Some Structural Properties of Unitary Addition Cayley Graphs

Naveen Palanivel
Department of Mathematics, National Institute of Technology, Calicut, Kerala,
India-673601

Chithra.A.V
Department of Mathematics, National Institute of Technology, Calicut, Kerala,
India-673601

Abstract

For a positive integer $n>1$, the unitary addition Cayley $\operatorname{graph} G_{n}$ is the graph whose vertex set is $V\left(G_{n}\right)=Z_{n}=$ $\{0,1,2, \cdots, n-1\}$ and the edge set $E\left(G_{n}\right)=\{a b \mid a, b \in$ $\left.Z_{n}, a+b \in U_{n}\right\}$ where $U_{n}=\left\{a \in Z_{n} \mid \operatorname{gcd}(a, n)=1\right\}$. For G_{n} the independence number, chromatic number, edge chromatic number, diameter, vertex connectivity, edge connectivity and perfectness are determined.

Keywords

Unitary Cayley Graph, Unitary Addition Cayley Graph, Chromatic Number, Independence Number, Connectivity, Perfectness.

1. INTRODUCTION

Throughout this paper, we consider only finite, simple, undirected graphs. For standard terminology and notation in graph theory we follow [8] and algebraic graph theory we follow [1], [7]. Degree of a vertex v in a graph G is the number of edges incident with that vertex and it is denoted by $d(v) . \delta(G)$ denotes minimum degree of the graph G and $\Delta(G)$ denotes maximum degree of the graph G. The vertex connectivity $\kappa(G)$ of a graph G is the minimum number of vertices whose removal results in a disconnected or trivial graph and the edge connectivity $\lambda(G)$ of a graph G is the minimum number of edges whose removal results in a disconnected or trivial graph. A graph is called regular if all vertices have same degree and a graph is called $\left(r_{1}, r_{2}\right)$-semi regular if its vertex set can be partitioned into two subsets V_{1} and V_{2} such that all the vertices in V_{i} are of degree r_{i} for $i=1,2$.
A shortest $u-v$ path is called a geodesic. The diameter of a connected graph is the length of any longest geodesic. The set of vertices in a graph is independent if no two of them are adjacent. The largest number of vertices in such a set is called the independence number of G and it is denoted by $\beta_{0}(G)$. An independent set of edges of G has no two of its edges adjacent and the maximum cardinality of such a set is the mactching number $\beta_{1}(G)$ or β_{1}. A vertex and an edge are said to cover each other if they are incident. A set of vertices which covers all the edges of a graph G is called a vertex cover for G, while a set of edges which covers all the vertices is an edge cover. The minimum number of vertices in any vertex cover for G is called its vertex covering number and is denoted by $\alpha_{0}(G) . \alpha_{1}(G)$ is the smallest number
of edges in any edge cover of G and is called its edge covering number.
A clique of a graph G is a complete sub graph of G, and the clique of largest possible size is referred to as a maximum clique. The clique number of a graph G is the number of vertices in a maximum clique of G, denoted $\omega(G)$. The vertex chromatic number $\chi(G)$ is defined as the minimum number of colours such that no two adjacent vertices share a common colour. The edge chromatic number $\chi^{\prime}(G)$ is the minimum number of colours such that no two adjacent edges share a common colour.
A graph G is perfect, if for every induced sub graph $G^{\prime} \subseteq G$ the clique number and the chromatic number coincide, $\omega\left(G^{\prime}\right)=\chi\left(G^{\prime}\right)$.

Let Γ be a multiplicative group with identity 1 . For $S \subseteq \Gamma, 1 \notin S, S^{-1}=\left\{s^{-1} \mid s \in S\right\}=S$ the Cayley graph $X=\operatorname{Cay}(\Gamma, S)$ is the undirected graph having vertex set $V(X)=\Gamma$ and edge set $E(X)=\left\{(a, b) \mid a b^{-1} \in S\right\}$. The cayley graph X is regular of degree $|S|$.

For a positive integer $n>1$, the unitary Cayley graph X_{n} is the graph whose vertex set is Z_{n}, the integers modulo n and if U_{n} denotes set of all units of the ring Z_{n}, then two vertices a, b are adjacent if and only if $a-b \in U_{n}$. The unitary Cayley graph X_{n} is also defined as, $X_{n}=\operatorname{Cay}\left(Z_{n}, U_{n}\right)$. The graph X_{n} is regular of degree $\left|U_{n}\right|=\phi(n)$, where $\phi(n)$ denotes the Euler phi function [5].

For a positive integer $n>1$, the unitary addition Cayley graph $G_{n}=\operatorname{Cay}^{+}\left(Z_{n}, U_{n}\right)$ is the graph whose vertex set is $Z_{n}=\{0,1,2, \cdots, n-1\}$ and the edge set $E\left(G_{n}\right)=\left\{a b \mid a, b \in Z_{n}, a+b \in U_{n}\right\}$ where $U_{n}=\left\{a \in Z_{n} \mid \operatorname{gcd}(a, n)=1\right\}$. The graph G_{n} is regular if n is even and semi regular if n is odd [12].

Figures 1 and 2 show some examples of unitary addition Cayley graphs.

2. PRELIMINARIES

THEOREM 1 [8]. The minimum number of vertices separating two nonadjacent vertices s and the maximum number of disjoint $s-t$ paths.

Fig. 1. G_{10}

Fig. 2. G_{5}
THEOREM 2 [8]. For any graph G, the edge chromatic number satisfies the inequalities, $\Delta \leq \chi^{\prime}(G) \leq \Delta+1$.

THEOREM 3 [12]. The unitary addition Cayley graph G_{n} is isomorphic to the unitary Cayley graph X_{n} if and only if n is even.

THEOREM 4 [2]. The edge chromatic number $\chi^{\prime}\left(X_{n}\right)$ of the unitary Cayley graph X_{n} is $\phi(n)$ if n is even.

THEOREM 5 [2]. The edge connectivity $\lambda\left(X_{n}\right)$ of the unitary Cayley graph X_{n} is $\phi(n)$ if n is even.

THEOREM 6 [9]. The unitary Cayley graph X_{n} has vertex connectivity $\kappa\left(X_{n}\right)=\phi(n)$.

THEOREM 7 [9]. If p is the smallest prime divisor of n, then we have $\chi\left(X_{n}\right)=\omega\left(X_{n}\right)=p$.

THEOREM 8 [12]. Let m be any vertex of the unitary addition cayley graph G_{n}. Then

$$
d(m)= \begin{cases}\phi(n) & \text { if } n \text { is even } \\ \phi(n) & \text { if } n \text { is odd and } \operatorname{gcd}(m, n) \neq 1 \\ \phi(n)-1 & \text { if } n \text { is odd and } \operatorname{gcd}(m, n)=1\end{cases}
$$

THEOREM 9 [10]. Let p be a prime number. Then $x^{2} \equiv$ $1(\bmod p)$ if and only if $x \equiv \pm 1(\bmod p)$.

THEOREM 10 [6]. The order of an element in a direct product of a finite number of finite groups is the least common multiple of the orders of the components of the element.

COROLLARY 1 [12]. The total number of edges in the unitary addition Cayley graph G_{n} is

$$
\left|E\left(G_{n}\right)\right|= \begin{cases}\frac{1}{2} n \phi(n) & \text { if } n \text { is even } \\ \frac{1}{2}(n-1) \phi(n) & \text { if } n \text { is odd }\end{cases}
$$

THEOREM 11 [11]. Let G be a graph with diameter ≤ 2. Then the edge connectivity $\lambda(G)$ is equal to the minimum degree $\delta(G)$.

THEOREM 12 [4]. Strong Perfect Graph Theorem(SPGT). A graph G is perfect if and only if G and its complement \bar{G} have no induced cycles of odd length atleast 5.

THEOREM 13 [3]. Let $G \neq K_{n}$ be a graph of order n, then $\kappa(G) \geq 2 \delta(G)+2-n$.

ObSERVATION 1. Unitary addition cayley graph $G_{n}(n \geq 3)$ can be decomposed into $\frac{\phi(n)}{2}$ disjoint Hamiltonian cycles if n is even and can be decomposed into $\frac{\phi(n)}{2}-1$ disjoint Hamiltonian cycles if n is odd.

3. CONNECTIVITY AND INDEPENDENCE OF UNITARY ADDITION CAYLEY GRAPH

LEMMA 14. If n is odd then the number of elements in U_{n} of order 2 is 2^{r} (we consider identity 1 has order 2) and these elements are represented in the form $H=\left\{x \in U_{n} \mid x=\beta_{x} Z\right\}$ where $\beta_{x}=\left[\begin{array}{lllll}a_{1 x} & a_{2 x} & a_{3 x} & \cdots & a_{r x}\end{array}\right], Z=\left[\begin{array}{c}\left(Z_{1}\right)^{\left(p_{1}^{\alpha_{1}}-p_{1}^{\alpha_{1}-1}\right)} \\ \left(Z_{2}\right)^{\left(p_{2}^{\alpha_{2}-p_{2}^{\alpha_{2}-1}}\right)} \\ \vdots \\ \left(Z_{r}\right)^{\left(p_{r}^{\alpha_{r}}-p_{r}^{\alpha_{r}-1}\right)}\end{array}\right], Z_{i}=$ $n / p_{i}^{\alpha_{i}}$ and $a_{i x} \in\{1,-1\}, 1 \leq i \leq r$, where r is the number of distinct prime factors of n.

PROOF. If m and n are relatively prime then $U_{m n}$ is isomorphic to $U_{m} \oplus U_{n}$. Suppose $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \cdots p_{r}^{\alpha_{r}}$. Then each pair of elements $\left(p_{i}^{\alpha_{i}}, p_{j}^{\alpha_{j}}\right), i \neq j$, is relatively prime and $U_{n}=$ $U_{p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \ldots p_{r}^{\alpha_{r}}} \approx U_{p_{1}^{\alpha_{1}}} \oplus U_{p_{2}^{\alpha_{2}}} \oplus \cdots \oplus U_{p_{r}^{\alpha_{r}}}$.
The number of elements in U_{n} of order 2 is 2^{r}, since the order of an element of a direct product of a finite number of finite groups is the least common multiple of the order of the components of the element.
Let $x^{2} \equiv 1(\bmod n)$ and $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \cdots p_{r}^{\alpha_{r}}$
This implies $x^{2} \equiv 1\left(\bmod p_{1}^{\alpha_{1}}\right)$

$$
\begin{aligned}
x^{2} & \equiv 1\left(\bmod p_{2}^{\alpha_{2}}\right) \\
& \vdots \\
x^{2} & \equiv 1\left(\bmod p_{r}^{\alpha_{r}}\right)
\end{aligned}
$$

This implies $x \equiv \pm 1\left(\bmod p_{1}^{\alpha_{1}}\right)$

$$
x \equiv \pm 1\left(\bmod p_{2}^{\alpha_{2}}\right)
$$

$x \equiv \pm 1\left(\bmod p_{r}^{\alpha_{r}}\right)$
Using Chinese remainder theorem and Eulerś theorem, we get $x= \pm\left(Z_{1}\right)^{\left(p_{1}^{\alpha_{1}}-p_{1}^{\alpha_{1}-1}\right)} \pm\left(Z_{2}\right)^{\left(p_{2}^{\left.\alpha_{2}-p_{2}^{\alpha_{2}-1}\right)} \pm \cdots \pm\right.}$ $\left(Z_{r}\right)^{\left(p_{r}^{\alpha_{r}}-p_{r}^{\alpha_{r}-1}\right)}(\bmod n)$ where $Z_{i}=n / p_{i}^{\alpha_{i}}, 1 \leq i \leq r$.
$x=\beta_{x} Z(\bmod n)$ where $\beta_{x}=\left[\begin{array}{llll}a_{1 x} & a_{2 x} & a_{3 x} & \cdots\end{array} a_{r x}\right]$ and
$Z=\left[\begin{array}{c}\left(Z_{1}\right)^{\left(p_{1}^{\alpha_{1}}-p_{1}^{\alpha_{1}-1}\right)} \\ \left(Z_{2}\right)^{\left(p_{2}^{\alpha_{2}}-p_{2}^{\alpha_{2}-1}\right)} \\ \vdots \\ \left(Z_{r}\right)^{\left(p_{r}^{\alpha_{r}}-p_{r}^{\alpha_{r}-1}\right)}\end{array}\right], Z_{i}=n / p_{i}^{\alpha_{i}}$ and $a_{i x} \in\{1,-1\}, 1 \leq$
$i \leq r$.
THEOREM 15. Let n be an odd number. Then the unitary addition Cayley graph G_{n} is k - partite, $k=\frac{\phi(n)}{2^{r}}+r$, where r is the number of distinct prime factors of n.

PROOF. Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} p_{3}^{\alpha_{3}} \cdots p_{r}^{\alpha_{r}}, p_{1}<p_{2}<\cdots<p_{r}$, p_{i} 's are distinct prime factors of $n, 1 \leq i \leq r$. Then the sets $\left\langle p_{1}\right\rangle,\left\langle p_{i}\right\rangle \backslash \cup_{1 \leq j \leq i-1}\left\{\left\langle p_{j}\right\rangle\right\}, 2 \leq i \leq r$ are distinct independent sets in G_{n}. So $V\left(G_{n}\right)-U_{n}$ splitting into r distinct independent sets.
By lemma 14 the number of elements of order 2 in U_{n} is 2^{r} and they are $H=\left\{x \in U_{n} \mid x=\beta_{x} Z\right\}$.
Suppose $x, y \in H$, then $x=\beta_{x} Z, y=\beta_{y} Z$ and $x+y=\left(\beta_{x}+\right.$ $\left.\beta_{y}\right) Z$, so $\beta_{x}+\beta_{y}=\left[b_{1} b_{2} \cdots b_{r}\right], b_{i}=a_{i x}+a_{i y} \in\{0,2,-2\}$, $1 \leq i \leq r$.
If all b_{i} 's are zeros then $\operatorname{gcd}(x+y, n)=\operatorname{gcd}(0, n)=n$, it implies that $x+y \notin U_{n}$. If some b_{i} 's are non-zeros, say $b_{s_{1}}, b_{s_{2}}, \cdots, b_{s_{t}}$, $1 \leq t \leq r-1$ then corresponding $\left(Z_{s_{l}}\right)^{\left(p_{s_{l}}^{\alpha_{s_{l}}}-p_{s_{l}}^{\alpha_{s_{l}-1}}\right)}$ does not contain $p_{s_{l}}^{\alpha_{s_{l}}}, 1 \leq l \leq r-1$, therefore $\operatorname{gcd}(x+y, n)=\frac{n}{q}$ where $q=p_{s_{1}}^{\alpha_{s_{1}}} p_{s_{2}}^{\alpha_{s_{2}}} \cdots p_{s_{t}}^{\alpha_{s_{t}}}$. It implies that $x+y \notin U_{n}$.
That is H is an independent set in G_{n}.
In a similar manner, we can prove that $2^{l} H$ is an independent set in G_{n}, where $1 \leq l<\frac{\phi(n)}{2^{r}}$.
Suppose $x \in 2^{l} H$
$\Leftrightarrow x=2^{l} \beta_{x} Z=\left(2^{l} \beta_{x}\right) Z$
$\Leftrightarrow x=\beta_{k} Z$ where $\beta_{k}=2^{l} \beta_{x}$ and it has elements $+2^{l}$ and -2^{l}
$\Leftrightarrow x \notin 2^{t} H, 0 \leq l, t<\frac{\phi(n)}{2^{r}}, l \neq t$
So $H, 2^{1} H, 2^{2} H, \cdots, 2^{l} H$ are distinct independent sets, each set has 2^{r} elements.
Hence the unitary addition Cayley graph G_{n} is k partite, $k=$ $\frac{\phi(n)}{2^{r}}+r$, where r is the number of distinct prime factors of n.

THEOREM 16. Independence number of the unitary addition Cayley graph $G_{n}, n \geq 3$, is

$$
\beta_{0}\left(G_{n}\right)= \begin{cases}\frac{n}{2} & \text { if } n \text { is even } \\ \frac{n}{p_{1}} & \text { if } n \text { is odd but not a prime number } \\ 2 & \text { if } n \text { is prime } .\end{cases}
$$

where $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}, p_{1}<p_{2}<\cdots<p_{r}, \alpha_{i} \geq 1,1 \leq i \leq$ r.

Proof. Suppose n is even. Then the sets $H=$ $\{0,2,4, \cdots, n-2\}$ and $L=\{1,3,5, \cdots, n-1\}$ are independent in G_{n}. It implies G_{n} has only two independent sets and both has $\frac{n}{2}$ elements. Hence independence number is $\frac{n}{2}$.
Next, suppose n is odd, but not a prime. Then the sets $K_{i}=<p_{i}>, 1 \leq i \leq r$, are independent in G_{n}. In these sets K_{1} is maximum, since number of elements in K_{i} are $\frac{n}{p_{i}}$.
Any independent set in U_{n} has atmost 2^{r} elements where r is the number of distinct prime factors of n, but $\frac{n}{p_{1}}>2^{r}$. So K_{1} is a maximum independent set and hence independence number is $\frac{n}{p_{1}}$. Suppose $n=p$, where p is a prime number, then the vertex zero has degree $p-1$ and all other vertices have degree $p-2$. Let $W=V\left(G_{n}\right)-\{0\}$. For every $v \in W, v$ is adjacent to all vertices in G_{n} except the vertex $n-v$ in W, so the independence number is 2 .

COROLLARY 2. Covering number of the unitary addition Cayley graph $G_{n}, n \geq 3, n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}, p_{1}<p_{2}<\cdots<$ $p_{r}, \alpha_{i} \geq 1,1 \leq i \leq r i s$

$$
\alpha_{0}\left(G_{n}\right)= \begin{cases}\frac{n}{2} & \text { if } n \text { is even }, \\ \left(\frac{p_{1}-1}{p_{1}}\right) n & \text { if } n \text { is odd but not a prime number }, \\ n-2 & \text { if } n \text { is prime } .\end{cases}
$$

THEOREM 17. Matching number of the unitary addition Cayley graph $G_{n}, n \geq 3$, is

$$
\beta_{1}\left(G_{n}\right)= \begin{cases}\frac{n}{2} & \text { if } n \text { is even } \\ \frac{n-1}{2} & \text { if } n \text { is odd }\end{cases}
$$

Proof. In G_{n}, the generating set U_{n} must contain 1 .
Suppose n is even. Then edge set $E_{1}=\{(0,1),(n-1,2),(n-$ $\left.2,3), \cdots,\left(\frac{n+2}{2}, \frac{n}{2}\right)\right\}$ is an independent set in G_{n} and $\left|E_{1}\right|=\frac{n}{2}$. Suppose the matching number is greater than $\frac{n}{2}$, by definition of matching number the number of end vertices are greater than $2\left(\frac{n}{2}\right)$. It contradicts the total number of vertices in G_{n}. So matching number is $\frac{n}{2}$.
Suppose n is odd, then the edge set $E_{2}=\{(0,1),(n-1,2),(n-$ $\left.2,3), \cdots,\left(\frac{n+3}{2}, \frac{n-1}{2}\right)\right\}$ is an independent set in G_{n} and $\left|E_{2}\right|=$ $\frac{n-1}{2}$.
Suppose the matching number is greater than $\frac{n-1}{2}$, that is matching number is greater than or equal to $\frac{n+1}{2}$. By definition of matching number the number of end vertices are greater than or equal to $2\left(\frac{n+1}{2}\right)$. It contradicts the total number of vertices in G_{n}. So matching number is $\frac{n-1}{2}$.

COROLLARY 3. An edge covering number of the unitary addition Cayley graph $G_{n}, n \geq 3$, is

$$
\alpha_{1}\left(G_{n}\right)= \begin{cases}\frac{n}{2} & \text { if } n \text { is even } \\ \frac{n+1}{2} & \text { if } n \text { is odd }\end{cases}
$$

ObSERVATION 2. Let $u, v, w \in V\left(G_{n}\right)$. Vertex w is a common neighbour of u and v, if and only if $\operatorname{gcd}(u+w, n)=\operatorname{gcd}(v+$ $w, n)=1$. Then there exist unique $x, y \in Z_{n}$ such that $u+w \equiv x \bmod n, v+w \equiv y \bmod n$.
Now $w \equiv x-u \equiv y-v$ becomes a common neighbour of u and v, if and only if $x-y \equiv u-v \bmod n, x, y \in U_{n}$. This congruence has atleast one solution if n is odd.

THEOREM 18. The diameter of the unitary addition cayley $\operatorname{graph} G_{n}, n>2$, is

$$
\operatorname{diam}\left(G_{n}\right)= \begin{cases}2 & \text { if } n \text { is prime }, \\ 2 & \text { if } n \text { is even and } n=2^{m}, m \geq 2 \\ 3 & \text { if } n \text { is even and } n \neq 2^{m}, m \geq 2 \\ 2 & \text { if } n \text { is odd but not a prime }\end{cases}
$$

Proof. Suppose $n=p, p$ is prime, then $U_{p}=$ $\{1,2,3, \cdots, p-1\}$. If $u \in U_{p}$ then u is adjacent to $p-2$ vertices including 0 and 0 is adjacent to all vertices. This implies diameter of G_{n} is 2 .
Suppose n is even and $n=2^{m}(m \geq 2)$, then $U_{n}=$ $\{1,3,5, \cdots, n-1\}$. An element 0 in $V\left(G_{n}\right)$ is adjacent to a vertex u where $u \in U_{n}$ and u is adjacent to all even vertices. This implies diameter of G_{n} is 2 .
Suppose $n\left(n \neq 2^{m}, m \geq 2\right)$ is even and $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$, $p_{1}<p_{2} \cdots<p_{r}, \alpha_{i} \geq 1, p_{i}$ are distinct prime factors of n, $1 \leq i \leq r$.
In G_{n}, zero is non adjacent to $p_{i}, 1 \leq i \leq r$, also zero and $p_{i}(2 \leq i \leq r)$ has no common vertex, since zero is adjacent to some odd vertices and $p_{i}(2 \leq i \leq r)$ is adjacent to some even vertices. Therefore $\operatorname{diam}\left(G_{n}\right) \geq 3$.
In G_{n} both even or both odd vertices are non adjacent. If u and v are odd (even) vertices in G_{n} then they have atleast one common vertex w in G_{n} and w is even (odd), since G_{n} is connected. We consider two non adjacent vertices v (even) and u (odd) in G_{n}, v is adjacent to some vertex x (odd) in G_{n}. Here x and u are odd vertices then they have a common vertex y (even) in G_{n}. Passing along
v, x, y and u, shows $\operatorname{diam}\left(G_{n}\right)=d(v, u) \leq 3$.
Suppose n is odd but not a prime, then every pair of distinct non adjacent vertices have a common neighbour. This implies diameter of G_{n} is 2 .

THEOREM 19. Edge connectivity of the unitary addition Cayley graph G_{n} is

$$
\lambda\left(G_{n}\right)= \begin{cases}\phi(n) & \text { if } n \text { is even } \\ \phi(n)-1 & \text { if } n \text { is odd }\end{cases}
$$

Proof. Suppose n is odd $\lambda\left(G_{n}\right)=\phi(n)-1$, by Theorems 8 . 11 and 18
Suppose n is even $\lambda\left(G_{n}\right)=\phi(n)$, by Theorems 3 and 5
COROLLARY 4. Vertex connectivity of the unitary addition Cayley graph G_{n} is

$$
\kappa\left(G_{n}\right)= \begin{cases}\phi(n) & \text { if } n \text { is even } \\ \phi(n)-1 & \text { if } n \text { is prime }\end{cases}
$$

Proof. Suppose n is even $\kappa\left(G_{n}\right)=\phi(n)$, by Theorems 3 and

6

Suppose n is prime say p, then $\kappa\left(G_{p}\right)=\phi(p)-1$, by Theorems 13 and 19

REMARK 1. For all $n, 2 \phi(n)-n \leq \kappa\left(G_{n}\right) \leq \phi(n)-1$.

4. CHROMATIC AND CLIQUE NUMBER OF UNITARY ADDITION CAYLEY GRAPH

THEOREM 20. Chromatic number of the unitary addition Cayley graph G_{n} is $\chi\left(G_{n}\right)=2$ if n is even and $\chi\left(G_{n}\right) \leq \frac{\phi(n)}{2^{r}}+r$ if n is odd, where r is the number of distinct prime factors of n.

Proof. Suppose n is even. By Theorems 3 and $7 \chi\left(G_{n}\right)=2$. If n is odd then G_{n} splitting into $\frac{\phi(n)}{2^{r}}+r$ distinct independent sets. Therefore $\chi\left(G_{n}\right) \leq \frac{\phi(n)}{2^{r}}+r$.

THEOREM 21. Edge chromatic number of the unitary addition Cayley graph G_{n} is $\phi(n)$.

Proof. Suppose n is odd. From the definition of proper edge colouring G_{n} contains atmost $\frac{n-1}{2}$ edges of a same colour. By Corollary 11, atmost $\phi(n)$ colours are needed to colour G_{n}. So $\chi^{\prime}\left(G_{n}\right) \leq \phi(n)$.
By Theorem 2 d $\phi(n) \leq \chi^{\prime}\left(G_{n}\right)$.
Therefore $\chi^{\prime}\left(G_{n}\right)=\bar{\phi}(n)$.
Suppose n is even. By Theorem 3 and Theorem 4, edge chromatic number is $\phi(n)$.

THEOREM 22. Clique number of the unitary addition Cayley graph G_{n} is

$$
\begin{aligned}
& \quad \omega\left(G_{n}\right)= \begin{cases}2 & \text { if } n \text { is even, } \\
\frac{\phi(n)}{2}+1 & \text { if } n=p^{m}, p \neq 2 \text { and } m \geq 2 .\end{cases} \\
& \text { and } n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}, p_{1}<p_{2}<\cdots<p_{r}
\end{aligned}
$$

$$
\omega\left(G_{n}\right) \geq \begin{cases}3 & \text { if } p_{1}=3 \\ \frac{p_{1}+1}{2} & \text { if } p_{1}>3\end{cases}
$$

Proof. Case 1. Suppose n is even. By Theorems 3 and 7 . $\omega\left(G_{n}\right)=2$.
Case 2. For $n=p^{m}, p \neq 2$ and $m \geq 2$.
Let $U_{n}=\left\{ \pm u_{1}, \pm u_{2}, \cdots, \pm u_{k}\right\}$.
If $\phi(n)=2 k$ and k is even, then $A=$
$\left\{0, u_{1}, u_{3}, \cdots, u_{k-1},-u_{k},-u_{k-2}, \cdots,-u_{2}\right\} \quad$ is a clique in G_{n}.
If $\phi(n)=2 k$ and k is odd, then $B=$ $\left\{0, u_{1}, u_{3}, \cdots, u_{k},-u_{k-1},-u_{k-3}, \cdots,-u_{2}\right\} \quad$ is \quad a clique in G_{n}.
In both case $|A|=|B|=\frac{\phi(n)}{2}+1$. So $\omega\left(G_{n}\right) \geq \frac{\phi(n)}{2}+1$.
From Theorem 20 we get $\omega\left(G_{n}\right) \leq \frac{\phi(n)}{2}+1$. Therefore $\omega\left(G_{n}\right)=\frac{\phi(n)}{2}+1$.
Case 3. For $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$ and $p_{1}=3$.
The set $\left\{0, p_{1}, p_{2}\right\}$ is a clique in G_{n}, so $\omega\left(G_{n}\right) \geq 3$.
Case 4. For $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$ and $p_{1}>3$.
The set $\left\{0,1,2, \cdots, \frac{p_{1}-1}{2}\right\}$ is a clique in G_{n}, so $\omega\left(G_{n}\right) \geq$ $\frac{p_{1}+1}{2}$.

5. PERFECTNESS

Lemma 23. If n is odd and has atleast two different prime divisors, then \bar{G}_{n} contains an induced cycle C_{5} of length 5 .

PROOF. Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}, p_{1}<p_{2}<\cdots<p_{r}$, where r is the number of distinct prime factor of n.
Choose the vertices $v_{1}, v_{2}, v_{3}, v_{4}$ and v_{5} in the following manner $v_{1}=0, v_{2}=p_{r}, v_{3}=p_{1} p_{2} \cdots p_{r-1}-p_{r}, v_{4}=$ $-2 p_{1} p_{2} \cdots p_{r-1}+p_{r}$,
$v_{5}=2 p_{1} p_{2} \cdots p_{r-1}$. The vertices $v_{1}, v_{2}, v_{3}, v_{4}$ and v_{5} are distinct. These vertices form a cycle C_{5} of \bar{G}_{n}, because
$v_{1}+v_{2} \equiv v_{4}+v_{5} \equiv 0\left(\bmod p_{r}\right)$
$v_{1}+v_{5} \equiv v_{2}+v_{3} \equiv v_{3}+v_{4} \equiv 0\left(\bmod p_{i}\right), i=1,2, \cdots, r-1$. It follows that the edges $\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\}, \cdots\left\{v_{5}, v_{1}\right\}$ belong to \bar{G}_{n}.
Next to show that this C_{5} has no chords in \bar{G}_{n}.

$$
\begin{align*}
& v_{1}+v_{3}=p_{1} p_{2} \cdots p_{r-1}-p_{r} \\
& v_{1}+v_{4}=-2 p_{1} p_{2} \cdots p_{r-1}+p_{r} \\
& v_{2}+v_{4}=-2\left(p_{1} p_{2} \cdots p_{r-1}-p_{r}\right) \tag{1}\\
& v_{2}+v_{5}=2 p_{1} p_{2} \cdots p_{r-1}+p_{r} \\
& v_{3}+v_{5}=3 p_{1} p_{2} \cdots p_{r-1}-p_{r}
\end{align*}
$$

From (1), we get $v_{1}+v_{3}, v_{1}+v_{4}, v_{2}+v_{4}, v_{2}+v_{5}$ and $v_{3}+v_{5}$ are non divisible by $p_{i}, i=1,2, \cdots, r$. Therefore the cycle C_{5} is an induced cycle in \bar{G}_{n}.
REMARK 2. Unitary addition Cayley graph G_{n} is not perfect if n is odd and has atleast two different prime divisors.

LEMMA 24. Let $n=p^{m}$, where p is a prime number and $p>$ 2. Then \bar{G}_{n} has no induced odd cycle $C_{2 k+1}, k \geq 2$.

Proof. Assume that \bar{G}_{n} contains an induced cycle $C_{2 k+1}, k \geq 2$, which runs through the vertices $v_{1}, v_{2}, \cdots, v_{2 k+1}$ in this order.
We consider three consecutive edges $\left\{v_{i}, v_{i+1}\right\},\left\{v_{i+1}, v_{i+2}\right\},\left\{v_{i+2}, v_{i+3}\right\} \quad$ in $C_{2 k+1}$. This implies that $v_{i}+v_{i+1}, v_{i+1}+v_{i+2}$ and $v_{i+2}+v_{i+3}$ are divisible by p in \bar{G}_{n}.
Adding first and third term, we get $v_{i}+v_{i+1}+v_{i+2}+v_{i+3}$, which is divisible by p.
This implies that $v_{i}+v_{i+3}$ is divisible by p in \bar{G}_{n}.
It follows that $\left\{v_{i}, v_{i+3}\right\}$ is an edge in G_{n}. It is a contradiction to our assumption.

LEMMA 25. Let $n=p^{m}$, where p is a prime number and $p>$ 2. Then G_{n} has no induced odd cycle $C_{2 k+1}, k \geq 2$.

Proof. Assume that G_{n} contains an induced cycle $C_{2 k+1}, k \geq$ 2 , which runs through the vertices $v_{1}, v_{2}, \cdots, v_{2 k+1}$ in this order. We consider two cases.
Case 1. Atleast one $v_{i} \in\{<p>\}$, say v. Then v is non adjacent to all vertices $v_{j} \in\{<p>\}, 1 \leq j \leq 2 k+1$. It is a contradiction to our assumption.
Case 2. Let $k \geq 3$ and all $v_{i} \notin\{<p>\}$.
If $x \in U\left(p^{m}\right)$ then any vertex y non adjacent to x is of the form $y=l p-x \in U\left(p^{m}\right), 1 \leq l \leq \frac{n}{p}$. In $C_{2 k+1}, v_{1}$ is non adjacent to atleast three vertices, say v_{x}, v_{y} and v_{z}. So $v_{x}=l_{1} p-v_{1}, v_{y}=$ $l_{2} p-v_{1}$ and $v_{z}=l_{3} p-v_{1}, 1 \leq l_{1}, l_{2}, l_{3} \leq \frac{n}{p}$. Here $v_{x}+v_{y}=$ $\left(l_{1}+l_{2}\right) p-2 v_{1}, v_{x}+v_{z}=\left(l_{1}+l_{3}\right) p-2 v_{1}$, and $v_{y}+v_{z}=$ $\left(l_{2}+l_{3}\right) p-2 v_{1}$. So $v_{x}+v_{y}, v_{x}+v_{z}, v_{y}+v_{z} \in U_{n}$. It is a contradiction to our assumption.
Assume that G_{n} contains an induced cycle C_{5}, which run through the vertices $v_{1}, v_{2}, v_{3}, v_{4}$ and v_{5}. So $v_{1}+v_{4}, v_{1}+v_{3}, v_{2}+v_{4}, v_{2}+v_{5}$ and $v_{3}+v_{5}$ are divisible by p. Adding $v_{1}+v_{3}$ and $v_{2}+v_{5}$, we get $v_{1}+v_{3}+v_{2}+v_{5}$ is divisible by p. Also $v_{3}+v_{5}$ is divisible by p. This implies that $v_{1}+v_{2}$ is divisible by p. It is a contradiction to our assumption.

Combining the lemmas 24,25 and using the property of bipartite, now we can prove the following result.

THEOREM 26. The unitary addition Cayley graph $G_{n}, n \geq 2$, is perfect if and only if n is even or $n=p^{m}, m \geq 1$.

6. CONCLUSION

In this paper we determine some structural properties of unitary addition Cayley graph G_{n}, including diameter, connectivity and perfectness.

7. REFERENCES

[1] Norman Biggs. Algebraic graph theory. Cambridge University Press, 1993.
[2] Megan Boggess, Tiffany Jackson-Henderson, Jime'nez, and Rachel Karpman. The structure of unitary cayley graphs. SUMSRI Journal, 2008.
[3] G. Chartrand and F. Harary. Graphs with prescribed connectivities. Symp. on Graph Theory Tihany, Acad. Sci. Hung., pages 61-63, 1967.
[4] Maria Chudnovsky, Neil Robertson, Paul Seymour, and Robin Thomas. The strong perfect graph theorem. Annals of Mathematics, pages 51-229, 2006.
[5] Italo J Dejter and Reinaldo E Giudici. On unitary cayley graphs. J. Combin. Math. Combin. Comput, 18:121-124, 1995.
[6] Joseph Gallian. Contemporary abstract algebra. Cengage Learning, 2009.
[7] Chris Godsil and Gordon Royle. Algebraic graph theory, vol 207 of graduate texts in mathematics, 2001.
[8] Frank Harary. Graph Theory. Addison-Wesley, 1969.
[9] Walter Klotz and Torsten Sander. Some properties of unitary cayley graphs. The electronic journal of combinatorics, 14:R45, 2007.
[10] Ivan Niven, Herbert S Zuckerman, and Hugh L Montgomery. An introduction to the theory of numbers. John Wiley \& Sons, 2008.
[11] Jan Plesnik. Critical graphs of given diameter. Acta FRN Univ. Comen. Math, 30:71-93, 1975.
[12] Deepa Sinha, Pravin Garg, and Anjali Singh. Some properties of unitary addition cayley graphs. Notes on Number Theory and Discrete Mathematics, 17(3):49-59, 2011.

