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ABATRACT 

Security is must everywhere. We have to secure our data at 

all places like online banking, e-commerce etc., 

Cryptography doesn't have to be so cryptic. AES, DES, 

RSA, ECC -- there are so many ways to encrypt our data. 

Example: company's protecting customer credit card 

information, securing remote user connections to our 

network or protecting our intellectual property from digital 

piracy, we're using encryption every day. In 1980s, there 

was only one real choice -- the Data Encryption Standard 

(DES). Today, we have a broad selection of stronger, faster 

and better-designed algorithms. Now, the problem is to sort 

out which algorithm to be used. Elliptic curve 

cryptography (ECC) is one of the most powerful but least 

understood types of cryptography in wide use today. An 

increasing number of websites make extensive use of ECC 

to secure everything from customers HTTPS connections 

to how they pass data between data centers. So, it’s 

important for end users to understand the technology 

behind any security system in order to trust it.   

General Terms 

Cryptography, Security, Elliptic curve cryptography 

Keywords 

Discrete logarithm problem, elliptic curve, integer 

factorization, pollard rho.  

1. INTRODUCTION 
Public key cryptography was invented in 1976 by 

Whitfield Diffie and Martin Hellman. It is also called as 

Diffie-Hellman encryption and asymmetric key encryption 

because it uses two keys instead of one key (symmetric 

encryption). An asymmetric cryptographic system uses two 

keys, one is a public key which is known to everyone and 

other one is a private or secret key known only to the 

recipient of the message. An important element to the 

public key system is that the public and private keys are 

related in such a way that only the public key can be used 

to encrypt messages and only the corresponding private 

key can be used to decrypt the message. It is difficult to 

find the private key if you know the public key. 

Public-key systems, such as Pretty Good Privacy (PGP), 

are becoming popular for transmitting information via the 

Internet. They are extremely secure and relatively simple to 

use. The only difficulty with public-key systems is that you 

need to know the recipient's public key to encrypt a 

message for him or her.   

 

 
 

Figure: 1 Public Key Cryptography 

2. RSA  
The RSA algorithm is the most popular and best known 

public key cryptography system. Its security relies on the 

fact that factoring is slow and multiplication is fast. In 

general, a public key encryption system has two 

components, a public key and a private key. Encryption 

works by taking a message and applying a mathematical 

operation to it to get a random-looking number. Decryption 

takes the random looking number and applies a different 

operation to get back to the original number. Encryption 

with the public key can only be undone by decrypting with 

the private key. 

Computers don't do well with arbitrarily large numbers. We 

can make sure that the numbers we are dealing with do not 

get too large by choosing a maximum number and only 

dealing with numbers less than the maximum. Any 

calculation that results in a number larger than the 

maximum gets wrapped around to a number in the valid 

range. 

In RSA, this maximum value is obtained by multiplying 

two random prime numbers. The public and private keys 

are two specially chosen numbers that are greater than zero 

and less than the maximum value, call them public (pub) 

and private (priv). To encrypt a number you multiply it by 

itself pub times, making sure to wrap around when you hit 

the maximum. To decrypt a message, you multiply it by 

itself priv times and you get back to the original number. It 

sounds surprising, but it works. When discovered this 

property was a big breakthrough. 
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To generate a RSA key pair, first randomly pick any two 

prime numbers to obtain the maximum (max). Then pick a 

number to be the public key pub. If you know the two 

prime numbers, you can compute a corresponding private 

key priv from this public key. This is how factoring relates 

to breaking RSA — factoring the maximum number into its 

component primes allows you to compute someone's 

private key from the public key and decrypt their private 

messages. 

Let's see this with an example. Take the prime numbers 13 

and 7, their product gives us our maximum value of 91. 

Let's take our public encryption key to be the number 5. 

Then using the fact that we know 7 and 13 are the factors 

of 91 and applying an algorithm called the Extended 

Euclidean Algorithm, we get that the private key is the 

number 29. 

These parameters (max: 91, pub: 5; priv: 29) define a fully 

functional RSA system. You can take a number and 

multiply it by itself 5 times to encrypt it, and then take that 

number and multiply it by itself 29 times and you get the 

original number back. 

These factoring algorithms get more efficient as the size of 

the numbers being factored get larger. As the number gets 

larger (i.e. the key's bit length) the gap between the 

difficulty of factoring large numbers and multiplying large 

numbers is shrinking. As the resources available to decrypt 

numbers increase, the size of the keys needs to grow even 

faster. This is not a sustainable situation for mobile and 

low-powered devices that have limited computational 

power. The gap between factoring and multiplying is not 

sustainable in the long term. 

3. ELLIPTIC CURVE 
After the introduction of RSA and Diffie-Hellman, 

researchers explored other mathematics-based 

cryptographic solutions looking for other algorithms 

beyond factoring that would serve as good Trapdoor 

Functions. In 1985, cryptographic algorithms were 

proposed based on an esoteric branch of mathematics 

called elliptic curves. 

What is an elliptic curve exactly: Unfortunately, unlike 

factoring something we all had to do for the first time in 

middle school most people aren't as familiar with the math 

around elliptic curves.  

An elliptic curve is the set of points that satisfy a specific 

mathematical equation. The equation for an elliptic curve 

looks something like this: 

y2 = x3 + ax + b 

That graphs to something that looks a bit like this: 

 

Figure: 2 Elliptic Curve 

There are other representations of elliptic curves, but 

technically an elliptic curve is the set of points satisfying 

an equation in two variables with degree two in one of the 

variables and three in the other. An elliptic curve is not just 

a pretty picture; it also has some properties that make it a 

good setting for cryptography. 

4. ELLIPTIC CURVE CRYPTO 

GRAPHY (ECC) 
The properties and functions of elliptic curves have been 

studied in mathematics for 150 years. The use of elliptic 

curve within cryptography was first proposed in 1985, 

(separately) by Neal Koblitz from the University of 

Washington, and Victor Miller at IBM. An elliptic curve is 

not an ellipse (oval shape), but is represented as a looping 

line intersecting two axes (means lines on a graph used to 

indicate the position of a point). ECC is based on 

properties of a particular type of equation created from the 

mathematical group (a set of values for which operations 

can be performed on any two members of the group to 

produce a third member) derived from points where the 

line intersects the axes. Multiplying a point on the curve by 

a number will produce another point on the curve, but it is 

very difficult to find what number was used, even if you 

know the original point and the result. Equations based on 

elliptic curves have a characteristic that is very valuable for 

cryptographic purposes: they are relatively easy to perform, 

and extremely difficult to reverse. 

5. ELLIPTIC CURVE DISCRETE 

LOGARITHM 
The elliptic curve discrete logarithm is the hard problem 

under elliptic curve cryptography. Despite almost three 

decades of research, mathematicians still haven't found an 

algorithm to solve this problem that improves upon the 

naive approach.  This means that for numbers of the same 

size, solving elliptic curve discrete logarithms is 

significantly harder than factoring. Since a more 

computationally intensive hard problem means a stronger 

cryptographic system, it follows that elliptic curve 

cryptosystems are harder to break than RSA and Diffie-
Hellman. 

To visualize how much harder it is to break, Lenstra 

recently introduced the concept of "Global Security." You 

can compute how much energy is needed to break a 

cryptographic algorithm, and compare that with how much 

water that energy could boil. This is a kind of 

cryptographic carbon footprint. By this measure, breaking 

a 228-bit RSA key requires less energy to than it takes to 

boil a teaspoon of water. Comparatively, breaking a 228-bit 

elliptic curve key requires enough energy to boil all the 

water on earth. For this level of security with RSA, you'd 
need a key with 2,380-bits. 

With ECC, you can use smaller keys to get the same levels 

of security. The key size should be small because more and 

more cryptography is done on less powerful devices like 

mobile phones. Multiplying two prime numbers together is 

easier than factoring the product into its component parts, 

when the prime numbers start to get very long even just the 

multiplication step can take some time on a low powered 

device. If you continue to keep RSA secure by increasing 

the key length the cost will increase and slower 

cryptographic performance on the client. ECC appears to 

offer a better cryptography: high security with short, fast 

keys. 
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5.1. Elliptic curves in action: Applications 
After a slow start, elliptic curve based algorithms are 

gaining popularity and the pace of adoption is accelerating. 

Elliptic curve cryptography is now used in a wide variety 

of applications: the U.S. government uses it to protect 

internal communications, the Tor project uses it to help 

assure anonymity, it is the mechanism used to prove 

ownership of bitcoins, it provides signatures in Apple's 

iMessage service, it is used to encrypt DNS information 

with DNS Curve, and it is the preferred method for 

authentication for secure web browsing over SSL/TLS. 

Cloud Flare uses elliptic curve cryptography to provide 

perfect forward secrecy which is essential for online 

privacy. First generation cryptographic algorithms like 

RSA and Diffie-Hellman are still the norm in most areas, 

but elliptic curve cryptography is quickly becoming the go-

to solution for privacy and security online. 

 

6. THE ELLIPTIC CURVE DISCRETE 

LOGARITHM PROBLEM 
In the multiplicative group Zp*, the discrete logarithm 

problem is: given elements r and q of the group, and a 

prime p, find a number k such that r = qk mod p. If the 

elliptic curve groups is described using multiplicative 

notation, then the elliptic curve discrete logarithm problem 

is: given points P and Q in the group, find a number that  

Pk = Q; k is called the discrete logarithm of Q to the base P. 

When the elliptic curve group is described using additive 

notation, the elliptic curve discrete logarithm problem is: 

given points P and Q in the group, find a number k such 

that Pk = Q 

 

Example: 

In the elliptic curve group defined by 

y2 = x3 + 9x + 17 over F23, 

What is the discrete logarithm k of Q = (4, 5) to the base P 

= (16, 5)? 

 

One way to find k is to compute multiples of P until Q is 

found. The first few multiples of P are: 

 

P = (16,5) 2P = (20,20) 3P = (14,14) 4P = (19,20) 5P = 

(13,10) 6P = (7,3) 7P = (8,7) 8P = (12,17)  9P = (4,5) 

 

Since 9P = (4, 5) = Q, the discrete logarithm of Q to the 

base P is k = 9. 

 

In a real application, k would be large enough such that it 

would be infeasible to determine k in this manner.  

 

As far as this problem is concerned it is very hard to solve 

quickly. Most people have tried hard    to solve discrete 

logarithm problem but not succeeded.  It's easy to write a 

slow program to solve the discrete log problem. 

7. POLLARD RHO  
Pollard's rho algorithm is a special-purpose integer 

factorization algorithm. It was invented by John Pollard in 

1975. It is particularly effective for composite numbers 

having a small prime factor. 

 

The ρ algorithm is based on Floyd's cycle-finding 

algorithm and on the observation that (as in the birthday 

problem) t random numbers x1, x2, ... , xt in the range [1, n] 

will contain a repetition with probability P > 0.5.  

 

Pollard's Rho Algorithm is a very interesting and quite 

accessible algorithm for factoring numbers. It is not the 

fastest algorithm by far but in practice it outperforms trial 

division by many orders of magnitude. It is based on very 

simple ideas that can be used elsewhere.  

 

Pollard's rho factoring algorithm is a special-purpose 

algorithm for finding small non-trivial factors of an integer. 

Have a look at following proposition: 

 

Let f: S→S be a random function, where |S| = n. Let further 

be x0 ∈  S, at random. Consider the sequence x0, x1, x2, ... 

defined by xi+1 = f(xi ). Since S is finite, the sequence must 

eventually cycle and be composed of a tail. 

 

For finding out the length of the cycle, Floyd's cycle-

finding algorithm is used: 

 

In this method one starts with the pair (x1 , x2 ) and 

iteratively computes (xi , x2i ) from the previous pair (xi-1 , 

x2i-2 ) until a duplicate xm = x2m appears for some m. If the 

tail of the sequence has length λ and the cycle has length μ, 

so the first time when xm = x2m is when m = μ (1 + λ / μ). 

 

Now Floyd's algorithm is utilized by Pollard's rho 

algorithm to find such a duplicate in the sequence of 

integers y0, y1, y2, ..., yi ∈  Z ∀  i. That sequence is defined 

by: y0 = 2, yi+1 = f(yi ) = (yi
2 + 1) mod p, i ≥ 0. Now Floyd's 

algorithm is used to find ym and y2m with ym ≡ y2m (mod p). 

Since p divides n, but is unknown, this is done by 

computing the terms yi mod n and testing whether is gcd 

(ym - y2m , n ) > 1. If such an m is found and if gcd (ym - 

y2m , n ) < n, then a non-trivial factor of n is obtained. 

 

7.1. Algorithm 
The algorithm takes as its inputs n, the integer to be 

factored and g(x), a polynomial p(x) computed modulo n. 

This will ensure that if p|n, and x ≡ y mod p, then g(x) ≡ 

g(y) mod p. In the original algorithm, g(x) = x2 - 1 mod n, 

but nowadays it is more common to use g(x) = x2 + 1 mod 

n. The output is either a non-trivial factor of n, or failure.  

 

It performs the following steps: 

1.    x ← 2; y ← 2; d ← 1; 

2.  While d = 1: 

    a.    x ← g(x) 

    b.    y ← g(g(y)) 

    c.    d ← gcd(|x - y|, n) 

3.    If d = n, return failure. 

4.    Else, return d. 

 

Note that this algorithm may fail to find a non-trivial factor 

even when n is composite. In that case, you can try again, 

using a starting value other than 2 or a different g(x). The 

name ρ algorithm comes from the fact that the values of x 

(mod d) eventually repeat with period d, resulting in a ρ 

shape when you graph the values. 

 

8. POLLARD RHO ALGORITHM FOR 

DISCRETE LOGARITHM 
Pollard's rho algorithm for logarithms is an algorithm 

introduced by John Pollard in 1978 for solving the discrete 

logarithm problem analogous to Pollard's rho algorithm for 

solving the Integer factorization problem. 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 121 – No.18, July 2015 

17 

Algorithm 
 
Let G be a cyclic group of order p, and given 

 

 
 in G, 

 and a partition                                         

 

 

 

Let  

 

 

 

be a map 

 

 

 

 

 

 

and define maps  
 

 
and  

 

 

by  
 

     

 
 

 

 

Inputs 'a' a generator of G, 'b' an element of G 

Output An integer x such that ax = b, or failure 

 

      1. Initialize 

                 a0 ← 0 

                 b0 ← 0 

                 x0 ← 1 ∈  G 

                 i ← 1 

 

      2.  xi ← f(xi-1), ai ← g(xi-1,ai-1), 

               bi ← h(xi-1,bi-1) 

            

  3.  x2i ← f(f(x2i-2)), a2i ← g(f(x2i-2),g(x2i-2 ,a2i-2)), 

           b2i ← h(f(x2i-2),h(x2i-2,b2i-2)) 

  4.       If xi = x2i then 

                 r ← bi - b2i 

                 If r = 0 return failure 

                  x ← r -1 (a2i - ai) mod p 

                  return x 

              If xi ≠ x2i then i ← i+1, and go to step 2. 

 

9. CONCLUSION 
Many symmetric and asymmetric algorithms can be used 

for encryption, decryption, key exchange and digital 

signature. To break the prime factors of RSA algorithm we 

can use pollard rho integer factorization algorithm. As we 

have moved from RSA to elliptic curve cryptography 

because of its small key sizes we are trying to use pollard 

rho algorithm for discrete logarithms, which can be used to 

break the points on the elliptic curve.  

In future a pollard rho algorithm can be modified to break 

elliptic curve cryptography. 
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