
International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.13, July 2015

10

An Introduction to Functional Verification of I2C

Protocol using UVM

Deepa Kaith

Student, M.Tech

ECE Dept., ASET
Amity University Haryana

Janakkumar B. Patel, PhD
Professor

ECE Dept., ASET
Amity University Haryana

Neeraj Gupta
Assistant Professor

ECE Dept., ASET
Amity University Haryana

ABSTRACT
The fabrication technology advancements lead to place more

logic on a silicon die which makes verification more

challenging task than ever. The large number of resources is

required because more than 70% of the design cycle is used

for verification. Universal Verification Methodology was

developed to provide a well structured and reusable

verification environment which does not interfere with the

device under test (DUT). This paper contrasts the reusability

of I2C using UVM and introduces how the verification

environment is constructed and test cases are implemented for

this protocol.

Keywords

Inter Integrated circuit, Verification environment, Universal

Verification Methodology, intellectual property, DUT

1. INTRODUCTION
Serial bus requires fewer IC pins, and the less wiring andless

number of traces on printed circuit boards than parallel bus.

Many common embedded system peripherals support serial

interfaces. Using I2C, processors do not require shared

memory to communicate.

I2C called as inter integrated circuit is a simple, low-

bandwidth, short-distance protocol [2]. It was made by Philips

Semiconductors in the early 1980s reduce the manufacturing

costs of electronic products. The I2C allows 7-bit or 10 bit

addressing with two bi-directional lines: serial clock (SCL)

and serial data (SDA) [7]. The pull-up resistors for each line

are only added. All the devices on the line can act as either a

slave or a master. The clock line can only be drived by the

master devices. The transmission of 8-bit of data and 7-bit of

address with a control bit is done serially using the interface.

It is difficult to verify the functionality of the design using

traditional testbenches as the design becomes large. Thus,

hardware verification languages are used for designing the

modules. More than 70% of the time is spent on verification

which also consumes more resources than the design itself [3].

This arise the need for developing modular, reusable and

robust environment for verification. The Open Core Protocols

(OCP) were introduced for accessing System on Chip

functional units along with maintaining high performance. It

allows software address communication between the units of

Chip.

Universal Verification Methodology (UVM) is a methodology

for functional verification of design units. It is based on OVM

version 2.1.1 and is created by Accellera. Its Class Library

provides [6] the building blocks needed to quickly develop

well-constructed and reusable verification components and

test environments. It uses system Verilog as its language and

all the major simulation vendor supports it. UVM is an open

source methodology for using System-Verilog. It is designed

mainly for verification of intellectual properties and testbench

components so that testbenches are reusable and verification

code is more portable. Each verification component follows a

consistent architecture for simulating, checking and collecting

functional coverage. The verification environment developed

through System-Verilog may be different depending upon

implementer while that built using UVM remains same for

different vendors [8].

2. I2C PROTOCOL
I2C provides chip-to-chip serial communications using only

two lines in an interface. The two lines in the I2C bus carry

one bit of address selection, direction control, and data at a

time. The data (SDA) line carries the data, while the Clock

(SCL) line synchronizes the sender and receiver during the

transfer. Device that uses I2C protocol requires very few pins

to perform the same function as their larger parallel interface

equivalents. The I2C bus has three modes of operation:

standard mode (0 to 100 kbps), fast mode (0 to 400 kbps) and

high-speed mode (0 to 3.4 Mbps) [1][11].

Fig 1: Multiple master and slave connection in I2C

2.1 I2C Specifications
The I2C bus physically consists of two bidirectional active

wires- serial Data line, serial Clock line and a ground

connection. Each device connected to the bus has its own

unique address and can act as a receiver or a transmitter,

depending on the required functionality. The I2C bus is

designed as a multi-master bus. The bus Master is the IC that

starts a data transfer on the bus and all the other ICs are

regarded as Slaves.

Master will issue an 'Attention' signal to all of the connected

devices known as START. Then the Master sends the

ADDRESS of the slave device it wants to access. The Read or

Write operation signal bit is also send along with the

ADDRESS bits. All the devices connected on the bus will

compare the sent address bits with their own address and if it

doesn't match, they simply wait till the bus is released and if

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.13, July 2015

11

the address matches; chip will produce a response signal

known as Acknowledgement (ACK). On receiving an

acknowledgement, master starts transmission of DATA. Each

data byte is 8 bits long. An acknowledge bit follows each

transferred byte. After transmission is done, the Master will

issue the STOP signal [7].

Fig 2: I2C Communication Frame Format

2.1.1 Write operation

Fig 3: Write operation frame format

2.1.2 Read operation

Fig 4: Read operation frame format

2.1.3 START and STOP conditions
All communication begins from a START signal and can be

finished by a STOP signal. SCL being High and a high to

Low transition on the SDA line depicts a START condition

and SCL being High and a low to High transition on the SDA

depicts a STOP condition [1].

Fig 5: Start (S) and Stop (P) condition

 2.1.4 Transfer Data and acknowledgement

format
Every byte that is that is transferred using SDA line must be

8 bit long. Each transferred byte is followed by an

Acknowledge bit.

Fig 6: Data and acknowledgement in I2C protocol

2.1.5 Data Validity
The data on the SDA line are valid for high period of serial

clock pulse as shown in the figure below.

Fig 7: Timings of data validation

2.2 Design Architecture of I2C core
The system architecture of the I2C shown below has top level

module as i2c_master_core and the sub module as i2c_slave,

tb_master_module and i2c_master_top. The low level

modules are i2c_master_byte_controller and

i2c_master_bit_controller.

Fig 8: Design hierarchy of I2C master core

3. UNIVERSAL VERIFICATION

METHODOLOGY

3.1 The UVM Verification Components
UVM library consists of base classes and infrastructure

facilities. Base classes in the UVM hierarchy largely fall into

two distinct categories: components and data [8]. The

component class hierarchy derived from uvm component is

intended to model permanent structures of the testbench like

monitors and drivers. Data classes derived from uvm

sequence item are intended to model stimulus and

transactions.

Design Under Test
It is the design whose specifications needs to be confirmed.

This is basically the RTL description in the designing

language. It tells the features and the functions of the design.

Sequencer

Sequencer is the entity on which the sequences will run. To

test DUT behavior, sequence of transaction needs to be

applied. Sequencer runs stimulus generation code and sends

sequence items down to driver whenever driver demands by

it.

Driver

Driver is used to drive the DUT signals. It receives the

sequence items from the sequencer and put on the interface. It

is the active part of the environment.

Monitor

A monitor is the passive element of the verification

environment. It scans the DUT signals coming on the

interface, assembles information as a packet and then transfers

it to coverage collector and scoreboard for coverage

information.

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.13, July 2015

12

Agent

Agent is an abstract container having a driver, a monitor and a

sequencer. It has two modes of operation: passive and active

[3]. It drives the signal to the DUT in active mode and scans

the DUT signals in passive mode.

Scoreboard

It is a verification component to check the response from the

DUT against the expected response by comparing them to the

Reference Model. It informs how many times the response

matched and how many times it failed.

Environment

It assembles the structure. It contains one or more agents,

scoreboard and other components for measurement and

checking depending on design requirements.

Test

It is the top-level of the component hierarchy. DUT. In UVM

tests are the classes that are derived from an uvm_test class.

The test class enables configuration of the testbench and

verification components to determine the dynamic behavior of

the processes by using sequences.

Sequence items

These are the necessary data objects that are passed at an

abstract level between the verification components.

Sequences
These are gathered from sequence items to build a real set of

inputs. Sequences create a randomized or a pre-determined set

of transactions.

3.2 The UVM Class Library Hierarchy
uvm_object is the base class for all components and

sequences in UVM. uvm_component class is derived from

this class and all uvm components extends the

uvm_component class. Transaction class is derived from

uvm_object class and sequence_item and sequence extends

the uvm_transaction class [4].

3.2.1 UVM Phases:
In UVM simulation runs in predefine phases and all the

components in the verification environment will be called in

order as below

build phase: It forms the basic structure of the environment

by instantiating required components.

connect phase: It is used to connect ports to exports, exports

to ports and ports to ports in child component.

end_of_elaboration phase: It indicates that verification

environment has been completely tuned and assembled.

start_of_simulation phase: It indicates the DUT that

verification environment is completely configured and is

ready to start.

run phase: It is used to run simulation and is divided into

several run phases. It is the only phase uses task to define as

this phase consumes more time.

extract phase: It is used to extract data from different points

of the verification environment. It obtains all data from

scoreboard and extract it.

check phase: It verify any unexpected condition in

verification environment.

report phase: It gives the report of the particular performed

test .

final phase: It gives information that the phases completed

and simulation can be terminated.

3.3 Architecture of I2C Verification

environment
The architecture of environment developed for I2C protocol

verification has different components which are explained

below

Top module

It is a testcase class that contains instances of

i2c_environment, master_agent and slave_agent.

i2c_environment

It is an I2C component that contains master/slave agent.

Agent can be configurable for active or passive mode. In this

checkers and coverage can be configured.

 i2c_environment_config

This class contains the number of masters and slaves present

in the environment that can be configured.

i2c_master_seq

It encloses the sequences used for verification making test

effectively easy.

i2c_master_monitor
It takes data for score-boarding and coverage collection from

the interface.

i2c_master_driver

Driver connects the sequences by using i2c_sequence_items

as a basic item with this class. It provides flexibility to choose

the type of test.

i2c_master_agent

Master agent is configurable either in active or in a passive

mode. It contains driver, sequencer and monitor and coverage

collector..

Fig 9: Verification environment with DUT as a slave

i2c_slave_seq
It contains the sequences used for verification and makes

testcase short and easy.

i2c_slave_agent

Slave agent is configurable either in active or in a passive

mode. It contains driver, sequencer and monitor.

i2c_slave_monitor

It takes data for score-boarding and coverage collection from

the interface.

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.13, July 2015

13

Fig 10: Verification environment with DUT as a master

3.3.1 Testcases

Test cases for the four working modes of DUT are given

below:

i. master_tx

In this DUT works in a transmit mode as a master. This

means slave in the verification environment has to build

up in rx mode to receive data send by DUT.

ii. master_rx

In this DUT works in a receive mode as a master. This

means slave in the verification environment has to build

up in tx mode to transmit data to DUT.

iii. slave_tx

In this DUT works in a transmit mode as a slave. This

means master in the verification environment has to build

up it in rx mode to receive data send by DUT.

iv. slave_rx
In this DUT works in a receive mode as a slave. This

means master in the verification environment has to build

up it in tx mode to transmit data to DUT.

4. THE VERIFICATION PLAN

The Verification Plan defines exactly what needs to be tested,

and drives the coverage criteria [9]. Feature extraction,

Stimulus generation plan, Checker plan and Coverage plan are

the important parts of a verification plan.

4.1 Feature Extraction
It contains the list of all the features to be verified. For the I2C

as a DUT features to be extracted are given below

 START and STOP condition generation.

 ACK and NACK condition generation.

 The response of the DUT in different states: idle, read,

write, address_match, ack.

 Synchronization of clock between the master and slave.

 Validation of 7-Bit address.

 Direction of data transfer by checking R/W bit.

 Generate all possible data transfer formats of connected

devices.

4.2 Stimulus Generation
 The type of the data transfer i.e. write or read.

 The length of the data transfer.

 The speed of the data transfer.

 The ACK/NACK generation.

 Clock stretching in slave.

 Arbitration occurrence.

 Clock frequency of each connected device.

 The addresses of the slaves and those send by the

master.

4.3 Checker and coverage
Checkers are used for checking the expected result. Checking

is done by monitors and scoreboards and depends on the

requirement of the design.

Coverage groups give the functional coverage of the tested

features. It helps in applying coverpoints.

4.4 UVM verification environment for I2C bus

controller
The i2c_master_seq generates the data which is sent to the

master core through the i2c_master_driver. Serial data which

is to be transmitted by the master are given to the master by

the i2c_master_driver and it sends the same data to the

scoreboard as the packet_1 through UVM mail box. The data

received by the slave are fed back to the scoreboard via

slave_driver for comparison as packet_2 through the mail

box. Then, the sent and received data_item as packet_1 and

packet_2 are compared. If it do not match, it will produce an

uvm_error.

Fig 11: UVM verification environment for I2C protocol

5. CONCLUSION AND SCOPE
In this paper UVM is used to build a verification environment

which is reusable to verify any I2C as a DUT. UVM provides

built-in reflection and has additional macros and functions

capabilities. It also provides a rich set of base class library for

efficient verification. A detailed verification plan for

analyzing the results and creating proper stimulus is required

for the functional coverage. This might seem to be time

consuming but requires less effort than other similar tests.

UVM if properly framed provides a fault free design by

covering all the necessary and corner test cases. The test

environment is interoperable and can be implemented in real

time systems.

6. REFERENCES
[1] Philips Semiconductor, version 2.1 January 2000. I2C-bus

specification and user manual.

[2] F.Leens, February 2009. An Introduction to I2C and SPI

Protocols, IEEE Instrumentation & Measurement

Magazine, pp. 8-13,

[3] Mulani P., Patoliya J., Patel H., Chauhan D., “Verification

of I2C DUT using SystemVerilog”, International Journal

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.13, July 2015

14

of Advanced Engineering Technology, Vol. 1, No. 3, pp

130-134, Oct.-Dec 2010.

[4] An Accellera Organization, June 2011. Universal

Verification Methodology (UVM) 1.1 Class Reference.

[5] Glasser M., February 4, 2011. UVM: The Next Generation

in Verification Methodology, Methodology Architect,

Courtesy of Mentor Graphics Corporation.

[6] Young-Nam Yun, Jae-Beom Kim, Nam-Do Kim, Byeong

Min, 2011. Beyond UVM for practical Soc Verification,

IEEE- 978-1-4577-0711-7, pp 158-162.

[7] NXP Semiconductors, 2012. I2C-bus specification and

user manual.

[8] Juan Francesconi, J. Agustin Rodriguez, Pedro M. Julian,

2014. UVM Based Testbench Architecture for Unit

Verification. ISBN: 978-987-1907-86-1 IEEE Catalog

Number CFP1454E-CDR.

[9] T Tarun Kumar, CY Gopinath, June 2014. Verification

of I2C Master Core using System Verilog-UVM

International Journal of Science and Research (IJSR),

ISSN - 2319-7064, Volume 3 Issue 6.

[10] Alexander W. Rath, Volkan Esen and Wolfgang Ecker,

2014. A Transaction-Oriented UVM-Based Library for

Verification of Analog Behavior, IEEE- 978-1-4799-

2816-3, pp 806-811.

[11] Deepa Kaith, Janankkumar B.Patel, Neeraj Gupta, “An

Implementation of I2C Slave Interface using Verilog

HDL”, Internatioal Journal of Modern Engineering

Research, ISSN: 2249-6645, Vol.5, Issue 3, pp 55-60,

March 2015.

IJCATM : www.ijcaonline.org

