college,

university and even a teacher, can use this model. ETM is

flexible and adaptable. In other words, it should cater for all

different teaching environments. A teaching authority should

use the model in Figure (2) to decide on the approach,

language and content of delivery. The tool can be designed

locally or adopted from a successful ETM implementation.

The key is to ensure that methods, feedback and scaffolding

of feedback are all implemented.

4.4 What is Next
This paper has focused on identifying a model that promises

to enhance the teaching of programming. Assessing this

proposed model, i.e. ETM, will be the next step. A proposal is

being drafted and will be submitted to the Public Authority for

Applied Education, in Kuwait, to implement this model for

two semesters, i.e. one academic year. It will be based on

teaching the Java programming, which is a module taught for

1st year Computer Science students.

The writers are planning to keep detailed logs of the entire

implementation process and will publish the final model and

results at the end of the implementation stage.

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.20, July 2015

21

Figure 2: Proposed enhanced teaching programming model

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.20, July 2015

22

The writers believe that the dynamic approach of scaffolding

feedback into the teaching model is key toward ensuring

flexibility and adaptability in future development of the ETM.

5. CONCLUSION
Teaching and learning programming is certainly challenging

for both students and teachers. Literature shows that a lot of

work has been done to improve this; however, it is evident

that little effect of this work has had impact on the actual

practice of teaching and learning of Software Development

programming skills. Therefore, this gap has been addressed in

this project to enhance the teaching and learning process of

programming to students.

Meta-analysis research methodology has been used due to its

effectiveness, i.e. McNamara (2007). In addition, to the

identified specific criteria for literature paper selection and

research critique. These criteria have enabled us to choose

relevant literature and properly critique it. This reflected

positively on the quality of research results obtained in this

paper. We classified the teaching programming literature

research into 3 categories: Teaching approach, Teaching

model and Teaching tool

Moreover, it is lucid that the software development industry

has not seen the fruition of this literature and not benefited

from it. We believes this is caused by the following factors:

•No authority available to enforce particular practices and

standards on how teaching models and tools should be used

•No official standards and guidance are available

•All successful results from tools and models only represent a

small sample of people and is not representative of the

learning community

•Most of the literature results does not provide statistics to

support their claims and as a result appear unconvincing

•A lot of the tools and models are based on experience or on

psychological learning theories. However, an integration

between both is ever seen anywhere

As a result, the proposed Enhanced Teaching Model (ETM)

combines several teaching approaches and models from

literature. Then, proposes using teaching tools to provide

goal-focused exercises, assess students' performance and

obtain feedback from the learning community. However, if

the focus of the teaching approach is to teach a specific

programming language, then a challenge rises to develop a

tool that provides exercises, assessment and feedback for

specific required programming language.

Finally, a proposal is being drafted to the Public Authority for

Applied Education, in Kuwait, to allow the implementation

and assessment of this model.

6. ACKNOWLEDGMENTS
Our thanks to the experts who have contributed towards

development of the template.

7. REFERENCES
[1] Kori, Külli, et al. (2015): The Role of Programming

Experience in ICT Students’ Learning Motivation and

Academic Achievement. International Journal of

Information and Education Technology Vol. 6.

[2] T. Hüsing et al. (2013). E-leadership, e-skills for

competitiveness and innovation vision, roadmap and

foresight scenarios final report. European Commision E-

Skills Vision.

[3] Ford, M. and Venema, S. (2010): Assessing the Success

of an Introductory Programming Course. Journal of

Information Technology Education 9:133-145.

[4] Thomas, L., Ratcliffe, M., Woodbury, J., Jarman,

E.(2002): Learning styles and performance in the

introductory programming sequence . SIGCSE '02

Proceedings of the 33rd SIGCSE technical symposium

on Computer science education

[5] Bornat, R., Dehnadi, S., and Simon (2008): Mental

models, consistency and programming aptitude. ACE

'08: Proceedings of the tenth conference on Australasian

computing education Vol. 78.

[6] Sleeman, D. (1986). The Challenges of Teaching

Computer Programming. Communications of the ACM.

29 (9). p.840-841

[7] Blayney, P. J. (2009). Knowledge gap? Accounting

practitioners lacking computer programming concepts as

essential knowledge. In G. Siemens and C. Fulford

(Ed.), Proceedings of World Conference on Educational

Multimedia, Hypermedia and Telecommunications (pp.

151-159). Chesapeake, VA: AACE.

[8] Topi, H., Valacich, J. S., Wright, R. T., Kaiser, K.,

Nunamaker, J. F., Sipior & J. C., et al. (2010). IS 2010:

Curriculum guidelines for undergraduate degree

programs in information systems. Communications of

the Association for Information Systems, 26, 359-428

[9] Ramalingam, V., LaBelle, D. & Wiedenbeck, S. (2004).

Self-efficacy and mental models in learning to program.

Association for Computing Machinery SIGCSE Bulletin,

36(3), 171-175

[10] Gonzalez, G. (2004). Constructivism in an introduction

to programming course. Journal of Computing Sciences

in Colleges, 19(4), 299-303.

[11] Robins, A., Rountree, J. & Rountree, N. (2003).

Learning and teaching programming: A review and

discussion. Computer Science Education, 13(2), 137-172

[12] ISMAIL, M. N., NGAH, N. A. & UMAR, I. N. (2010).

Instructional strategy in the teaching of computer

programming: a need assessment analyses. TOJET: The

Turkish Online Journal of Educational Technology,

volume 9 Issue 2, pp. 569–571

[13] Butler, M. & Morgan, M. (2007). Learning challenges

faced by novice programming students studying high

level and low feedback concepts. Proceedings ascilite

Singapore, pp. 99 – 107

[14] Smith, P. A. & Webb, G. I. (2000). The Efficacy of a

Low-Level Program Visualisation Tool for Teaching

Programming Concepts to Novice C Programmers.

Journal of Educational Computing Research, 22 (2), 27–

39

[15] Boroni, C. M.et al. (1996). Dancing with Dynalab. In

Proceedings of the 27th SIGCSE Technical Symposium

on CS Education. Philadelphia, February. pp. 135–139

[16] Rowe, G. R. (2000). VINCE— An on-line tutorial tool

for teaching introductory programming. British Journal

of Educational Technology, 31(4), 359–369

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.20, July 2015

23

[17] Fleury, A. E. (1993). Students’ beliefs about Pascal

programming. Journal of Educational Computing

Research, 9(3), 355–371

[18] Scheftic, C. & Goldenson, D. (1986). Teaching

programming methods and problem solving: the role of

programming environments based on structure editors. In

Proceedings of the National Educational Computing

Conference, pp.231–6

[19] Brusilovsky, P. (1994). Program visualisation as a

debugging tool for novices. In Proceedings of

INTERCHI ’93 (Adjunct proceedings) Amsterdam, 24 –

9April 1993, pp. 29–30

[20] Ranjeeth, S. & Naidoo, R. (2007). An investigation into

the relationship between the level of cognitive maturity

and the types of errors made by students in a computer

programming course. College Teaching Methods and

Styles Journal, 3, 31–40

[21] Adams, J.C. (1998). Chance-it: an OO capstone project

for cs-1, SIGCSE'98, 10-14

[22] Becker, K. (2001). Teaching with games: the

minesweeper and asteroids experience, J. Comput. Small

Coll, 17(2), 23-33

[23] Lorenzen, T. & Heilman, W. (2002). Cs1 and cs2: write

computer games in java! SIGCSE Bull., 34(4), 99-100

[24] Trono, J.A. (1994). Taxman revisited, SIGCSE Bull.,

26(4), 56-58

[25] Beck, K. (1999). Embracing change with extreme

programming. Computer, 32(10), 70-77

[26] Hedin, G., Bendix, L., & Magnusson, B.

(2003).Introducing software engineering by means of

Extreme Programming, Proceedings of the 25th

International conference on Software Engineering (pp.

586-593). Portland, Oregon: IEEE Computer Society

[27] Mills, G. (2000). Action research: a guide for the teacher

researcher. Upper Saddle River, New Jersey:Prentice-

Hall

[28] Williamsons, K., Burstein, F., & McKemmish

(2002).The two major traditions of research. In K.

Williamsons (Ed.), Research methods for students,

academics and professionals (2nd ed.). Wagga Wagga,

New South Wales: Centre for Information Studies,

Charles Sturt University

[29] Odekirk, E. (2000). “Analysing Student Programs, in

SIGCSE Bulletin: Conference Proceedings of the 5th

Annual SIGCSE/SIGUE Conference on Innovation and

Technology in Computer Science Education”, ITiCSE

2000, Vol. 32, No. 3, pg. 191-191, ACM Press

[30] Mayer, R.E. (1981). The psychology of how novices

learn computer programming. ACM Computing Surveys,

3, 121–141

[31] Perkins, D.N., Hancock, C., Hobbs, R., Martin, F. &

Simmons, R. (1986). Conditions of learning in novice

programmers. Journal of Educational Computing

research, 2, 37–56

[32] Linn, M.C. & Dalbey, J. (1985). Cognitive

consequences of programming instruction: Instruction,

access, and ability. Educational Psychologist, 20, 191–

206

[33] Perkins, D.N., Schwartz, S. & Simmons, R. (1988).

Instructional strategies for the problems of novice

programmers. In R.E. Mayer (Ed.), Teaching and

learning computer programming (pp. 153–178).

Hillsdale, NJ: Lawrence Erlbaum

[34] Lippert, R.C. (1989). Expert systems: Tutors, tools, and

tutees. Journal of Computer-Based Instruction, 16, 11–19

[35] Ramadhan, H. (1992). An intelligent discovery

programming system. In Proceedings of ACM

symposium on applied computing: Special track on

visuality in computing. Kansas City, KS

[36] Rosenberg, R. (1987). A critical analysis of research on

intelligent tutoring systems. Journal of Educational

Technology, 27, 7–13

[37] Mannila, L. & de Raadt, M. (2006). An objective

comparison of languages for teaching introductory

programming. In Proceedings of the 6th Baltic Sea

conference on Computing education research: Koli

Calling 2006 (pp. 32-37). ACM

[38] McIver, L., & Conway, D. (1996). Seven deadly sins of

introductory programming language design. In Software

Engineering: Education and Practice, 1996 Proceedings.

International Conference (pp. 309-316). IEEE

[39] Soares, A. (2014). Reflections on Teaching App

Inventor for Non-Beginner Programmers: Issues,

Challenges and Opportunities. Information Systems

Education Journal, 12(4), 56

[40] Tyler, J. (2011). App Inventor for Android: Build Your

Own Apps - No Experience Required! : Wiley

Publishing

[41] McNamara, C. (2007) Types of Research Methods.

SERVE Center

[42] Quinson, M. & Oster, G. (2014). The Programmer’s

Learning Machine: A Teaching System To Learn

Programming. Loria

[43] Lethbridge, T. (2014). Teaching Modeling using Umple:

Principles for the Development of an Effective Tool.

Software Engineering Education and Training

(CSEE&T)

[44] Ngo-Ye, T. & Park, S. (2014) MOTIVATING

BUSINESS MAJOR STUDENTS TO LEARN

COMPUTER PROGRAMMING – A CASE STUDY.

Proceedings of the Southern Association for Information

Systems Conference. AIS Electronic Library

[45] Horváth, R. & Javorský, S. (2013). New Teaching

Model for Java Programming Subjects. 5th World

Conference on Educational Sciences. 116. p. 5188–5193.

ScienceDirect

[46] Sarpong, K., Arthur, J. & Amoako, P. (2013). Causes of

Failure of Students in Computer Programming Courses:

The Teacher – Learner Perspective. International Journal

of Computer Applications. 77 (12). p.0975–8887. IJCA

Journal

[47] Brito, M. & Sá-Soares, F. (2013). Assessment frequency

in introductory computer programming

disciplines.Computers in Human Behaviour. 30. p.623–

628. Science Direct

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.20, July 2015

24

[48] Lethbridge, T., Mussbacher, G. & Forward, A. &

Badreddin, O. (2011). Teaching UML Using

Umple:Applying Model-Oriented Programming in the

Classroom.Software Engineering Education and Training

(CSEE&T). p.421-428. IEEE

[49] Vihavainen, A., Paksula, M. & Luukkainen, M. (2011).

Extreme Apprenticeship Method in Teaching

Programming for Beginners.Proceedings of the 42nd

ACM technical symposium on Computer science

education. p.93-98. ACM Digital Library

[50] Caspersen, M. & Bennedsen, J (2007). Instructional

Design of a Programming Course ⎯A Learning Theoretic

Approach. Proceedings of the third international

workshop on Computing education research. p. 111-122.

ACM Digital Library

[51] Pears, A., Seidman, S. & Malmi, L. & Mannila, L. &

Adams, E. & Bennedsen, J. & Devlin, M. & Paterson, J.

(2007). A Survey of Literature on the Teaching of

Introductory Programming. Working group reports on

ITiCSE on Innovation and technology in computer

science education.p.204-223. ACM Digital Library

[52] Leutenegger, S. & Edgington, J. (2007). A Games First

Approach to Teaching Introductory Programming.

Proceedings of the 38th SIGCSE technical symposium

on Computer science education.p.115-118. ACM Digital

Library

[53] Keefe, K., Sheard, J. & Dick, M. (2006). Adopting

XPPractices for Teaching Object Oriented Programming.

Proceedings of the 8th Australasian Conference on

Computing Education. 52. p.91-100. ACM Digital

Library

[54] Pillay, N. (2003). Developing Intelligent Programming

Tutors for Novice Programmers. ACM SIGCSE Bulletin.

35 (2). p.78-82. ACM Digital Library

[55] Grimes, D. A. & Schulz, K. F. (2002). Bias and causal

associations in observational research. The Lancet,

359(9302), 248-252.

[56] Jenkins, T. (2002). ON THE DIFFICULTY OF

LEARNING TO PROGRAM. 3rd Annual LTSN-ICS

Conference. University of Ulster, LTSN Centre for

Information and Computer Sciences

[57] Kanemune, S., Nakatani, T., Mitarai, R., Fukui, S. &

Kuno, Y. (2002). Dolittle — Experiences in Teaching

Programming at K12 Schools. The Second International

Conference on Creating, Connecting and Collaborating

through Computing. p.177-184. IEEE

[58] MILNE, I. & ROWE, G. (2002). Difficulties in Learning

and Teaching Programming—Views of Students and

Tutors. Education and Information Technologies. 7 (1).

p. 55-66. Springer Link

[59] Warren, P. (2001). TEACHING PROGRAMMING

USING SCRIPTING LANGUAGES. Journal of

Computing Sciences in Colleges. 7 (2). p.205-216. ACM

Digital Library

[60] Gal-Ezer, J. & Zeldes, A. (2000). Teaching Software

Designing Skills. Computer Science Education. 10 (1).

p.25-38. Taylor Francis Online

[61] Deek, F. & McHugh, J. (1998). A Survey and Critical

Analysis of Tools for Learning Programming. Computer

Science Education. 8 (2). p.130-178. Taylor Francis

Online

[62] BRUSILOVSKY, P., CALABRESE, E. &

HVORECKY, J. & KOUCHNIRENKO, A. & MILLER,

P. (1997). Mini-languages: a way to learn programming

principles. Education and Information Technologies. 2

(1). p.65-83. Springer Link

[63] SHNEIDERMAN, B. (1976). TEACHING

PROGRAMMING: A SPIRAL APPROACH TO

SYNTAX AND SEMANTICS. Computer and

Education. 1 (4). p.193-197. Science Direct

[64] Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M.

(2013). Learning computer science concepts with

scratch. Computer Science Education, 23(3), 239-264

[65] Wolz, U., Leitner, H. H., Malan, D. J., & Maloney, J.

(2009). Starting with Scratch in CS1.SIGCSE Bulletin,

41,2–3

[66] Maloney, J., Peppler, K., Kafai, Y., Resnick, M., &

Rusk, N. (2008). Programming by choice: Urban youth

learning programming with Scratch.SIGCSE Bulletin,

40, 367–371

[67] Wood, J.M. (2003).Research Lab Guide. MICR*3260

Microbial Adaptation and Development Web Site.

[Online] Available from:

http://www.uoguelph.ca/mcb/teaching/micr3260/research

_lab/guide.shtml. [Accessed: 22nd Jan 2015]

IJCATM : www.ijcaonline.org

