
International Journal of Computer Applications (0975 - 8887)
Volume 121 - No.17, July 2015

Some Structural Properties of Unitary Addition Cayley
Graphs

Naveen Palanivel
Department of Mathematics,

National Institute of Technology,
Calicut, Kerala,
India-673601

Chithra.A.V
Department of Mathematics,

National Institute of Technology,
Calicut, Kerala,
India-673601

ABSTRACT
For a positive integer n > 1, the unitary addition Cayley
graph Gn is the graph whose vertex set is V (Gn) = Zn =
{0, 1, 2, · · · , n − 1} and the edge set E(Gn) = {ab | a, b ∈
Zn, a + b ∈ Un} where Un = {a ∈ Zn | gcd(a, n) = 1}.
For Gn the independence number, chromatic number, edge chro-
matic number, diameter, vertex connectivity, edge connectivity and
perfectness are determined.
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1. INTRODUCTION
Throughout this paper, we consider only finite, simple, undirected
graphs. For standard terminology and notation in graph theory we
follow [8] and algebraic graph theory we follow [1], [7]. Degree of
a vertex v in a graph G is the number of edges incident with that
vertex and it is denoted by d(v). δ(G) denotes minimum degree of
the graph G and ∆(G) denotes maximum degree of the graph G.
The vertex connectivity κ(G) of a graphG is the minimum number
of vertices whose removal results in a disconnected or trivial graph
and the edge connectivity λ(G) of a graph G is the minimum
number of edges whose removal results in a disconnected or trivial
graph. A graph is called regular if all vertices have same degree
and a graph is called (r1, r2)− semi regular if its vertex set can be
partitioned into two subsets V1 and V2 such that all the vertices in
Vi are of degree ri for i = 1, 2.
A shortest u − v path is called a geodesic. The diameter of
a connected graph is the length of any longest geodesic. The
set of vertices in a graph is independent if no two of them are
adjacent. The largest number of vertices in such a set is called
the independence number of G and it is denoted by β0(G). An
independent set of edges of G has no two of its edges adjacent and
the maximum cardinality of such a set is the mactching number
β1(G) or β1. A vertex and an edge are said to cover each other if
they are incident. A set of vertices which covers all the edges of a
graph G is called a vertex cover for G, while a set of edges which
covers all the vertices is an edge cover. The minimum number
of vertices in any vertex cover for G is called its vertex covering
number and is denoted by α0(G). α1(G) is the smallest number

of edges in any edge cover of G and is called its edge covering
number.
A clique of a graph G is a complete sub graph of G, and the
clique of largest possible size is referred to as a maximum clique.
The clique number of a graph G is the number of vertices in
a maximum clique of G, denoted ω(G). The vertex chromatic
number χ(G) is defined as the minimum number of colours such
that no two adjacent vertices share a common colour. The edge
chromatic number χ′(G) is the minimum number of colours such
that no two adjacent edges share a common colour.
A graph G is perfect, if for every induced sub graph G′ ⊆ G
the clique number and the chromatic number coincide,
ω(G′) = χ(G′).

Let Γ be a multiplicative group with identity 1. For
S ⊆ Γ, 1 /∈ S, S−1 = {s−1 | s ∈ S} = S the Cayley
graph X = Cay(Γ, S) is the undirected graph having vertex set
V (X) = Γ and edge set E(X) = {(a, b) | ab−1 ∈ S}. The cayley
graph X is regular of degree |S|.

For a positive integer n > 1, the unitary Cayley graph Xn is the
graph whose vertex set is Zn, the integers modulo n and if Un
denotes set of all units of the ring Zn, then two vertices a, b are
adjacent if and only if a − b ∈ Un. The unitary Cayley graph
Xn is also defined as, Xn = Cay(Zn, Un). The graph Xn is
regular of degree |Un| = φ(n), where φ(n) denotes the Euler phi
function [5].

For a positive integer n > 1, the unitary addition Cay-
ley graph Gn = Cay+(Zn, Un) is the graph whose
vertex set is Zn = {0, 1, 2, · · · , n − 1} and the edge
set E(Gn) = {ab | a, b ∈ Zn, a + b ∈ Un} where
Un = {a ∈ Zn | gcd(a, n) = 1}. The graph Gn is regular
if n is even and semi regular if n is odd [12].

Figures 1 and 2 show some examples of unitary addition Cayley
graphs.

2. PRELIMINARIES
THEOREM 1 [8]. The minimum number of vertices separating

two nonadjacent vertices s and t is the maximum number of disjoint
s− t paths.
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Fig. 1. G10

Fig. 2. G5

THEOREM 2 [8]. For any graph G, the edge chromatic num-
ber satisfies the inequalities, ∆ ≤ χ′(G) ≤ ∆ + 1.

THEOREM 3 [12]. The unitary addition Cayley graph Gn is
isomorphic to the unitary Cayley graph Xn if and only if n is even.

THEOREM 4 [2]. The edge chromatic number χ′(Xn) of the
unitary Cayley graph Xn is φ(n) if n is even.

THEOREM 5 [2]. The edge connectivity λ(Xn) of the unitary
Cayley graph Xn is φ(n) if n is even.

THEOREM 6 [9]. The unitary Cayley graph Xn has vertex
connectivity κ(Xn) = φ(n).

THEOREM 7 [9]. If p is the smallest prime divisor of n, then
we have χ(Xn) = ω(Xn) = p.

THEOREM 8 [12]. Letm be any vertex of the unitary addition
cayley graph Gn. Then

d(m) =

 φ(n) if n is even,
φ(n) if n is odd and gcd(m,n) 6= 1,
φ(n)− 1 if n is odd and gcd(m,n) = 1.

THEOREM 9 [10]. Let p be a prime number. Then x2 ≡
1(modp) if and only if x ≡ ±1(modp).

THEOREM 10 [6]. The order of an element in a direct product
of a finite number of finite groups is the least common multiple of
the orders of the components of the element.

COROLLARY 1 [12]. The total number of edges in the unitary
addition Cayley graph Gn is

|E(Gn)| =
{

1
2
nφ(n) if n is even,

1
2
(n− 1)φ(n) if n is odd.

THEOREM 11 [11]. Let G be a graph with diameter ≤ 2.
Then the edge connectivity λ(G) is equal to the minimum degree
δ(G).

THEOREM 12 [4]. Strong Perfect Graph Theorem(SPGT). A
graph G is perfect if and only if G and its complement G have no
induced cycles of odd length atleast 5.

THEOREM 13 [3]. Let G 6= Kn be a graph of order n, then
κ(G) ≥ 2δ(G) + 2− n.

OBSERVATION 1. Unitary addition cayley graph Gn(n ≥ 3)

can be decomposed into φ(n)
2

disjoint Hamiltonian cycles if n is
even and can be decomposed into φ(n)

2
− 1 disjoint Hamiltonian

cycles if n is odd.

3. CONNECTIVITY AND INDEPENDENCE OF
UNITARY ADDITION CAYLEY GRAPH

LEMMA 14. If n is odd then the number of elements in Un of
order 2 is 2r(we consider identity 1 has order 2) and these elements
are represented in the form H = {x ∈ Un | x = βxZ} where

βx =
[
a1x a2x a3x · · · arx

]
, Z =


(Z1)

(
p
α1
1 −pα1−1

1

)
(Z2)

(
p
α2
2 −pα2−1

2

)
:

(Zr)
(pαrr −pαr−1r )

, Zi =

n/pαii and aix ∈ {1,−1}, 1 ≤ i ≤ r, where r is the number of
distinct prime factors of n.

PROOF. If m and n are relatively prime then Umn is isomor-
phic to Um ⊕ Un. Suppose n = pα1

1 pα2
2 pα3

3 · · · pαrr . Then each
pair of elements

(
pαii , p

αj
j

)
, i 6= j, is relatively prime and Un =

Upα1
1 p

α2
2 p

α3
3 ···pαrr ≈ Upα1

1
⊕ Upα2

2
⊕ · · · ⊕ Upαrr .

The number of elements in Un of order 2 is 2r , since the order of
an element of a direct product of a finite number of finite groups
is the least common multiple of the order of the components of the
element.
Let x2 ≡ 1(modn) and n = pα1

1 pα2
2 pα3

3 · · · pαrr
This implies x2 ≡ 1(modpα1

1 )
x2 ≡ 1(modpα2

2 )
:

x2 ≡ 1(modpαrr )
This implies x ≡ ±1(modpα1

1 )
x ≡ ±1(modpα2

2 )
:

x ≡ ±1(modpαrr )
Using Chinese remainder theorem and Eulerś theorem, we

get x = ± (Z1)

(
p
α1
1 −pα1−1

1

)
± (Z2)

(
p
α2
2 −pα2−1

2

)
± · · · ±

(Zr)
(pαrr −pαr−1r ) (modn) where Zi = n/pαii , 1 ≤ i ≤ r.

x = βxZ(modn) where βx =
[
a1x a2x a3x · · · arx

]
and

Z =


(Z1)

(
p
α1
1 −pα1−1

1

)
(Z2)

(
p
α2
2 −pα2−1

2

)
:

(Zr)
(pαrr −pαr−1r )

, Zi = n/pαii and aix ∈ {1,−1}, 1 ≤

i ≤ r.

THEOREM 15. Let n be an odd number. Then the unitary ad-
dition Cayley graphGn is k− partite, k = φ(n)

2r
+r, where r is the

number of distinct prime factors of n.
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PROOF. Let n = pα1
1 pα2

2 pα3
3 · · · pαrr , p1 < p2 < · · · < pr ,

pi’s are distinct prime factors of n, 1 ≤ i ≤ r. Then the sets
〈p1〉, 〈pi〉\ ∪1≤j≤i−1 {〈pj〉}, 2 ≤ i ≤ r are distinct independent
sets in Gn. So V (Gn) − Un splitting into r distinct independent
sets.
By lemma 14, the number of elements of order 2 in Un is 2r and
they are H = {x ∈ Un | x = βxZ}.
Suppose x, y ∈ H , then x = βxZ, y = βyZ and x + y = (βx +
βy)Z, so βx + βy = [b1b2 · · · br], bi = aix + aiy ∈ {0, 2,−2},
1 ≤ i ≤ r.
If all bi’s are zeros then gcd(x+ y, n) = gcd(0, n) = n, it implies
that x+ y /∈ Un. If some bi’s are non-zeros, say bs1 , bs2 , · · · , bst ,
1 ≤ t ≤ r − 1 then corresponding (Zsl)

(p
αsl
sl
−p
αsl−1
sl

) does not
contain p

αsl
sl , 1 ≤ l ≤ r − 1, therefore gcd(x + y, n) = n

q
where

q = p
αs1
s1 p

αs2
s2 · · · p

αst
st . It implies that x+ y /∈ Un.

That is H is an independent set in Gn.
In a similar manner, we can prove that 2lH is an independent set in
Gn, where 1 ≤ l < φ(n)

2r
.

Suppose x ∈ 2lH
⇔ x = 2lβxZ = (2lβx)Z
⇔ x = βkZ where βk = 2lβx and it has elements +2l and −2l

⇔ x /∈ 2tH , 0 ≤ l, t < φ(n)
2r

, l 6= t

So H, 21H, 22H, · · · , 2lH are distinct independent sets, each set
has 2r elements.
Hence the unitary addition Cayley graph Gn is k partite, k =
φ(n)
2r

+ r, where r is the number of distinct prime factors of n.

THEOREM 16. Independence number of the unitary addition
Cayley graph Gn, n ≥ 3, is

β0(Gn) =


n
2

if n is even,
n
p1

if n is odd but not a prime number,
2 if n is prime.

.
where n = pα1

1 pα2
2 · · · pαrr , p1 < p2 < · · · < pr, αi ≥ 1, 1 ≤ i ≤

r.

PROOF. Suppose n is even. Then the sets H =
{0, 2, 4, · · · , n − 2} and L = {1, 3, 5, · · · , n − 1} are inde-
pendent in Gn. It implies Gn has only two independent sets and
both has n

2
elements. Hence independence number is n

2
.

Next, suppose n is odd, but not a prime. Then the sets
Ki =< pi >, 1 ≤ i ≤ r, are independent in Gn. In these
sets K1 is maximum, since number of elements in Ki are n

pi
.

Any independent set in Un has atmost 2r elements where r is the
number of distinct prime factors of n, but n

p1
> 2r . So K1 is a

maximum independent set and hence independence number is n
p1

.
Suppose n = p, where p is a prime number, then the vertex zero
has degree p − 1 and all other vertices have degree p − 2. Let
W = V (Gn)− {0}. For every v ∈ W ,v is adjacent to all vertices
in Gn except the vertex n − v in W , so the independence number
is 2.

COROLLARY 2. Covering number of the unitary addition Cay-
ley graph Gn, n ≥ 3,n = pα1

1 pα2
2 · · · pαrr , p1 < p2 < · · · <

pr, αi ≥ 1, 1 ≤ i ≤ r is

α0(Gn) =


n
2

if n is even,
( p1−1
p1

)n if n is odd but not a prime number,
n− 2 if n is prime.

THEOREM 17. Matching number of the unitary addition Cay-
ley graph Gn, n ≥ 3, is

β1(Gn) =

{
n
2

if n is even,
n−1
2

if n is odd.

PROOF. In Gn, the generating set Un must contain 1.
Suppose n is even. Then edge set E1 = {(0, 1), (n − 1, 2), (n −
2, 3), · · · , (n+2

2
, n
2

)} is an independent set in Gn and |E1| = n
2

.
Suppose the matching number is greater than n

2
, by definition of

matching number the number of end vertices are greater than 2(n
2

).
It contradicts the total number of vertices inGn. So matching num-
ber is n

2
.

Suppose n is odd, then the edge set E2 = {(0, 1), (n− 1, 2), (n−
2, 3), · · · , (n+3

2
, n−1

2
)} is an independent set in Gn and |E2| =

n−1
2

.
Suppose the matching number is greater than n−1

2
, that is matching

number is greater than or equal to n+1
2

. By definition of match-
ing number the number of end vertices are greater than or equal
to 2(n+1

2
). It contradicts the total number of vertices in Gn. So

matching number is n−1
2

.

COROLLARY 3. An edge covering number of the unitary addi-
tion Cayley graph Gn, n ≥ 3, is

α1(Gn) =

{
n
2

if n is even,
n+1
2

if n is odd .

OBSERVATION 2. Let u, v,w ∈ V (Gn). Vertexw is a common
neighbour of u and v, if and only if gcd(u + w,n) = gcd(v +
w,n) = 1. Then there exist unique x, y ∈ Zn such that
u+ w ≡ x mod n, v + w ≡ y mod n.
Now w ≡ x−u ≡ y−v becomes a common neighbour of u and v,
if and only if x− y ≡ u− v mod n, x, y ∈ Un. This congruence
has atleast one solution if n is odd.

THEOREM 18. The diameter of the unitary addition cayley
graph Gn, n > 2, is

diam(Gn) =


2 if n is prime,
2 if n is even and n = 2m, m ≥ 2,
3 if n is even and n 6= 2m,m ≥ 2,
2 if n is odd but not a prime .

PROOF. Suppose n = p, p is prime, then Up =
{1, 2, 3, · · · , p− 1}. If u ∈ Up then u is adjacent to p− 2 vertices
including 0 and 0 is adjacent to all vertices. This implies diameter
of Gn is 2.
Suppose n is even and n = 2m(m ≥ 2), then Un =
{1, 3, 5, · · · , n−1}. An element 0 in V (Gn) is adjacent to a vertex
u where u ∈ Un and u is adjacent to all even vertices. This implies
diameter of Gn is 2.
Suppose n(n 6= 2m,m ≥ 2) is even and n = pα1

1 pα2
2 · · · pαrr ,

p1 < p2 · · · < pr , αi ≥ 1, pi are distinct prime factors of n,
1 ≤ i ≤ r.
In Gn, zero is non adjacent to pi, 1 ≤ i ≤ r, also zero and
pi(2 ≤ i ≤ r) has no common vertex, since zero is adjacent to
some odd vertices and pi(2 ≤ i ≤ r) is adjacent to some even ver-
tices. Therefore diam(Gn) ≥ 3.
In Gn both even or both odd vertices are non adjacent. If u and v
are odd (even) vertices in Gn then they have atleast one common
vertex w in Gn and w is even (odd), since Gn is connected. We
consider two non adjacent vertices v(even) and u(odd) in Gn, v is
adjacent to some vertex x(odd) in Gn. Here x and u are odd ver-
tices then they have a common vertex y(even) inGn. Passing along
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v, x, y and u, shows diam(Gn) = d(v, u) ≤ 3.
Suppose n is odd but not a prime, then every pair of distinct non
adjacent vertices have a common neighbour. This implies diameter
of Gn is 2.

THEOREM 19. Edge connectivity of the unitary addition Cay-
ley graph Gn is

λ(Gn) =

{
φ(n) if n is even,
φ(n)− 1 if n is odd.

PROOF. Suppose n is odd λ(Gn) = φ(n)− 1, by Theorems 8,
11 and 18.
Suppose n is even λ(Gn) = φ(n), by Theorems 3 and 5.

COROLLARY 4. Vertex connectivity of the unitary addition
Cayley graph Gn is

κ(Gn) =

{
φ(n) if n is even,
φ(n)− 1 if n is prime

PROOF. Suppose n is even κ(Gn) = φ(n), by Theorems 3 and
6.
Suppose n is prime say p, then κ(Gp) = φ(p) − 1, by Theorems
13 and 19.

REMARK 1. For all n, 2φ(n)− n ≤ κ(Gn) ≤ φ(n)− 1.

4. CHROMATIC AND CLIQUE NUMBER OF
UNITARY ADDITION CAYLEY GRAPH

THEOREM 20. Chromatic number of the unitary addition Cay-
ley graph Gn is χ(Gn) = 2 if n is even and χ(Gn) ≤ φ(n)

2r
+ r if

n is odd, where r is the number of distinct prime factors of n.

PROOF. Suppose n is even. By Theorems 3 and 7, χ(Gn) = 2.
If n is odd thenGn splitting into φ(n)

2r
+r distinct independent sets.

Therefore χ(Gn) ≤ φ(n)
2r

+ r.

THEOREM 21. Edge chromatic number of the unitary addition
Cayley graph Gn is φ(n).

PROOF. Suppose n is odd. From the definition of proper edge
colouring Gn contains atmost n−1

2
edges of a same colour. By

Corollary 1, atmost φ(n) colours are needed to colour Gn. So
χ′(Gn) ≤ φ(n).
By Theorem 2, φ(n) ≤ χ′(Gn).
Therefore χ′(Gn) = φ(n).
Suppose n is even. By Theorem 3 and Theorem 4, edge chromatic
number is φ(n).

THEOREM 22. Clique number of the unitary addition Cayley
graph Gn is

ω(Gn) =

{
2 if n is even,
φ(n)
2

+ 1 if n = pm, p 6= 2 and m ≥ 2.

and n = pα1
1 pα2

2 · · · pαrr , p1 < p2 < · · · < pr

ω(Gn) ≥
{

3 if p1 = 3,
p1+1

2
if p1 > 3.

PROOF. Case 1. Suppose n is even. By Theorems 3 and 7,
ω(Gn) = 2 .
Case 2. For n = pm, p 6= 2 and m ≥ 2.
Let Un = {±u1,±u2, · · · ,±uk}.
If φ(n) = 2k and k is even, then A =

{0, u1, u3, · · · , uk−1,−uk,−uk−2, · · · ,−u2} is a clique in
Gn .
If φ(n) = 2k and k is odd, then B =
{0, u1, u3, · · · , uk,−uk−1,−uk−3, · · · ,−u2} is a clique in
Gn .
In both case |A| = |B| = φ(n)

2
+ 1. So ω(Gn) ≥ φ(n)

2
+ 1.

From Theorem 20 we get ω(Gn) ≤ φ(n)
2

+ 1. Therefore
ω(Gn) = φ(n)

2
+ 1.

Case 3. For n = pα1
1 pα2

2 · · · pαrr and p1 = 3.
The set {0, p1, p2} is a clique in Gn, so ω(Gn) ≥ 3.
Case 4. For n = pα1

1 pα2
2 · · · pαrr and p1 > 3.

The set {0, 1, 2, · · · , p1−1
2
} is a clique in Gn, so ω(Gn) ≥

p1+1
2

.

5. PERFECTNESS
LEMMA 23. If n is odd and has atleast two different prime di-

visors, then Gn contains an induced cycle C5 of length 5.

PROOF. Let n = pα1
1 pα2

2 · · · pαrr , p1 < p2 < · · · < pr , where
r is the number of distinct prime factor of n.
Choose the vertices v1, v2, v3, v4 and v5 in the following manner
v1 = 0, v2 = pr, v3 = p1p2 · · · pr−1 − pr, v4 =
−2p1p2 · · · pr−1 + pr,
v5 = 2p1p2 · · · pr−1. The vertices v1, v2, v3, v4 and v5 are distinct.
These vertices form a cycle C5 of Gn, because
v1 + v2 ≡ v4 + v5 ≡ 0(modpr)
v1 + v5 ≡ v2 + v3 ≡ v3 + v4 ≡ 0(modpi), i = 1, 2, · · · , r − 1.
It follows that the edges {v1, v2}, {v2, v3}, · · · {v5, v1} belong to
Gn.
Next to show that this C5 has no chords in Gn.

v1 + v3 = p1p2 · · · pr−1 − pr
v1 + v4 = −2p1p2 · · · pr−1 + pr
v2 + v4 = −2(p1p2 · · · pr−1 − pr)
v2 + v5 = 2p1p2 · · · pr−1 + pr
v3 + v5 = 3p1p2 · · · pr−1 − pr

 . . . (1)

From (1), we get v1 + v3, v1 + v4, v2 + v4, v2 + v5 and v3 + v5
are non divisible by pi, i = 1, 2, · · · , r. Therefore the cycle C5 is
an induced cycle in Gn.

REMARK 2. Unitary addition Cayley graph Gn is not perfect
if n is odd and has atleast two different prime divisors.

LEMMA 24. Let n = pm, where p is a prime number and p >
2. Then Gn has no induced odd cycle C2k+1, k ≥ 2.

PROOF. Assume that Gn contains an induced cycle
C2k+1, k ≥ 2, which runs through the vertices v1, v2, · · · , v2k+1

in this order.
We consider three consecutive edges
{vi, vi+1}, {vi+1, vi+2}, {vi+2, vi+3} in C2k+1. This im-
plies that vi + vi+1, vi+1 + vi+2 and vi+2 + vi+3 are divisible by
p in Gn.
Adding first and third term, we get vi+vi+1 +vi+2 +vi+3, which
is divisible by p.
This implies that vi + vi+3 is divisible by p in Gn.
It follows that {vi, vi+3} is an edge in Gn. It is a contradiction to
our assumption.

LEMMA 25. Let n = pm, where p is a prime number and p >
2. Then Gn has no induced odd cycle C2k+1, k ≥ 2.
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PROOF. Assume thatGn contains an induced cycleC2k+1, k ≥
2, which runs through the vertices v1, v2, · · · , v2k+1 in this order.
We consider two cases.
Case 1. Atleast one vi ∈ {< p >}, say v. Then v is non adjacent
to all vertices vj ∈ {< p >},1 ≤ j ≤ 2k + 1. It is a contradiction
to our assumption.
Case 2. Let k ≥ 3 and all vi /∈ {< p >}.
If x ∈ U(pm) then any vertex y non adjacent to x is of the form
y = lp − x ∈ U(pm), 1 ≤ l ≤ n

p
. In C2k+1, v1 is non adjacent

to atleast three vertices, say vx, vy and vz . So vx = l1p− v1, vy =
l2p − v1 and vz = l3p − v1,1 ≤ l1, l2, l3 ≤ n

p
. Here vx + vy =

(l1 + l2)p − 2v1, vx + vz = (l1 + l3)p − 2v1, and vy + vz =
(l2 + l3)p − 2v1. So vx + vy, vx + vz, vy + vz ∈ Un. It is a
contradiction to our assumption.
Assume that Gn contains an induced cycle C5, which run through
the vertices v1, v2, v3, v4 and v5. So v1+v4, v1+v3, v2+v4, v2+v5
and v3 + v5 are divisible by p. Adding v1 + v3 and v2 + v5, we get
v1 + v3 + v2 + v5 is divisible by p. Also v3 + v5 is divisible by p.
This implies that v1 + v2 is divisible by p. It is a contradiction to
our assumption.

Combining the lemmas 24, 25 and using the property of bipartite,
now we can prove the following result.

THEOREM 26. The unitary addition Cayley graph Gn, n ≥ 2,
is perfect if and only if n is even or n = pm,m ≥ 1.

6. CONCLUSION
In this paper we determine some structural properties of unitary ad-
dition Cayley graph Gn, including diameter, connectivity and per-
fectness.
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