
International Journal of Computer Applications (0975 – 8887) 

Volume 121 – No.19, July 2015 

17 

Implementation and Performance Analysis of 
Academic_MapReduce Algorithm (AcdMR) 

Ratnamala Mantri, Ashwini Jewalikar 

Asst. professor 
Pune institute of computer technology 

Pune. 
 

 

ABSTRACT 
In current scenario all organizations whether it is 

commercial, financial or educational, face the problem of 

maintaining and processing huge data. If we consider the 

case of educational institute, here thousands of student 

attendance records are generated per day. This will 

multiply per day, week and year as a result generates vast 

amount of data and subsequently increases the processing 

time apart from cost.  In order to process the data 

efficiently, we have proposed MapReduce based algorithm 

(AcdMR) for processing of an academic data in our first 

paper. This work describes practical implementation of 

AcdMR and   performance analysis based on distinct 

cluster configuration over dataset size (1GB, 5GB). 

Keywords 
Big Data, MapReduce, Data analysis, Parallel 

programming, Distributed computing, Hadoop, 

1. INTRODUCTION 
Apache Hadoop ,well known platform for Big Data  

processing, is an open source software framework. Hadoop 

uses large clusters  i.e. Cluster of thousands of nodes.  

Two major parts of Hadoop are MapReduce and HDFS. 

HDFS is a hadoop distributed file system. It is designed for 

storing Big files which can be megabyte, gigabyte or 

terabyte in size. Files are stored in the form of blocks with 

64 MB default   block size .It also allow to replicate data  

with default replica factor 3. Hdfs has two types of node in  

cluster, operating in master-slave environment: a 

Namenode (the master) and  number of Datanodes 

(slaves). File system Metadata is maintained by Namenode 

and actual data is stored on Datanodes in the form of 

blocks. Hadoop provides command line interface and 

many other interfaces   to interact with HDFS[3,8].   

MapReduce is a distributed and parallel programming 

framework .It is used to compute problems that can be 

parallelized by mapping a function over a given dataset 

and then combining the results using Reduce [2,4]. Map 

reduce framework sits on top of the HDFS. 

Hadoop is an open source implementation of MapReduce 

which process vast amount of data on large clusters 

(thousands of nodes) of commodity hardware in a reliable, 

fault-tolerant manner .Hadoop cluster configure two nodes 

a Jobtracker and many tasktracker to run Mapreduce Job. 

Job is submitted to the Job Tracker, it pushes job to the 

available Task Trackers nodes in the cluster The 

JobTracker, a program which coordinates and manages the 

jobs. It accepts job submissions from users, provides job 

monitoring and control, and manages the distribution of 

tasks in a job to the Task Tracker nodes. The framework 

takes care of scheduling tasks, monitoring them and re-

executes the failed tasks [3,8].  

2.  BACKGROUND 
MapReduce was developed within Google for processing 

of large amounts of raw data. In order to process large data 

in a reasonable time data is distributed across thousands of 

machines. This distribution implies parallel computing 

since each computation performed on each CPU but with 

different data set [5]. It is Schema free and user has to 

implement only two functions Map and Reduce without 

knowledge of parallel and distributed systems [6]. 

 Two Comparison approaches to large scale data analysis 

using Map Reduce and parallel DBMS shows that there is 

no question that MR does a superior job of minimizing the 

amount of work that is lost when a hardware failure occurs 

[7]. In any educational institute, if we consider case of 

students attendance student has on an average six 

attendance records per day.  With 2500 students, this 

Results in around 15000 attendance records per day, which 

in turn generates vast amount of data [1]. 

2.1. MapReduce 
MapReduce framework operates exclusively on key & 

value pairs, i.e. input to the job is in the form  key & value 

pairs and generated output is a   list of key & value pairs.  

Map input, the value is a chunk of data file  and the key is 

generally the offset of the chunk from the beginning of the 

data file. The output consists of a collection of key-value 

pairs which are input for the reduce function. The content 

of the key-value pairs depends on the specific 

implementation [8]. Computing stages of MapReduce are 

shown in Figure 1 [1]. 

The MapReduce job is configured by setting different 

parameters specific to the job. The user can also specify 

the number of maps and reducer tasks. The user also has to 

specify the format of the input, and the locations of the 

input. The Hadoop Mapreduce framework uses this 

information to split of the input into several pieces. Each 

input piece is fed into a user-defined map function. The 

map tasks process the input data and emit intermediate 

data.    

   Map (k1, v1) → list (K2, v2) 



International Journal of Computer Applications (0975 – 8887) 

Volume 121 – No.19, July 2015 

18 

Figure 1: Computing stages of MapReduce 

The map and reduce phase does the sorting of the data and 

storing in partitions as per reducer operations. The default 

practitioner  present in Hadoop is HashPartitioner. Users 

can optionally specify a combiner, for aggregation of 

intermediate outputs for reducing the data transfer 

overhead [3,8]. After sorting, MapReduce framework 

collects all pairs with the same key from all lists and 

groups them together, which helps to generate different 

keys and Reduce function can be applied parallel on each 

group, which in turn produces a collection of values. 

Reduce (k2, list (v2)) → list (v3). 

Output of the Reduce method is then stored in text file, 

which is stored in  Hadoop distributed file system(HDFS). 

2.2.  MapReduce Programming 
The mapper and Reducer are two main component of 

MapReduce. Mapper and Reducer interfaces, typically 

they are implemented to provide the map and reduce 

methods. 

Since Hadoop APIs are available in many languages, we 

have used Java .MapReduce job is initialized by creating 

an object of Configuration class. Methods like 

setJarByClass, setOutputKeyClass, setOutputValueClass, 

setMapperClass,  setReducerClass etc.. are invoked to set 

different parameters.  

The setOutputKeyClass() and setOutputValueClass() 

identifies the data type emitted by the reducer. The 

assumption is made for these output types will be mapped 

default. If the assumption is not true, these methods are 

override in the JobConf class. InputFormat controls the 

use of input types fed to the mapper. 

 

 

3. ACADEMIC MapReduce 

ALGORITHM (AcdMR) 

In this section we demonstrated how MapReduce based 

algorithm analyze the Students attendance data .Every 

attendance record contains following information. 

Academic_Year(AY), Branch(Br), Student_id(Sid), Class 

(Cl), Subject_id(Sbid), Date(Dt), Attendance (1-Present, 0-

Absent)  

  Here we are processing the data with different keys. 

Equation 1 models the input.txt file, which is input for the 

MapReduce. This file is stored in Hadoop distributed file 

system (HDFS)                  

Equation 1: input.txt Input= Academic_Year(AY) X 

Branch(Br) X  Student_id(Sid) X Class (Cl) X Subject(Sbid) 

X Date(Dt) X Attendance  

Input may be a partial Cartesian product . 

Some assumptions are made, Sid (Student_id) is taken 

instead of his (name+ roll no.), each key is formed along 

with Academic_Year(AY), Branch. In attendance, 1-

Present, 0-Absent [1].  

Following MapReduce based algorithm is designed to 

find students whose subject wise attendance is less than 

say 50%. 

Firstly we describe working of an algorithm, each map 

function processes different data chunk of input file.  For 

each record or line of input data, Ti, 1≤i≤N, key will be 

Prepared Ki ,1≤i≤N, (N is no of lectures conducted ). The 

case, calculating subject wise attendance of the student 

then Student_id X Subject_id  is a composite key. For each 

key Ki associated value will be taken from corresponding 

attendance field (present or absent). The output of Map 

function is   list of <keyi’, valuei’> pair. All pairs with the 

same key from all lists are collected and groups them 

together in MapReduce framework, thus creating one 

http://hadoop.apache.org/docs/current/api/org/apache/hadoop/mapreduce/lib/partition/HashPartitioner.html


International Journal of Computer Applications (0975 – 8887) 

Volume 121 – No.19, July 2015 

19 

group for each one of the different generated keys < keyi’, 

list(valuei’)>, 1≤i≤N. 

 

Each reducer is responsible for processing the list of values 

associated with a different key and generate the output in 

key value pair. In this input key key’ is not processed only 

their lists of values are processed. 
 
//Acd_MapReduce algorithm for subjectwisw attendence 

Job_Subjectwise_Map(key,value) 

//(key,value) 
   student_atted(S)=getstudent_atted(value); 

    for each stud_atted(S) do 

  key'=S.Sid +S.Sbid 

  value'=S.Attendance 

  emit(key', value') 

  end           //for loop 
End             //Map method 

Job_Subjectwise_Reduce(key',list(value')) 

//(key', value') 
    int count=0,sum=0; 

   for each value' in the list do 

  count++; 
  sum+=value'.get(); 

  value"=sum/count; 

end //for loop 
  

if(value’’<50) 

 emit(key' ,value") 
End     //Reduce method 

 

 

4. EXPERIMENTAL SETUP 
Experiment has been carried out for each dataset size (1GB 

and 5GB). Each dataset has been processed on five 

different clusters. The numbers of reducers is set to 

number of nodes in the cluster (Default is 1) to speed up 

the execution. For each execution processing time is 

recoded in seconds. 

Table 1.Node configuration 

Processor Intel core 2 Duo 2.22GHz 

L1 cache 2048 KB 

RAM 2GB 

Operating system Ubuntu 10.04 

Mapreduce 

environment 

Hadoop-1.2.1, Sun Java 6 

 

Hadoop cluster has been set up using 5 nodes as shown in 

figure 2 .It uses single rack topology. Master is designated 

as NameNode and Jobtracker. Slaves are designated as 

DataNodes and Tasktracker. Table 1 illustrates system 

configuration for nodes. 

 

Figure2: Experimental setup 

Performance analysis has been carried out over distinct 

cluster configuration corresponding to 1, 1+1, 1+2, 1+3, 

1+4 as shown in Table 2. Here 1 indicates single node 

cluster means master and slaves are on same machine. 1+1 

is one master and two slaves. 1+2 one master and three 

slaves. So in general 1+n is 1 master and n+ 1 slave. 

Table 2:Cluster Configuration 

Cluster Id Cluster size 

C1 1 

C11 1+1 

C12 1+2 

C13 1+3 

C14 1+4 

5. RESULTS & DISCUSSION 
Table 3 and 4 shows processing time of AcdMR job with 1 

GB and 5GB size of dataset respectively. 

Table3. Processing time for Default Vs modified 

configuration parameter (1GB) 

Cluster ID 

Default 

processing 

time(sec) 

Improved  

processing 

time(sec) 

Computing 

speed 

C1 135 135 1 

C11 116 116 1.16 

C12 82 72 1.88 

C13 75 62 2.18 

C14 67 54 2.50 

 

Computing speed for given cluster is calculated by taking 

the ratio improved response time of given cluster to time 

required on single node for same data size. 

Ideal performance of hadoop scales linearly i.e. computing 

speed should increase linearly with the increase of cluster 

size used for computation. 

Table4. Processing time for Default Vs modified 

configuration parameter (5GB) 

 

Graph 1 shows to get Hadoop Performance, dataset size 

must be larger. One observation is made that slow network 

communication affects the performance. 

 

Cluster  ID 

Default 

processing 

time(sec) 

Improved  

processing 

time(sec) 

Computing 

speed 

C1 565 565 1 

C11 547 547 1.03 

C12 380 300 1.9 

C13 350 260 2.17 

C14 300 190 2.97 



International Journal of Computer Applications (0975 – 8887) 

Volume 121 – No.19, July 2015 

20 

 

Graph1:Speedup curve for dataset size (1GB and 5GB)

                                                                                  

6. CONCLUSION 
This work implemented efficient processing of vast 

amount of academic data using Hadoop. We have focused 

on Processing of student’s attendance with different keys. 

As a proof of performance analysis, benchmarking is done 

based on distinct cluster configuration over dataset size 

(1GB, 5GB). Result shows better performance is obtained 

by selecting number of reducer tasks value over default 

value. As expected, results in table shows the processing 

time to complete each experimental decreased (Processing 

speed increased) for a given data size when number of 

nodes increased. It has been observed that Hadoop 

produces effective results as data size increases. 

7. REFERENCES 
[1] Ratnamala Mantri, Rajesh Ingle and Prachi Patil, 

“SCDP: Scalable, Cost –Effective, Distributed and 

Parallel Computing Model for Academics,” 

ICNCS,Vol 5, 77-80, 2011. ISBN 978-1-4244-8677-9 

published by IEEE. 

[2] Maryam  ontagora,  oracio  on   le –   le , 

“Benchmarking a   MapReduce Environment on a 

Full  irtuali ation Platform,” 2010  IEEE   

International Conference on Complex, Intelligent and  

Software Intensive Systems,page-433-438,2010 

[3] Tom White, “Hadoop: The definitive guide,” O'Reilly 

Media / Yahoo Press, October 2010. 

[4] J. Dean and S.  hemawat, “MapReduce: Simplified 

data Processing on large clusters,” in OSDI’04. San 

Francisco: USENIX, Dec. 2004, pp. 137–150. 

[5]  oogle Code University, “Introduction to Parallel 

Programming and MapReduce”, 

http://code.google.com/edu/parallel/mapreducetutoria

l.html, Nov 2010. 

[6] Shimin Chen, Steven W. Schlosser, “Map-Reduce 

Meets Wider Varieties of   Applications,” research at 

Intel, pages 1- 8, 2008. 

[7] Andrew Pavlo, Erik Paulson, Alexander Rasin, “A 

Comparison of Approaches to Large-Scale Data 

Analysis,” ACM SI MOD’09, June 29–July 2, 2009. 

[8] The Apache Software Foundation, “ adoop Map-

Reduce Tutorial,”  adoop Project, 

https://hadoop.apache.org/docs/r1.0.4,  Feb. 2013 . 

 

 

0

0.5

1

1.5

2

2.5

3

3.5

C1 C11 C12 C13 C14

Clusted ID

C
om

pu
tin

g 
sp

ee
d

Computing

spped 1GB

Computing

speed 5GB

IJCATM : www.ijcaonline.org 

http://shop.oreilly.com/product/0636920010388.do#tab_04_2

