
International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.18, July 2015

14

Pollard RHO Algorithm for Integer Factorization

and Discrete Logarithm Problem

Nagaratna Hegde, PhD
Professor,

Vasavi College of Engineering,
Hyderabad-500031, India

P.Deepthi
Assistant Professor,

Bhoj Reddy Engineering College for Women,
Hyderabad-500059, India

ABATRACT

Security is must everywhere. We have to secure our data at

all places like online banking, e-commerce etc.,

Cryptography doesn't have to be so cryptic. AES, DES,

RSA, ECC -- there are so many ways to encrypt our data.

Example: company's protecting customer credit card

information, securing remote user connections to our

network or protecting our intellectual property from digital

piracy, we're using encryption every day. In 1980s, there

was only one real choice -- the Data Encryption Standard

(DES). Today, we have a broad selection of stronger, faster

and better-designed algorithms. Now, the problem is to sort

out which algorithm to be used. Elliptic curve

cryptography (ECC) is one of the most powerful but least

understood types of cryptography in wide use today. An

increasing number of websites make extensive use of ECC

to secure everything from customers HTTPS connections

to how they pass data between data centers. So, it’s

important for end users to understand the technology

behind any security system in order to trust it.

General Terms

Cryptography, Security, Elliptic curve cryptography

Keywords

Discrete logarithm problem, elliptic curve, integer

factorization, pollard rho.

1. INTRODUCTION
Public key cryptography was invented in 1976 by

Whitfield Diffie and Martin Hellman. It is also called as

Diffie-Hellman encryption and asymmetric key encryption

because it uses two keys instead of one key (symmetric

encryption). An asymmetric cryptographic system uses two

keys, one is a public key which is known to everyone and

other one is a private or secret key known only to the

recipient of the message. An important element to the

public key system is that the public and private keys are

related in such a way that only the public key can be used

to encrypt messages and only the corresponding private

key can be used to decrypt the message. It is difficult to

find the private key if you know the public key.

Public-key systems, such as Pretty Good Privacy (PGP),

are becoming popular for transmitting information via the

Internet. They are extremely secure and relatively simple to

use. The only difficulty with public-key systems is that you

need to know the recipient's public key to encrypt a

message for him or her.

Figure: 1 Public Key Cryptography

2. RSA
The RSA algorithm is the most popular and best known

public key cryptography system. Its security relies on the

fact that factoring is slow and multiplication is fast. In

general, a public key encryption system has two

components, a public key and a private key. Encryption

works by taking a message and applying a mathematical

operation to it to get a random-looking number. Decryption

takes the random looking number and applies a different

operation to get back to the original number. Encryption

with the public key can only be undone by decrypting with

the private key.

Computers don't do well with arbitrarily large numbers. We

can make sure that the numbers we are dealing with do not

get too large by choosing a maximum number and only

dealing with numbers less than the maximum. Any

calculation that results in a number larger than the

maximum gets wrapped around to a number in the valid

range.

In RSA, this maximum value is obtained by multiplying

two random prime numbers. The public and private keys

are two specially chosen numbers that are greater than zero

and less than the maximum value, call them public (pub)

and private (priv). To encrypt a number you multiply it by

itself pub times, making sure to wrap around when you hit

the maximum. To decrypt a message, you multiply it by

itself priv times and you get back to the original number. It

sounds surprising, but it works. When discovered this

property was a big breakthrough.

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.18, July 2015

15

To generate a RSA key pair, first randomly pick any two

prime numbers to obtain the maximum (max). Then pick a

number to be the public key pub. If you know the two

prime numbers, you can compute a corresponding private

key priv from this public key. This is how factoring relates

to breaking RSA — factoring the maximum number into its

component primes allows you to compute someone's

private key from the public key and decrypt their private

messages.

Let's see this with an example. Take the prime numbers 13

and 7, their product gives us our maximum value of 91.

Let's take our public encryption key to be the number 5.

Then using the fact that we know 7 and 13 are the factors

of 91 and applying an algorithm called the Extended

Euclidean Algorithm, we get that the private key is the

number 29.

These parameters (max: 91, pub: 5; priv: 29) define a fully

functional RSA system. You can take a number and

multiply it by itself 5 times to encrypt it, and then take that

number and multiply it by itself 29 times and you get the

original number back.

These factoring algorithms get more efficient as the size of

the numbers being factored get larger. As the number gets

larger (i.e. the key's bit length) the gap between the

difficulty of factoring large numbers and multiplying large

numbers is shrinking. As the resources available to decrypt

numbers increase, the size of the keys needs to grow even

faster. This is not a sustainable situation for mobile and

low-powered devices that have limited computational

power. The gap between factoring and multiplying is not

sustainable in the long term.

3. ELLIPTIC CURVE
After the introduction of RSA and Diffie-Hellman,

researchers explored other mathematics-based

cryptographic solutions looking for other algorithms

beyond factoring that would serve as good Trapdoor

Functions. In 1985, cryptographic algorithms were

proposed based on an esoteric branch of mathematics

called elliptic curves.

What is an elliptic curve exactly: Unfortunately, unlike

factoring something we all had to do for the first time in

middle school most people aren't as familiar with the math

around elliptic curves.

An elliptic curve is the set of points that satisfy a specific

mathematical equation. The equation for an elliptic curve

looks something like this:

y2 = x3 + ax + b

That graphs to something that looks a bit like this:

Figure: 2 Elliptic Curve

There are other representations of elliptic curves, but

technically an elliptic curve is the set of points satisfying

an equation in two variables with degree two in one of the

variables and three in the other. An elliptic curve is not just

a pretty picture; it also has some properties that make it a

good setting for cryptography.

4. ELLIPTIC CURVE CRYPTO

GRAPHY (ECC)
The properties and functions of elliptic curves have been

studied in mathematics for 150 years. The use of elliptic

curve within cryptography was first proposed in 1985,

(separately) by Neal Koblitz from the University of

Washington, and Victor Miller at IBM. An elliptic curve is

not an ellipse (oval shape), but is represented as a looping

line intersecting two axes (means lines on a graph used to

indicate the position of a point). ECC is based on

properties of a particular type of equation created from the

mathematical group (a set of values for which operations

can be performed on any two members of the group to

produce a third member) derived from points where the

line intersects the axes. Multiplying a point on the curve by

a number will produce another point on the curve, but it is

very difficult to find what number was used, even if you

know the original point and the result. Equations based on

elliptic curves have a characteristic that is very valuable for

cryptographic purposes: they are relatively easy to perform,

and extremely difficult to reverse.

5. ELLIPTIC CURVE DISCRETE

LOGARITHM
The elliptic curve discrete logarithm is the hard problem

under elliptic curve cryptography. Despite almost three

decades of research, mathematicians still haven't found an

algorithm to solve this problem that improves upon the

naive approach. This means that for numbers of the same

size, solving elliptic curve discrete logarithms is

significantly harder than factoring. Since a more

computationally intensive hard problem means a stronger

cryptographic system, it follows that elliptic curve

cryptosystems are harder to break than RSA and Diffie-
Hellman.

To visualize how much harder it is to break, Lenstra

recently introduced the concept of "Global Security." You

can compute how much energy is needed to break a

cryptographic algorithm, and compare that with how much

water that energy could boil. This is a kind of

cryptographic carbon footprint. By this measure, breaking

a 228-bit RSA key requires less energy to than it takes to

boil a teaspoon of water. Comparatively, breaking a 228-bit

elliptic curve key requires enough energy to boil all the

water on earth. For this level of security with RSA, you'd
need a key with 2,380-bits.

With ECC, you can use smaller keys to get the same levels

of security. The key size should be small because more and

more cryptography is done on less powerful devices like

mobile phones. Multiplying two prime numbers together is

easier than factoring the product into its component parts,

when the prime numbers start to get very long even just the

multiplication step can take some time on a low powered

device. If you continue to keep RSA secure by increasing

the key length the cost will increase and slower

cryptographic performance on the client. ECC appears to

offer a better cryptography: high security with short, fast

keys.

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.18, July 2015

16

5.1. Elliptic curves in action: Applications
After a slow start, elliptic curve based algorithms are

gaining popularity and the pace of adoption is accelerating.

Elliptic curve cryptography is now used in a wide variety

of applications: the U.S. government uses it to protect

internal communications, the Tor project uses it to help

assure anonymity, it is the mechanism used to prove

ownership of bitcoins, it provides signatures in Apple's

iMessage service, it is used to encrypt DNS information

with DNS Curve, and it is the preferred method for

authentication for secure web browsing over SSL/TLS.

Cloud Flare uses elliptic curve cryptography to provide

perfect forward secrecy which is essential for online

privacy. First generation cryptographic algorithms like

RSA and Diffie-Hellman are still the norm in most areas,

but elliptic curve cryptography is quickly becoming the go-

to solution for privacy and security online.

6. THE ELLIPTIC CURVE DISCRETE

LOGARITHM PROBLEM
In the multiplicative group Zp*, the discrete logarithm

problem is: given elements r and q of the group, and a

prime p, find a number k such that r = qk mod p. If the

elliptic curve groups is described using multiplicative

notation, then the elliptic curve discrete logarithm problem

is: given points P and Q in the group, find a number that

Pk = Q; k is called the discrete logarithm of Q to the base P.

When the elliptic curve group is described using additive

notation, the elliptic curve discrete logarithm problem is:

given points P and Q in the group, find a number k such

that Pk = Q

Example:

In the elliptic curve group defined by

y2 = x3 + 9x + 17 over F23,

What is the discrete logarithm k of Q = (4, 5) to the base P

= (16, 5)?

One way to find k is to compute multiples of P until Q is

found. The first few multiples of P are:

P = (16,5) 2P = (20,20) 3P = (14,14) 4P = (19,20) 5P =

(13,10) 6P = (7,3) 7P = (8,7) 8P = (12,17) 9P = (4,5)

Since 9P = (4, 5) = Q, the discrete logarithm of Q to the

base P is k = 9.

In a real application, k would be large enough such that it

would be infeasible to determine k in this manner.

As far as this problem is concerned it is very hard to solve

quickly. Most people have tried hard to solve discrete

logarithm problem but not succeeded. It's easy to write a

slow program to solve the discrete log problem.

7. POLLARD RHO
Pollard's rho algorithm is a special-purpose integer

factorization algorithm. It was invented by John Pollard in

1975. It is particularly effective for composite numbers

having a small prime factor.

The ρ algorithm is based on Floyd's cycle-finding

algorithm and on the observation that (as in the birthday

problem) t random numbers x1, x2, ... , xt in the range [1, n]

will contain a repetition with probability P > 0.5.

Pollard's Rho Algorithm is a very interesting and quite

accessible algorithm for factoring numbers. It is not the

fastest algorithm by far but in practice it outperforms trial

division by many orders of magnitude. It is based on very

simple ideas that can be used elsewhere.

Pollard's rho factoring algorithm is a special-purpose

algorithm for finding small non-trivial factors of an integer.

Have a look at following proposition:

Let f: S→S be a random function, where |S| = n. Let further

be x0 ∈ S, at random. Consider the sequence x0, x1, x2, ...

defined by xi+1 = f(xi). Since S is finite, the sequence must

eventually cycle and be composed of a tail.

For finding out the length of the cycle, Floyd's cycle-

finding algorithm is used:

In this method one starts with the pair (x1 , x2) and

iteratively computes (xi , x2i) from the previous pair (xi-1 ,

x2i-2) until a duplicate xm = x2m appears for some m. If the

tail of the sequence has length λ and the cycle has length μ,

so the first time when xm = x2m is when m = μ (1 + λ / μ).

Now Floyd's algorithm is utilized by Pollard's rho

algorithm to find such a duplicate in the sequence of

integers y0, y1, y2, ..., yi ∈ Z ∀ i. That sequence is defined

by: y0 = 2, yi+1 = f(yi) = (yi
2 + 1) mod p, i ≥ 0. Now Floyd's

algorithm is used to find ym and y2m with ym ≡ y2m (mod p).

Since p divides n, but is unknown, this is done by

computing the terms yi mod n and testing whether is gcd

(ym - y2m , n) > 1. If such an m is found and if gcd (ym -

y2m , n) < n, then a non-trivial factor of n is obtained.

7.1. Algorithm
The algorithm takes as its inputs n, the integer to be

factored and g(x), a polynomial p(x) computed modulo n.

This will ensure that if p|n, and x ≡ y mod p, then g(x) ≡

g(y) mod p. In the original algorithm, g(x) = x2 - 1 mod n,

but nowadays it is more common to use g(x) = x2 + 1 mod

n. The output is either a non-trivial factor of n, or failure.

It performs the following steps:

1. x ← 2; y ← 2; d ← 1;

2. While d = 1:

 a. x ← g(x)

 b. y ← g(g(y))

 c. d ← gcd(|x - y|, n)

3. If d = n, return failure.

4. Else, return d.

Note that this algorithm may fail to find a non-trivial factor

even when n is composite. In that case, you can try again,

using a starting value other than 2 or a different g(x). The

name ρ algorithm comes from the fact that the values of x

(mod d) eventually repeat with period d, resulting in a ρ

shape when you graph the values.

8. POLLARD RHO ALGORITHM FOR

DISCRETE LOGARITHM
Pollard's rho algorithm for logarithms is an algorithm

introduced by John Pollard in 1978 for solving the discrete

logarithm problem analogous to Pollard's rho algorithm for

solving the Integer factorization problem.

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.18, July 2015

17

Algorithm

Let G be a cyclic group of order p, and given

 in G,

 and a partition

Let

be a map

and define maps

and

by

Inputs 'a' a generator of G, 'b' an element of G

Output An integer x such that ax = b, or failure

 1. Initialize

 a0 ← 0

 b0 ← 0

 x0 ← 1 ∈ G

 i ← 1

 2. xi ← f(xi-1), ai ← g(xi-1,ai-1),

 bi ← h(xi-1,bi-1)

 3. x2i ← f(f(x2i-2)), a2i ← g(f(x2i-2),g(x2i-2 ,a2i-2)),

 b2i ← h(f(x2i-2),h(x2i-2,b2i-2))

 4. If xi = x2i then

 r ← bi - b2i

 If r = 0 return failure

 x ← r -1 (a2i - ai) mod p

 return x

 If xi ≠ x2i then i ← i+1, and go to step 2.

9. CONCLUSION
Many symmetric and asymmetric algorithms can be used

for encryption, decryption, key exchange and digital

signature. To break the prime factors of RSA algorithm we

can use pollard rho integer factorization algorithm. As we

have moved from RSA to elliptic curve cryptography

because of its small key sizes we are trying to use pollard

rho algorithm for discrete logarithms, which can be used to

break the points on the elliptic curve.

In future a pollard rho algorithm can be modified to break

elliptic curve cryptography.

10. REFRENCES
[1] The Discrete Logarithm Problem. Available online:

http://modular.math.washington.edu/edu/124/lectures/

lecture8/html/node5.html

[2] G Wojtenko, “Statistical properties of ECC-point and

its impact on ECDLP”,

https://eprint.iacr.org/2007/092.pdf

[3] Mandy Zandra Seet, “ELLIPTIC CURVE

CRYPTOGRAPHY Improving the Pollard-Rho

Algorithm”,

https://www.maths.unsw.edu.au/sites/default/files/man

dyseetthesis.pdf

[4] Pollard's rho algorithm. Available online:

http://en.wikipedia.org/wiki/Pollard_rho_algorithm

[5] Factoing Large Numbers, A Great Way to Spend a

Birthday. Available online:

http://www4.ncsu.edu/lrbosko/Publications/Rho.pdf

[6] Connelly Barnes “Integer Factorization Algorithms”

http://www.connellybarnes.com/documents/factoring.

pdf

[7] Pollard rho Factorization Method. Available online:

http://mathworld.wolfram.com/PollardRhoFactorizati

onMethod.html

[8] Computational Number Theory and Algebra.

Available online: http://people.mpi-

inf.mpg.de/~csaha/lectures/lec18.pdf

[9] A Quick Tutorial on Pollard's Rho Algorithm.

http://www.cs.colorado.edu/srirams/classes/doku.php/

pollard_rho_tutorial

[10] ELLIPTIC CURVE CRYPTOGRAPHY (ECC)

https://www.certicom.com/ecc

[11] Nick Sullivan, “A (relatively easy to understand)

primer on elliptic curve cryptography”,

http://arstechnica.com/security/2013/10/a-relatively-

easy-to-understand-primer-on-elliptic-curve-

cryptography/

IJCATM : www.ijcaonline.org

http://modular.math.washington.edu/edu/124/le
https://eprint.iacr.org/2007/092.pdf
https://www.maths.unsw.edu.au/sites/default/fil
https://www.maths.unsw.edu.au/sites/default/fil
http://en.wikipedia.org/wiki/Pollard's_rho_algorithm
http://www4.ncsu.edu/lrbosko/Publications/Rho.pdf
http://people.mpi-inf.mpg.de/~csaha/lectures/lec18.pdf
http://people.mpi-inf.mpg.de/~csaha/lectures/lec18.pdf
http://www.cs.colorado.edu/srirams/classes/doku.php/pollard_rho_tutorial
http://www.cs.colorado.edu/srirams/classes/doku.php/pollard_rho_tutorial
https://www.certicom.com/ecc

