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ABSTRACT

For a positive integer n > 1, the unitary addition Cayley
graph G, is the graph whose vertex set is V(G,,) = Z, =
{0,1,2,--- ;n — 1} and the edge set E(G,,) = {ab | a,b €
Zn,a+b € Up,} where U, = {a € Z, | ged(a,n) = 1}.
For G, the independence number, chromatic number, edge chro-
matic number, diameter, vertex connectivity, edge connectivity and
perfectness are determined.
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1. INTRODUCTION

Throughout this paper, we consider only finite, simple, undirected
graphs. For standard terminology and notation in graph theory we
follow [8]] and algebraic graph theory we follow []1], [7]]. Degree of
a vertex v in a graph G is the number of edges incident with that
vertex and it is denoted by d(v). 6(G) denotes minimum degree of
the graph G and A(G) denotes maximum degree of the graph G.
The vertex connectivity k(G) of a graph G is the minimum number
of vertices whose removal results in a disconnected or trivial graph
and the edge connectivity \(G) of a graph G is the minimum
number of edges whose removal results in a disconnected or trivial
graph. A graph is called regular if all vertices have same degree
and a graph is called (71, 72)— semi regular if its vertex set can be
partitioned into two subsets V; and V5 such that all the vertices in
V; are of degree r; fort =1, 2.

A shortest u — v path is called a geodesic. The diameter of
a connected graph is the length of any longest geodesic. The
set of vertices in a graph is independent if no two of them are
adjacent. The largest number of vertices in such a set is called
the independence number of G and it is denoted by So(G). An
independent set of edges of GG has no two of its edges adjacent and
the maximum cardinality of such a set is the mactching number
B1(G) or B;. A vertex and an edge are said to cover each other if
they are incident. A set of vertices which covers all the edges of a
graph G is called a vertex cover for GG, while a set of edges which
covers all the vertices is an edge cover. The minimum number
of vertices in any vertex cover for G is called its vertex covering
number and is denoted by a(G). a1(G) is the smallest number
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of edges in any edge cover of GG and is called its edge covering
number.

A clique of a graph G is a complete sub graph of GG, and the
clique of largest possible size is referred to as a maximum clique.
The cligue number of a graph G is the number of vertices in
a maximum clique of G, denoted w(G). The vertex chromatic
number x(G) is defined as the minimum number of colours such
that no two adjacent vertices share a common colour. The edge
chromatic number x'(G) is the minimum number of colours such
that no two adjacent edges share a common colour.

A graph G is perfect, if for every induced sub graph G' C G
the clique number and the chromatic number coincide,

w(@) =x(G").

Let I' be a multiplicative group with identity 1. For
S CTI,1 ¢ 885t ={s1]s e S} = S the Cayley
graph X = Cay(T",S) is the undirected graph having vertex set
V(X) =T and edge set E(X) = {(a,b) | ab~! € S}. The cayley
graph X is regular of degree |S|.

For a positive integer n > 1, the unitary Cayley graph X,, is the
graph whose vertex set is Z,,, the integers modulo n and if U,
denotes set of all units of the ring Z,,, then two vertices a, b are
adjacent if and only if a — b € U,. The unitary Cayley graph
X,, is also defined as, X,, = Cay(Z,,U,). The graph X, is
regular of degree |U,,| = ¢(n), where ¢(n) denotes the Euler phi
function [5].

For a positive integer n > 1, the wunitary addition Cay-
ley graph G, = Cay*t(Z,,U,) is the graph whose
vertex set is Z, = {0,1,2,---,n — 1} and the edge
set B(Gp,) = {ab | ab € Z,,a+b € U,} where
U, = {a € Z, | ged(a,n) = 1}. The graph G,, is regular
if n is even and semi regular if n is odd [12].

Figures 1 and 2 show some examples of unitary addition Cayley
graphs.

2. PRELIMINARIES

THEOREM 1 [_8]]. The minimum number of vertices separating
two nonadjacent vertices s and t is the maximum number of disjoint
s — t paths.



Fig. 1. G10

Fig.2. G

THEOREM 2 [8|l. For any graph G, the edge chromatic num-
ber satisfies the inequalities, A < X' (G) < A+ 1.

THEOREM 3 [[12]]. The unitary addition Cayley graph G,, is
isomorphic to the unitary Cayley graph X,, if and only if n is even.

THEOREM 4 [2]|. The edge chromatic number x'(X,,) of the
unitary Cayley graph X, is ¢(n) if n is even.

THEOREM 5 [2]l. The edge connectivity \(X,,) of the unitary
Cayley graph X,, is ¢(n) if n is even.

THEOREM 6 (9. The unitary Cayley graph X, has vertex
connectivity k(X,,) = ¢(n).

THEOREM 7 [9]]. If p is the smallest prime divisor of n, then
we have x(X,,) = w(X,) = p.

THEOREM 8 [12f]. Let m be any vertex of the unitary addition
cayley graph G,,. Then

o(n) if n is even,
d(m) = { é(n) if n is odd and ged(m,n) # 1,
¢(n)—1  ifnisoddand ged(m,n) = 1.

THEOREM 9 [[10]]. Let p be a prime number. Then x* =
1(modp) if and only if x = £1(modp).

THEOREM 10 [6]]. The order of an element in a direct product
of a finite number of finite groups is the least common multiple of
the orders of the components of the element.

COROLLARY 1 [12]]. The total number of edges in the unitary
addition Cayley graph G, is

|[E(Gn)| = { g?f(,n)l)d)(n)

if nis even,
if nis odd.
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THEOREM 11 [11]. Let G be a graph with diameter < 2.
Then the edge connectivity \(G) is equal to the minimum degree

5(G).

THEOREM 12 [4]]. Strong Perfect Graph Theorem(SPGT). A
graph G is perfect if and only if G and its complement G have no
induced cycles of odd length atleast 5.

THEOREM 13 [3]]. Let G # K,, be a graph of order n, then
k(G) > 20(G) +2 —n.

OBSERVATION 1. Unitary addition cayley graph G, (n > 3)

can be decomposed into ¢(n) disjoint Hamiltonian cycles if n is

2
even and can be decomposed into @

cycles if n is odd.

— 1 disjoint Hamiltonian

3. CONNECTIVITY AND INDEPENDENCE OF
UNITARY ADDITION CAYLEY GRAPH

LEMMA 14. If n is odd then the number of elements in U,, of
order 2 is 2" (we consider identity 1 has order 2) and these elements
are represented in the form H = {x € U, | x = ,Z} where

(palfparl)
(@5

B = (010 a0 ase - a7z = |(Z2)0E T N,z =

(Z,) )
n/p;t and a;, € {1,—1},1 < 4 < r, where r is the number of
distinct prime factors of n.

PROOF. If m and n are relatively prime then U,,,, is isomor-
phic to U,,, ® U,,. Suppose n = p{*p32p3® ---p®r. Then each
pair of elements (p{*,p;”) ,i # j, is relatively prime and U,, =
Up;’tlpgnga__pgr ~ Up‘fl @b Upgz @D Upar.

The number of elements in U,, of order 2 is 2", since the order of
an element of a direct product of a finite number of finite groups
is the least common multiple of the order of the components of the
element.
Let 22 = 1(modn) and n = p§tpS2ps® - - - p2r
This implies 2% = 1(modp{*)

22 = 1(modp5?)

22 = 1(modp&r)
This implies x = +1(modp{*)
z = £1(modp3?)

z = £1(modp&)
Using Chinese remainder theorem and Euler§ theorem, we

« aq-1 e% ag—1

get x = i(Zl)(pll*pl1 ) + (ZQ)(%Z”"A‘Q ) 4+ ..+
ar apr—1 .

(Z) PP (modn) where Z; = n/p®i,1 < i <.

r = 51Z(m0d{n’) where /61 = I:a‘].(L' A2y A3y - a’y';ﬂ} and
()it

R TAIC I Ea) IR

Z = 2 . Z; =n/p;t and a;, € {1,-1},1 <
(Z)) (P27 -pym )

1 <r. O

THEOREM 15. Let n be an odd number. Then the unitary ad-
dition Cayley graph G,, is k— partite, k = % + 1, where r is the
number of distinct prime factors of n.



PROOF. Let n = p{'p3?ps? - p&r,p1 < pa < -+ < Py,
p;’s are distinct prime factors of n, 1 < ¢ < r. Then the sets
(p1), Pi)\ Ui<j<io1 {(p;)},2 < @ < r are distinct independent
sets in G,,. So V (G,,) — U, splitting into r distinct independent
sets.

By lemma|[T4] the number of elements of order 2 in U, is 2" and
theyare H ={z € U, |z = . Z}.

Suppose z,y € H,thenx = 5, Z,y = ByZ and x +y = (B, +
ﬁy)Z’ Y Bz + ﬁy = [ble o 'br}v bz = Qi + Ay € {0727 _2}v

1<i<r.
If all b;’s are zeros then ged(x + y,n) = ged(0,n) = n, it implies
that z + y ¢ U,,. If some b;’s are non-zeros, say by, , bs,, - ,bs,,

h does not
contain p?l'” ,1 <1 <r—1,therefore ged(x + y,n) = % where
q=petpes? - pest. Itimplies that z +y ¢ U,.

That is H is an independent set in G.,.

In a similar manner, we can prove that 2! i is an independent set in
G,,wherel <[ < %

Suppose x € 2! H

sr=28.7=2'8.)2

< 1 = B, Z where ), = 2!, and it has elements 42! and —2!
Srd¢2H 0<1t< 2 £t

So H,2'H,2%H,--- ,2'H are distinct independent sets, each set
has 2" elements.

Hence the unitary addition Cayley graph G,, is k partite, k =
‘752(?) + 7, where r is the number of distinct prime factors of n. O

1 <t < r — 1 then corresponding (Zsl)“’é'zsl pay

THEOREM 16. Independence number of the unitary addition
Cayley graph G,,, n > 3, is

5 if nis even,
Bo(Grn) =4 3= ifnisoddbut not a prime number,
2 if n is prime.
where n =pitpe? R pr <po <o < pprag 21,1 <40 <

T.

PROOF. Suppose m is even. Then the sets H =

{0,2,4,---,n — 2} and L = {1,3,5,---,n — 1} are inde-
pendent in G,,. It implies G, has only two independent sets and
both has 7 elements. Hence independence number is 7.
Next, suppose n is odd, but not a prime. Then the sets
K; =< p; >,1 < ¢ < r, are independent in G,,. In these
sets K is max1mum since number of elements in K; are -*
Any independent set in U,, has atmost 2" elements where 7 is the
number of distinct prime factors of n, but ;1 > 2".So K;isa
maximum independent set and hence independence number is ﬁ.
Suppose n = p, where p is a prime number, then the vertex zero
has degree p — 1 and all other vertices have degree p — 2. Let
W =V(G,,) — {0}. For every v € W v is adjacent to all vertices
in G,, except the vertex n — v in W, so the independence number
is2. O

COROLLARY 2. Covering number of the unitary addition Cay-
ley graph G, n > 3;n = pi'py® - pir,p1 < pa < -+ <
proo; 21,1 <i<ris

5 if nis even,
ao(Gr) = (plzl )n  if nis odd but not a prime number,
n—2 if n is prime.
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THEOREM 17. Matching number of the unitary addition Cay-
ley graph G,,, n > 3, is

if nis even,

ﬂl(G”):{ L if n is odd.

2
PROOF. In GG,,, the generating set U,, must contain 1.
Suppose n is even. Then edge set £y = {(0 1), (n —1,2), (
2,3),-+, (™2, 2)} is an independent set in G,, and \El\ =2,
Suppose the matching number is greater than 3, by definition of
matching number the number of end vertices are greater than 2(%).
It contradicts the total number of vertices in G,,. So matching num-

beris 5.

Suppose n is odd, then the edge set E; = {(0, 1) (n—1,2),(n—
2,3),-+, (%2, 21} is an independent set in G,, and |Ey| =
n—1

5
Suppose the matching number is greater than “5%, that is matching
number is greater than or equal to "7*1 By deﬁmtlon of match-
ing number the number of end vertices are greater than or equal
to 2(™H). It contradicts the total number of vertices in G.,. So

matching number is ”T‘l O

COROLLARY 3. An edge covering number of the unitary addi-
tion Cayley graph G, n > 3, is

if n is even,

al(Gn):{L if nisodd .

OBSERVATION 2. Letu,v,w € V(G,,). Vertex w is a common
neighbour of w and v, if and only if ged(u + w,n) = ged(v +
w,n) = 1. Then there exist unique x,y € Z,, such that
u+w=z modn,v+w=y mod n.

Now w = x —u = y — v becomes a common neighbour of u and v,
ifandonly if v —y =u —v mod n, x,y € U,. This congruence
has atleast one solution if n is odd.

THEOREM 18. The diameter of the unitary addition cayley
graph G, n > 2, is

2 ifnis prime,
. )2 ifnisevenandn = 2", m > 2,
diam(Gn) = 3 ifnisevenandn # 2™Mm > 2,
2 ifnis odd but not a prime .
PROOF. Suppose n = p, p is prime, then U, =
{1,2,3,--- ,p — 1}. If u € U, then u is adjacent to p — 2 vertices

including 0 and O is adjacent to all vertices. This implies diameter
of G, is 2.

Suppose n is even and n = 2™(m > 2), then U, =
{1,3,5,--- ,n—1}. Anelement 0 in V(G,,) is adjacent to a vertex
u where u € U, and w is adjacent to all even vertices. This implies
diameter of GG,, is 2.

Suppose n(n # 2™,m > 2)is even and n = pyipg? .- por,
p1 < p2--- < pp, o > 1, p; are distinct prime factors of n,
1<i<r.

In G,,, zero is non adjacent to p;, 1 < ¢ < r, also zero and
pi(2 < i < r) has no common vertex, since zero is adjacent to
some odd vertices and p;(2 < ¢ < r) is adjacent to some even ver-
tices. Therefore diam(G,,) > 3.

In G,, both even or both odd vertices are non adjacent. If u and v
are odd (even) vertices in G,, then they have atleast one common
vertex w in (G,, and w is even (odd), since (G,, is connected. We
consider two non adjacent vertices v(even) and u(odd) in G,,, v is
adjacent to some vertex x(odd) in G,,. Here x and u are odd ver-
tices then they have a common vertex y(even) in G,,. Passing along



v, x,y and u, shows diam(G,,) = d(v,u) < 3.

Suppose n is odd but not a prime, then every pair of distinct non
adjacent vertices have a common neighbour. This implies diameter
of G,is2. O

THEOREM 19. Edge connectivity of the unitary addition Cay-
ley graph G, is

A(G,) = { Al

PROOF. Suppose n is odd A(G,,) = ¢(n) — 1, by Theorems|8]
[Mand[I8]
Suppose n is even A(G,,) = ¢(n), by Theorems[B]and[5] O

if nis even,
ifnisodd.

COROLLARY 4. Vertex connectivity of the unitary addition
Cayley graph G, is

= {241

PROOF. Suppose n is even £(G.,) = ¢(n), by Theorems[3]and
6l
Suppose n is prime say p, then kK(G,) = ¢(p) — 1, by Theorems

[[@land[0 O
REMARK 1. Foralln, 2¢(n) — n < k(G,) < ¢(n) — 1.

if nis even,
if n is prime

4. CHROMATIC AND CLIQUE NUMBER OF
UNITARY ADDITION CAYLEY GRAPH

THEOREM 20. Chromatic number of the unitary addition Cay-
ley graph G, is x(Gp) = 2 if nis even and x(G,,) < % +rif
n is odd, where 1 is the number of distinct prime factors of n.

PROOF. Suppose n is even. By Theoremsand X(Grn) =2.
If n is odd then GG,, splitting into ¢2(f) +r distinct independent sets.
Therefore x(G.,,) < % +r. O

THEOREM 21. Edge chromatic number of the unitary addition
Cayley graph G, is ¢(n).

PROOF. Suppose n is odd. From the definition of proper edge
colouring GG,, contains atmost "7’1 edges of a same colour. By
Corollary |1] atmost ¢(n) colours are needed to colour G,,. So

X' (Gn) < é(n).
By Theorem o(n) < X'(G,).
Therefore x'(Gr) = ¢(n).

Suppose n is even. By Theorem [3]and Theorem[d] edge chromatic
number is ¢(n). [

THEOREM 22. Clique number of the unitary addition Cayley
graph G, is

() {2 if n is even,
w(Grn) =14 4 e m
%—i—l ifn=p", p#2andm > 2.

andn = pi'py® - peT, pr <pa < --- < pp

3 lfpl = 35
w(Gn) > { p12+1 ifp1 > 3.

PROOF. Case 1. Suppose n is even. By Theorems [3] and [7]
w(Gp)=2.
Case 2. Forn = p™,p # 2and m > 2.
Let U, = {£uq, *ug, -, tug}.
If ¢(n) = 2k and k is even, then A =
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{0, u1,us, up1, —Up, —Up-2,- -+, —ug} is a clique in
n -

If &(n) = 2k and k is odd, then B =

{0,uy,us, - ,Up, —Ug—1, —Uk-3, - ,—Uz} 1is a clique in

In both case |A| = |B| = @ + 1. Sow(G,) > @ + 1.

From Theorem we get w(G,) < @ + 1. Therefore
w(Gn) = 2 1.
Case 3. Forn = pJ'p3? ---p% and p; = 3.

The set {0, p1, p2} is a clique in G,,, so w(G,,) > 3.

Case 4. Forn = p{tp3? ---p% and p; > 3.

The set {0,1,2,--- ,”IT’I} is a clique in G,, so w(G,) >
ntl O

5. PERFECTNESS

LEMMA 23. Ifn is odd and has atleast two different prime di-
visors, then G, contains an induced cycle Cs of length 5.

PROOF. Letn = pi*p5?---p ., p1 < p2 < -+ < p,, where
r is the number of distinct prime factor of n.
Choose the vertices v1, v, v3, v4 and vs in the following manner
vi = 0,2 = prv3 = PP Pr1 — PryUs =
—2p1p2 - Pr-1 + Dr,
Vs = 2p1p2 - - - pr—1. The vertices vy, v2, v3, v4 and v are distinct.
These vertices form a cycle C'5 of GG,,, because
v + vy = vy + vs = 0(modp,.)
v1 + vs = v + v3 = vz + vy = 0(modp;), i =1,2,--- ;7 — 1.
It follows that the edges {v1,v2}, {va,v3}, - {vs, v1} belong to
Go. B
Next to show that this C's has no chords in G,,.

V1 + U3 =piP2 - Pr-1 — Pr

v +v4 = —2p1pa- - Pro1+Dr
Vo +vs = =2(p1p2 - Pro1 — Pr)
vy + U5 = 2p1p2 - Pro1 + Pr

v3 + U5 = 3p1p2 - Pr-1 — Pr

From (1), we get v1 + v3,v1 + V4, V2 + V4,2 + v5 and vs + vs
are non divisible by p;,i = 1,2, --- , 7. Therefore the cycle Cj is
an induced cycle in G,,. [

REMARK 2. Unitary addition Cayley graph G,, is not perfect
if n is odd and has atleast two different prime divisors.

LEMMA 24. Letn = p™, where p is a prime number and p >
2. Then G, has no induced odd cycle Cop 11,k > 2.

PROOF. Assume that G, contains an induced cycle

Cok41,k > 2, which runs through the vertices vy, vz, -+ , Vog41
in this order.
We consider three consecutive edges

{vi,vigr b {vig1, viga b, {vige, vigs}  in Copyr. This  im-
plies that v; + v;41, V41 + V42 and v, 2 + v, 3 are divisible by
pin G,,.

Adding first and third term, we get v; + v;41 + V42 + Vi3, Which
is divisible by p. .

This implies that v; + v; 3 is divisible by p in G,.

It follows that {v;, v; 13} is an edge in G,,. It is a contradiction to
our assumption. []

LEMMA 25. Let n = p™, where p is a prime number and p >
2. Then G, has no induced odd cycle Cag 1,k > 2.



PROOF. Assume that (,, contains an induced cycle Cor 1, k >
2, which runs through the vertices v1, va, - - - , Vag41 in this order.
‘We consider two cases.
Case 1. Atleast one v; € {< p >}, say v. Then v is non adjacent
to all vertices v; € {<p>}1<j<2k+ 1. 1tis a contradiction
to our assumption.
Case2.Letk > 3andall v; ¢ {<p >}
If z € U(p™) then any vertex y non adjacent to z is of the form
y=lp—zeU(pm),1<I< %. In Cyky1, v1 is non adjacent
to atleast three vertices, say v, vy and v,. So v, = lip — vy, v, =
lop — vy and v, = I3p — v1,1 < lq,ls,l3 < %. Here v, + vy =
(lh+l)p—2v1, ve +v. = (I +13)p—2vy, and vy + v, =
(Io + I3)p — 2v1. So vy + vy, v, + Vs, 0y + v, € Uy . Itis a
contradiction to our assumption.
Assume that G, contains an induced cycle C, which run through
the vertices vy, Vg, v3, v4 and vs. S0 vy +vy, V1 +V3, Va+Vy, Vo +U5
and vs + v5 are divisible by p. Adding v; + v3 and vo + v5, we get
v1 + v3 4 v + v5 is divisible by p. Also vs 4 v5 is divisible by p.
This implies that v; + vy is divisible by p. It is a contradiction to
our assumption. []

Combining the lemmas [24] 23] and using the property of bipartite,
now we can prove the following result.

THEOREM 26. The unitary addition Cayley graph G.,,, n > 2,
is perfect if and only if n is even orn = p™,m > 1.

6. CONCLUSION

In this paper we determine some structural properties of unitary ad-
dition Cayley graph G,,, including diameter, connectivity and per-
fectness.
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