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ABSTRACT 

here this work is introducing the new technique using the 

improved texture enhanced framework for image denoising. 

This technique is fast as compared to the higher order singular 

value decomposition (HOSVD) as we have in the previous 

work. The HOSVD technique simply compose in a cluster, 

alike Patches of noisy image in 3D heap, work out HOSVD 

factors of this heap, handles these factors by stiff 

thresholding, and turn upside down the HOSVD transmute to 

yield the final resultant image. Whereas improved texture 

enhanced image denoising have proven to be effective and 

robust in many image denoising tasks. It is experimentally 

demonstrating approximately 5 percent improved PSNR 

characteristics of ITEID technique on gray scale images. The 

ITEID process yields state-of-the-art outcomes on gray 

images, than HOSVD image data denoising process at 

moderately great noise stages. 
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1. INTRODUCTION 
The image noise removable has a very prosperous history. An 
overabundance of distinct techniques has been offered, The 
image noise removable has a very prosperous history. An 

overabundance of distinct techniques has been offered, certain 
techniques we will analysis later. In present times, the 
transform-based methods mainly in combination through 
machine learning popularity have increased and achievements 

obtained on the basis of performance obtained. In this paper 
we have an uncomplicated graceful and useful algorithm that 

contributes to the impression of study a point wise shifting in 
term of transform corrupted image pixels with applying the 
nonlocal self-similarity of image. An effective explanation 

follows.  Assumed an image    which is the corrupted form of 

a basic clear image I, our objective is to improve a 

measurement of I from   . We consider a zero mean i.i.d. 

Gaussian distribution of unchanged, common standard 

deviation              like a noise model. The following 

steps are using in the noise removable algorithm: A heap 
consist of identical image patches is designed for all pixel and 
as a static spot size[15]. For each stack, higher order singular 

value decomposition (HOSVD) bases (3D for gray scale and 

4D for color) are derived[15]. All heaps is planned on top 

of the bases and coefficients through values under a hard 
threshold are reduced to get a bunch of hypotheses [4]. The 
patches are reconstructed in image area and the bunch of 
hypotheses at all pixel averaged to achieve a noised free 
image [4]. The just free parameter is the patch size. This 
HOSVD based image noise removable algorithm get near to 

the advanced performance. We express example outcomes of 
our method on a gray scale depraved via noise 

from        and a color version of the identical image in 

        noise on R, G, and B. Image noise generally occurs 

into the image transmission, quantization, acquisition and a 
many different processing steps. A digital image polluted 
through computer visualization tasks like classification, 

tracking, recognition, etc. and can affect several progressive 
image processing and noises leads to visible loss in image 
quality. The importance of image noise removable is therefore 
commonly accepted. Conventional image noise removable 
methods like as moving average filters, wavelet filter and 
Wiener filters banks are powerfully related to typical 

filtering[1].These filter created image noise removable 
methods are usually  of low difficulty  and can be simply 
achieved. But their performance is not all the time acceptable. 
By the improved computational capacity of modern 
processors, various advanced noise removable methods are 
now possible. With these method the Non-Local Means 

(NLM) technique [1], [2] has involved important awareness in 
current years. The Non-Local Means (NLM) remove the noise 
in an image pixel as the weighted sum of its corrupted 
neighbours, where every weight replicates the similarity 
among the local patch centred of the pixel to be noise 
removed and  patch centred of the neighbour pixel. NLM 

familiarizes the noise removable process for every pixel and 
thus out performs conventional methods [1].  

The proposed ITE noise removal method is a patch based 

method. Good priors of natural images are crucial to the 
success of an image denoising algorithm. A proper integration 

of different priors could further improve the denoising 
performance. In the proposed ITEID model, we adopt the 

following sparse nonlocal regularization term proposed in the 
non-locally centralized sparse representation (NCSR) model 

[14]. It should be noted that, for any gradient based image 
denoising model, we can easily adapt the proposed ITEID to it 

by simply modifying the Text Enhancement and adding an 
extra histogram specification operation. However, it is 

empirically found that our ITEID algorithm converges 
rapidly. The rest of the paper is termed as section 2 covers the 

HOSVD, sector 3 covers the proposed Improved Texture 

Enhanced Technique. Sector 4 with result analysis and sector 
5 concludes the paper work.  

2. HIGHER ORDER SINGULAR VALUE        

DECOMPOSITIO [4] 
Generally in the NL-SVD procedure let consider original 

uncontaminated patch is     and its reference patch      in the 

corrupted image. Now, suppose a situation where every K 

patches     which is corrupted forms of     . In this situation, 

we notice that             
  

            
       I. as a 

result for greater  K, we have  an opportunity  of  being  

capable  to  approximate the  singular value decomposition  

bases  of       and  thus  access the revelation estimator [4]. 
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But, such a condition is not  probable  in  most  natural 

images, and the patches that  succeed  as alike  will typically 

not be replica  of      modulo noise Therefore, we accept the 

following standard: If a bunch of patches are parallel to one 

another in the  corrupted  image, The noise removable should 

take this statement in the account and not noise removable 

them individually. With this is in mind, we cluster together 

identical patches and characterize them in the form of a 3D 

stack. The key point is that the cleaning is accomplished not 

only through the length and range of all singular (2D) patch, 

however similarly in the 3rd dimension so as to permit for 

similarity between intensity values at equivalent pixels of the 

dissimilar patches. The joint cleaning of several patches has 

been employed previous in the LJSCPW algorithm but with 

unchanging bases. On the other hand, in this work, we using 

this proposal to examine spatially adaptive bases. The 

advantage of our HOSVD methodology over NL-SVD, for 

de-noising a section of the boat image the application of 

coefficient thresholding for flattening of the structurally 

identical patches of size 64 by the NL-SVD and HOSVD 

transforms, respectively while the end two rows illustrate the 

cleaned patches after the averaging processes [15]. These 

figures disclose that HOSVD conserves the better textures on 

the tablecloth surface much finer than NL-SVD, which 

virtually removes those textures. We have also experimentally 

confirmed the importance of building the stack from similar 

patches: Randomly generated stacks create transforms that 

yield unclear and images.. 

3. HOSVD FOR DENOISING 
We generate a stack of      parallel patches of given a 

     reference patch      in the corrupted image    , Here, 

likeness is demarcated and hence the significance of K 

diverges from one pixel to another pixel. Now we indicate the 

stack as          . The HOSVD equation of given stack is,     

                      
      

      
                                 (1) 

Where                          and             are 

orthonormal matrices, and S is represent as 3D coefficient 

array of size        Here, the symbol     given  as nth  

mode tensor product well-defined in [12].The orthonormal 

matrices     ,      and      are, in repetition, calculated from 

the Singular Value Decomposition of the unfolding    ,      

and     respectively [12]. The exact Equation are  the from, 

                                               

                                                                   (2) 

Where      (which are corresponding representations 

for the HOSVD). For      matrices is O (K3). For 

computational  speed,  we impose the constraint  that      

The  patches of  Z  are  at that time  estimated onto  the 

HOSVD   transform.  The limitation for thresholding the 

transform coefficients are selected   to be             again. 

The stack of Z is at that time reassembled after inverting the 

transform [16], thereby filtering the every different patches 

into the collective and not take just reference patch.  This gives 

extra flattening on every patches, which was essential because 

of the upper limit of K≤ 30, dissimilar the case using NL-SVD, 

We as well enhance the HOSVD denoising through a Wiener, 

let Z be a stack of parallel patches of the HOSVD cleaned 

image and Zn be the equivalent stack of the blaring image. Let 

the coefficients of    and Zn on the HOSVD bases of   be 

indicated as    and   , individually. Formerly, the cleaned 

coefficients of Zn, denoted as c     are calculated followed 

through the typical transform inversion and averaging: 

    
    

 

          (3) 

We call this second stage HOSVD. 

4. IMPROVED TEXTURE ENHANCED 

TECHNIQUE 
The noisy observation y of an unidentified unpolluted image x 

is usually modeled as 

                                             (4) 

where v is the additive white Gaussian noise (AWGN) with 

zero mean and standard deviation  . The aim of image 

denoising is to estimate the wanted image   from  . One 

popular method to image denoising is the variational method, 

in which the denoised image is found by 

           
 

   
                         (5) 

Where      represents some regularization word and   is a 

positive constant. The detailed form of      depends on the 

employed image priors. One mutual problem of image noise 

removal methods is that the image well scale details such as 

texture structures will be over-smoothed. An over-smoothed 

image will have greatly frailer gradients than the original 

image. Naturally, a good estimation of   short of smoothing 

too much the textures should have a similar gradient 

distribution to that of  . With this inspiration, we propose a 

gradient histogram preservation (GHP) model for texture 

enhanced image denoising 

Assume that we have an approximation of the gradient 

histogram of  , represent by   . In order to make the gradient 

histogram of without noised image    nearly the same as the 

reference histogram   , we propose the following GHP based 

image denoising model:  

             
 

   
                      

  2               (6) 

          

5. DENOISING WITH GRADIENT 

HISTOGRAM PRESERVATION 
The proposed noise removal method is a patch based method. 

Let          be a patch extracted at position      
          , where    is the patch extraction operator and   is 

the number of pixels in the image. Given a dictionary  , we 

sparselyencode the patch   over  , resulting in a sparse 

coding vector Once the coding vectors of all image patches 

are obtained,the whole image   can be recreated from 

                          
  

      
  

   
  

                  (7) 

where   is the concatenation of all   . 

Good priors of natural images are crucial to the success of an 

image denoising algorithm. A proper integration of different 
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priors could further improve the denoising performance. For 

example, the methods in [9], [8], [10] integrate image local 

sparsity prior with nonlocal NSS prior and they have shown 

promising denoising results. In the proposed GHP model, we 

adopt the following sparse nonlocal regularization term 

proposed in the non-locally centralized sparse representation 

(NCSR) model [8]: 

 

                                            (8) 

 

where  
 
 is defined as the weighted average of   

 
: 

      
 
  
 
                                        (9) 

 

: and   
 
 the  coding vector of the     nearest patch (denoted 

by   ) to   . The weight is defined as  
 
 

 

 
     

 

 
     

   2 (ˆ and xiqdenote the current estimates of xi and xiq, 

respectively),where   is a predefined constant and   is the 

normalization factor. More detailed explanations on NCSR 

can be found in . 

By incorporating the above      into Eq. (8), the proposed 

GHP model can be expressed as, 

             
 

   
                    

    −  2          (10) 

                  

We use the method in [14] to construct the dictionary D 

adaptively. Based on the current estimation of image  , we 

cluster its patches into   clusters, and for each cluster, a PCA 

dictionary is learned. Then for each given patch, we first 

check which cluster it belongs to, and then use the PCA 

dictionary of this cluster as  . Although in Eq. (8) the   -norm 

regularization is imposed on      
 
 
 
 rather than     ,by 

introducing new variable       
 
, we can use the iterative 

shrinkage/thresholding method [11] to update    and then 

update        
 
This strategy is also used in [8] 

To get the solution to the sub-problem in Eq. (8), we first use 

a gradient descent method to update  : 

                
 

                                     (11) 

where  is a pre-specified constant. Then, the coding 

coefficients    are updated by 

  
       

      
                               (12) 

By using Eq. (6) to obtain  
 
, we further update    by 

  
     

        
       

                   (13) 

where S_=d is the soft-thresholding operator, and   is a 

constant to guarantee the convexity of the surrogate function 

[11]. Finally, we update        by  

                      
  

      
  

   
  

      
     

       

(14) 

Once the estimate of image x is given, we can update F by 

solving the following sub-problem: 

                                        (15) 

Considering the equality constraint            we can 

substitute   in        with        and the sub-problem 

become 

                                       (16) 

 

  
 

Fig. 1: Flowchart of the proposed texture enhanced image 

denoising framework. 
 

To solve this sub-problem, by introducing     
       thestandard histogram specification operator  can be 

used to obtain the only feasible monotonic non-parametric 

transform   which makes the histogram of T(d0) the same as 

hr. Note that                        

if the signs of x and y are the same. Since           
           to minimizing the squared error 

             , we should require that the sign of         

is the same as that of   . Thus, we define         as 

                                         (17) 

Given       , we then let              

The proposed iterative histogram specification (IHS) based 

GHP algorithm is summarized in Algorithm 1. It should be 

noted that, for any gradient based image denoising model, we 

can easily adapt the proposed GHP to it by simply modifying 

the gradient term and adding an extra histogram specification 

operation 

The GHP model in Eq. (10) is non-convex, and thus the 

proposed algorithm cannot be guaranteed to converge to a 

global optimum. However, it is empirically found that our 

GHP algorithm converges rapidly. Fig. shows an example 

convergence curve of the proposed GHP algorithm on image 

Bear (in Fig. 1). One can see that GHP converges within 15 

20 iterations. 

6. REGION-BASED GHP 
The histogram constraint in Eq. (7) is global. If the image 

consists of different regions with different textures, GHP may 

generate some false textures in the less textured areas. To 

address this problem, we can partition the noisy image into 

several regions, estimate the reference gradient histogram of 

each region, and then apply GHP to each region for denoising 

As shown in Fig. 4, we suggest two schemes to partition the 

noisy image, resulting in two region-based GHP variants. The 

first scheme (Fig. 4(a)), namely S-GHP, is to employ k-means 

clustering method to roughly partition the image into K 

homogeneous 

regions, while the second scheme (Fig. 4(b)), namely B-GHP, 

simply partitions the noisy image into,  

Noisy Image 

Gradient Histogram Estimation 

Graondient Histogram Preserving 

Itrative Histogram Specification 

Denosied Image 
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                                      (18) 

blocks with equal size. Denote by                the 

partitioned regions. Each region    has the corresponding 

reference gradient histogram    , and we have a function    

to process the pixels within region   : 

                               
 
              (19)  

We define an indicator function 

   
       

            

      
  

The        for S-GHP/B-GHP can then be defined as 

                 
                    (20) 

 

 

Fig. 2: Two image partition schemes. (a) The noisy image 

is partitioned into   homogeneous regions by k-means 

clustering. (b) The noisy image is partitioned into      

blocks  

7. REFERENCE GRADIENT 

HISTOGRAM ESTIMATION 
To apply the model in Eq. (7), we need to know the reference 

gradient histogram    of original image  . In this section, we 

propose a regularized deconvolution model to estimate the 

histogram h Assuming that the pixels in gradient image    are 

independent and distributed (i.i.d.), we can view them as the 

samples of a scalar variable, denoted by  . Then the 

normalized histogram of    can be regarded as a discrete 

approximation of the probability density function (PDF) of  . 

For the AWGN  , we can readily model its elements as the 

samples of an i.i.d. variable, denoted by  . Since    
         and let      can then be well approximated by the 

i.i.d. Gaussian with PDF [38] 

Since        , we have           . It is ready to 

model    as an i.i.d. variable, denoted by  , and we have 

         ". Let     be the PDF of  , and    be the PDF of 

 . Since   and are independent, the joint PDF         is 

                                                         (21) 

Then the PDF    is 

                                
 

 
     (22) 

If we use the normalized histogram    and    to approximate 

   and   , we can rewrite Eq. (21) in the discrete domain as, 

                                                       (23) 

where   denotes the convolution operator. Note that    can 

be obtained by discretizing  , and    can be computed 

directly from the noisy observation  . 

 

Obviously, the estimation of    can be generally modeled as a 

deconvolution problem 

                            
 
                  (24) 

where   is a constant and       is some regularization term 

based on the prior information of natural image’s gradient 

histogram. We consider two kinds of constraints on hx. First, 

it has been shown that px (i.e., the continuous counter part of 

  ) can be approximated by hyper-Laplacian distribution [13], 

[14], [15]. Considering that the real    might deviate from the 

hyper-Laplacian distribution to some extent, we only require 

that hx should be close to the hyper-Laplacian distribution: 

                                         (25) 

where C is the normalization factor, and   are the two 

parameters of the hyper-Laplacian distribution. More 

specifically, we let     [0.001,3] and    [0.02, 1.5]. Second, 

each element of    should be nonnegative. Based on these two 

constraints, gradient histogram estimation can be formulated 

as the following regularized de-convolution problem, 

   

                       
 
                   

 
          

(26) 

         

which can be re-written as: 

                   

          

                   

        
  

 

  

      
    

We iteratively update      
 ,      and   alternatively. Let 

                    is updated by 

   
                                           

  

                              
 

                                                                                           (27) 

here “•” denotes the element-wise multiplication, “ 
 

 
 ” denote 

s the element-wise division, and “∗” denotes the complex 

conjugate operator.   
  is updated by 

  
                  

  is updated by 

  
             

       
                             (28) 

  and   are updated based on gradient decent 

                                                    

  ( ),                                                                                   (29) 

               
                            

                        
 

     
 

 

8. EXPERIMENTAL   RESULTS 
All following simulations are done under the MATLAB 

r2010a environment with Intel Core CPU at 2.0 GHz. We 

display PSNR and SSIM values for denoising every image 

under independent        noise on all channel (where  
          ), in Tables 1. Just as done for gray scale images, 



International Journal of Computer Applications (0975 – 8887) 

Volume 121 – No.2, July 2015 

17 

for all values,   the   noisy   images   were   generated  by  

adding Gaussian noise  to  the  original image  and  converting 

the result   to  an  image   file  ([0-255] range).   We compare 

our results of proposed method with HOSVD we also 

implemented a Wiener filter step on top   of HOSVD,   which   

we   term   as HOSVD2.  

Table 1. PSNR Results for Color Image (and SSIM Value 

on Gray scale Versions) Corrupted by         

S.no HOSVD1 HOSVD2 ITEID 

1 24.995,0.646 25.327,0.671 27.577, 0.820 

2 28.278,0.711 28.426,0.718 28.800, 0.844 

3 28.654,0.736 28.900,0.745 30.896, 0.888 

4 29.654,0.803 29.551,0.811 32.305,0.909 

 

For HOSVD, we calculate the patch similarity independently 

on the three channels gained later PCA with the distance 

threshold           whereas in ITEID, One common 

problem of image denoising methods is that the image fine 

scale details such as texture structures will be over-smoothed 

 

 

 

 

 

An over-smoothed image will have much weaker gradients 

than the original image. Intuitively, a good estimation of 

desired image without smoothing too much the textures 

should have a similar gradient distribution to that of desired 

image. An improved gradient histogram preservation (IGHP) 

model for texture enhanced image denoising provides good 

result. As compared to HOSVD/HOSVD2 method that uses 

the distance threshold            .The patch-size used 

for all algorithms was    . 

9. CONCLUSION 
The Improved texture enhanced image denoising (ITEID) 

methods clearly outperformed the NL Means, IHOSVD and 

IHOSVD2. Its PSNR values are slightly higher than those of 

IHOSVD and IHOSVD2; however, it out-performed 

IHOSVD and IHOSVD2 on some images. Thus, the denoising 

performance is then evaluated by computing its mean and 

standard deviation in terms of PSNR and SSIM . 

10. REFERENCES 
[1] Buades, B. Coll, and J. Morel, “A review of image 

denoising algorithms, with a new one,” Multiscale 

Model. Simul., vol. 4, no. 2, pp. 490–530, 2005. 

[2] Buades, B. Coll, and J.-M. Morel, “A non-local 

algorithm for image denoises,” in IEEE Compu. Soc. 

Conf. Computer Vision and Pattern Recognition, Jun. 

2005, vol. 2, pp. 60–65, vol. 2. 

[3] L.  de   Lathauwer,  “Signal   Processing  Based   on   

Multilinear Algebra,” PhD dissertation, Katholieke 

Universiteit Leuven, Belgium,  1997 

[4] Ajit Rajwade, Anand Rangarajan and Arunava Banerjee, 

“Image Denoising Using the Higher Order Singular 

Value Decomposition” IEEE Transactions On Pattern 

Analysis and Machine Intelligence, Vol. 35, NO. 4, 

APRIL 2013. 

[5] Yue Wu, Brian Tracey, Premkumar Natarajan, and 

Joseph P. Noonan James–Stein Type Center Pixel 

Weights for Non-Local Means Image Denoising IEEE 

Signal Processing Letters, Vol. 20, No. 4, April 2013. 

[6] Wangmeng Zuo, Lei Zhang, Chunwei Song, David 

Zhang and Huijun Gao “Gradient Histogram Estimation 

and Preservation for Texture Enhanced Image 

Denoising” 

[7] Jeetesh kumar Rajak, and Achint Chugh. “Review on 

Image Denoising by center pixel weights in Non-Local 

Means and elegant patch-based, machine learning 

method using higher order singular value decomposition 

“IJCA 2015. 

[8] W. Dong, L. Zhang, G. Shi, and X. Li, “Nonlocally 

centralized sparse representation for image restoration,” 

IEEE Trans. Image Process., vol.22, no. 4, pp. 1620-

1630, Apr. 2013.  

[9] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. 

Zisserman, “Non-localsparse models for image 

restoration,” in Proc. Int. Conf. Comput. Vis.,pp. 2272-

2279, Sept. 29 2009-Oct. 2 2009.  

[10] J. Jancsary, S. Nowozin, and C. Rother, “Loss-specific 

training of nonparametricimage restoration models: a 

new state of the art,” in Proc.Eur. Conf. Comput. Vis., 

2012. 

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

Original Image Noisy Image 

HOSVD2 

 

HOSVD1 

ITEID Image 

Image 
Fig. 3. Left to right: Original image, noisy image 

(PSNR: 16.012) under of HOSVD (PSNR: 28.278), 

HOSVD2 (PSNR: 28.426), and denoised ITEID 

image (PSNR:32.305) 



International Journal of Computer Applications (0975 – 8887) 

Volume 121 – No.2, July 2015 

18 

[11] I. Daubechies, M. Defriese, and C. DeMol, “An iterative 

thresholdingalgorithm for linear inverse problems with a 

sparsity constraint,” Commun.Pure Appl. Math., vol. 57, 

no. 11, pp. 1413-1457, Nov. 2004. 

[12]  J. K. Patel and C. B. Read, “Handbook of the normal 

distribution,” NewYork: Marcel Dekker, 1982.  

[13] D. Krishnan, R. Fergus, “Fast image deconvolution using 

hyper-Laplacian priors,” in Proc. Neural Inf. Process. 

Syst., pp. 1033-1041,2009. 

[14]  T. S. Cho, C. L. Zitnick, N. Joshi, S. B. Kang, R. 

Szeliski, and W. T.Freeman, “Image restoration by 

matching gradient distributions,” IEEE.Trans. Pattern 

Anal. Mach. Intell., vol. 34, no. 4, pp. 683-694, 

Apr.2012.  

[15] T. S. Cho, N. Joshi, C. L. Zitnick, S. B. Kang, R. 

Szeliski, and W. T.Freeman, “A content-aware image 

prior,” in Proc. Int. Conf. Compu. Vis.Pattern Recognit., 

pp. 169-176, 13-18 June 2010. 

[16] Donoho and I. Johnstone, “Ideal Spatial Adaptation by 

Wavelet Shrinkage,” Biometrika, vol. 81, pp. 

 

IJCATM : www.ijcaonline.org 


