
International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.12, July 2015

21

Enhancing Dynamic Capacity Scheduler for Data

Intensive Jobs

Sukhmani Goraya
Department of Computer Science and Engineering

CT Institute of Engineering, Management and
Technology, Shahpur, Jalandhar, India.

Vikas Khullar
Department of Computer Science and ngineering

CT Institute of Engineering, Management and
Technology, Shahpur, Jalandhar, India.

ABSTRACT
Management of Big Data is a Challenging issue. The

MapReduce environment is the widely used key solution for

data intensive jobs. We will analyze map reduce pipelining

and along with processing of Map phase and Reduce phase.

Core schedulers FIFO, Fair and Capacity Schedulers have

been discussed. The Scheduler assigns MapReduce task to the

resources and there is a challenge to the scheduler to schedule

the task in a way that it is scalable. Existing work shows the

performance of the Hadoop depends upon input data and

configuration of the cluster. In this paper, we have analyzed

the execution time for data intensive jobs with increasing

volume of the data set. We have also compared the execution

time of the task with existing scheduler and our proposed

method for the scheduler.

Keywords
Hadoop, MapReduce, Capacity Scheduler, Fair Scheduler,

FIFO Scheduler, HDFS.

1. INTRODUCTION
Hadoop can be described as architecture for large scale

computation and data processing on a network. High

scalability and flexibility are the major advantages which

allow users for large amount of data processing benefiting a

number of fields such as machine learning, security and

bioinformatics. IT companies is creating large amount of data

which is in Terabytes (TB) and Petabyte (PB). As a platform

of computational and data storage , Hadoop can handle many

different types of data including file format such as audio;

video; text; e-mail records; images etc. MapReduce is

currently the most famous framework for processing large sets

of data in parallel. Hadoop clusters run on inexpensive

hardware, so that the projects can scale-out without spending

more cost.

Hadoop MapReduce is the phenomenon of processing large

data sets of the computer cluster. There are two phases, Map

phase and Reduce phase.

1.1 MapReduce
In Map phase, the problem gets divided into the sub problem

and if required it further divides that sub problem. In Reduce

phase, the answer to all the sub-problems are calculated and

collected. There is also Job Tracker and Task Tracker. Client

gives request to the Job Tracker. Further Job Tracker assigns

the job to the Task Tracker and Task Tracker does that work

by using Map phase and Reduce phase. Further, we have is

the benchmark example of WordCount.

Figure 1 shows there are two input files that are passed

through the Map phase. The Map phase separates the file by

using the function such as extraction, filtering and sorting. In

case of the word count example, the map function running on

the data node reads the input file and will split the file into

blocks. While splitting is done, the map phase assigns every

word with a value. For each word encountered, the key would

be the word and the value would the number

Fig. 1: Word Count Example showing Map Phase and Reduce Phase

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.12, July 2015

22

of times that word had occurred. Here the map function will

only be aware of the currently parsed word. It does not have

any memory for prior processing-number of occurrences of

that word is 1. Further we can see how the Reduce phase

count words having the same key value are moved towards

the reduced function. The input to the reduced function is the

sorted data from each map function, further reduce function

calculates the number of occurrences and reduces it to the

final output. The output of reduce function is given to Hadoop

Distributed File System.

1.2 HDFS
In a Hadoop cluster, HDFS (Hadoop Distributed File System)

is used in which blocks of files are equally distributed among

nodes to carry out the task. Hadoop File System uses the

block size of 64 MB. Hadoop has the ability for pluggable

schedulers that Assign resources to the job.

 In case of Hadoop version 1 default scheduling algorithm

uses FIFO scheduler, in which JobTracker pulls jobs from a

work queue, oldest job first. Fair scheduler, each job gets

equal share of available resources so that a single node is not

overloaded. Capacity scheduler works for the same principles

of Fair scheduler with the slight difference. But in case of

Hadoop version 2, default scheduling algorithm is Capacity

Scheduler. Each queue is assigned a guaranteed capacity and

each queue properties can change at the run time. Task

Scheduling technology [1], one of the key technologies of

Hadoop platform, mainly controls the order of task running

and the allocation of computing resources, which is directly

related with overall performance of the Hadoop platform and

system resource utilization.

In this paper, we will increase the performance of system by

decreasing the execution time which will further reduce the

cost of execution. We will mainly focus on Capacity

scheduler. Further enhancement of the scheduler will be

focused upon. The rest of the paper is organized as follows:

Section II presents the background for this research. Section

III our methodology and implementation is presented, Section

IV exhibits the experimental results, Section V, presents the

conclusion and the future work.

2. RELATED RESEAECH WORK
Hadoop is developed by large number of contributors to

process large data parallel. It is an Open source

implementation. Hadoop consists of the two typical

components: Hadoop Distributed File System (HDFS)

mimicking Google File System (GFS) [2] and Hadoop

MapReduce. MapReduce consists of two functions Map

function and Reduce function. Map function divides the

problem and solves it. Reduce function collects the output

from Map function and reduces it into final output. Hadoop is

provided with three job schedulers: Job Queue Task

Scheduler, Fair Scheduler and Capacity Task Scheduler. The

user has an option of selecting among the users. Job Queue

Task Scheduler, which is the base of other job schedulers and

the default job scheduler based on First in First out FIFO

queue. Tasks are assigned to nodes which maintain their input

split with first priority (Data-Local), or other nodes nearby

such nodes which maintain their input split with second

priority (Rack-Local). Both of Fair Scheduler and Capacity

Task Scheduler are job scheduler’s deal with multiple-users

[3]. Chen He Ying Lu David Swanson et.al develops a new

MapReduce scheduling technique to enhance map task’s data

locality. He has integrated this technique into Hadoop default

FIFO scheduler and Hadoop fair scheduler. To evaluate his

technique, he compares not only MapReduce scheduling

algorithms with and without his technique but also with an

existing data locality enhancement technique (i.e., the delay

algorithm developed by Facebook). Experimental results show

that his technique often leads to the highest data locality rate

and the lowest response time for map tasks. Furthermore,

unlike the delay algorithm, it does not require an intricate

parameter tuning process [4].

There are three known schedulers FIFO, Fair Scheduler and

Capacity Scheduler.

2.1 FIFO
In the earliest Hadoop MapReduce computing architecture,

the essential job sort is massive batch jobs that a single user

submits the job, thus Hadoop use inventory accounting (First

in 1st out) rule in early planning algorithm [5]. Initially

Hadoop used this scheduler in which there was single queue

and jobs were executed sequentially.

2.2 Fair Scheduler
In case of Fair scheduler the resources are fairly allocated

between jobs. It has pool where jobs are kept and each pool

has equal share of resources. Fair scheduling could be a

technique of assignment. Resources to jobs such every job

gets, on average, an equal share of resources over time [6].

2.3 Capacity Scheduler
Capacity Scheduler [7] originally developed at Yahoo

addresses a usage scenario where the number of users is large,

and there is a need to ensure a fair allocation of computation

resources amongst users. Capacity scheduler has similar

functions as that of Fair scheduler. In Capacity scheduler,

other than job pool multiple job queues are created and each

queue has configurable number of Map and Reduce slots.

Each Queue uses FIFO scheduling with priority. If the queue

is heavily loaded, it finds unallocated resources for allocation.

Capacity Scheduler supports hierarchy of queues and

resources are shared among the sub queues and each user has

the limit of some percentage to use the resources. If a queue

has serious load, it seeks unallocated resources, then makes

redundant resources allotted equally to every job [8]. It also

allows priority primarily based programming of jobs in

associate degree organization queue [9]. When the application

is submitted to the queue, the queue will guarantee the

capacity allocated to it.

Queues are monitored and are assigned more free resources

beyond its capacity if needed. The foremost advanced among

III schedulers is a vital drawback in capability algorithm [10].

If needed queues are monitored and are assigned more free

resources beyond its capacity. Creation of the queues is not

done automatically, for this the user needs to know about the

system information.

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.12, July 2015

23

3. IMPLEMENTATION AND

METHODOLOGY
The performance of MapReduce basically depends on cluster

configuration and input data. We have studied Capacity

Scheduler which shares computing resources among the

queues. We have performed various experiments on

MapReduce application taking benchmark example of word

count. The objective of this work is to optimize the task of the

scheduler and to get optimal performance from the cluster

running MapReduce application.

3.1 Approach
With the advancement Hadoop from version 1 to version 2,

there was increase in performance in terms of execution time

and capacity of the tasks performed. In Hadoop version 1 fair

scheduler was used and in latest version of Hadoop approach

of capacity scheduler is used. Although capacity scheduler has

enhanced the performance, the limitation was that its

limitation is works on the approach of fair scheduler which

can be improved further. There is a scope of further increasing

the performance of capacity scheduler by enhancing the

concept of pipelining. Once the tasks are performed in a

synchronous way and performance of capacity scheduler will

increase further in terms of both execution time as well as

capacity.

TABLE 1: Performance Environment

For experiment we have a single clustered node and Hadoop

2.6.0 on operating system Ubuntu 12.04. We are using Bench

mark example of WordCount.

3.2 Methodology

The methodology used for setting up the system has been

shown in the figure 2. Firstly we need to install Java. Then we

need to create a group for Hadoop users. SSH certification is

used for security purpose in Hadoop. Secondly we need to

install Hadoop. After configuring Hadoop, we need to add

Dynamic Scheduler to yarn-site.xml.

Once the system is set the Resource Manager gets started,

everything is happening in the form of events. Capacity

scheduler registers itself with the events and acts on those

events. When the node is added, ResourceTrackService

registers with the node manager. When application or job is

added, it will be submitted to the queue. We have added

capacity scheduler to the file yarn-site.xml for processing

Hadoop files. Once the scheduler starts, the method run on

Capacity scheduler gets started. The Component container of

the Resource Manager takes the responsibility of all the

resources like disk, CPU, memory, etc. Then the job is given

to the existing queue and it is solved in the hierarchical way.

Now, the queues are being created by the method

addNewCSQueue. Comparison is done between the queues

and capacity allocated to the Queues is being calculated by the

method CSComparator. The synchronization is between the

queues is done by using the method SynchroniseCSQueue.

While synchronizing, the queues get information about the

resources, they share resources accordingly.

4. PERFORMANCE EVALUATION
The performance evaluation results with the single clustered

node have been evaluated and are shown in the Fig. 3. Our

graph compares the default Hadoop and Hadoop implemented

by the proposed method with the execution time shown in the

bar chart. The benchmark example WordCount has been

executed with different data sets. The sizes of the data sets are

12 Mb, 36Mb, 300 Mb, 500 Mb, 1 GB, 1.5 GB and 2 GB.

Table 2: Experimental Results

File Size

(MB)

Default

Hadoop

(Execution

Time)

Proposed Method

(Execution Time)

12.2 0:00:40 0:00:39

36.5 0:00:52 0:00:53

146 0:01:50 0:01:51

300 0:02:08 0:01:52

500 0:02:29 0:02:06

938 0:04:41 0:04:06

1500 0:06:06 0:05:02

2000 0:08:50 0:07:16

Default Hadoop defines the systems default configuration and

Proposed Method defines the systems that we have created.

The above table shows the execution time of Default Hadoop

and Proposed Method on Hadoop. The proposed method

execution is better than the Default settings of Hadoop.

 Fig.2: Methodology

International Journal of Computer Applications (0975 – 8887)

Volume 121 – No.12, July 2015

24

Fig3: Execution Time of Default Hadoop and our Proposed Method

The above graph shows the comparison between the execution

time of Default setting of Hadoop and the proposed method of

Hadoop. It is observed that when the size of the data is small,

there is no such difference between the execution time. But as

the size of data increases, the execution time of the proposed

method decreases.

5. CONCLUSION
Core Schedulers of Hadoop FIFO, Fair and Capacity have

been discussed. Our proposed method has been implemented

on 2.6.0 and evaluation has been done by executing the jobs

with the benchmark example WordCount. In this paper, we

have analyzed that the execution time for data intensive jobs

are compared with the existing capacity scheduler and our

proposed method for the capacity scheduler. Our proposed

method has improved the execution time.

6. ACKNOWLEGEMENT
The authors gratefully acknowledge the support of DRC Team

at CT Institutes of Engineering Management & Technology.

7. REFERENCES
[1] Jilan Chen, Dan Wang and Wenbing Zhao,” A Task

Scheduling Algorithm for Hadoop Platform” in Journal

of Computers , vol. 8, no. 4, April 2013.

[2] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google

file system,” in 19th ACM Symposium on Operating

Systems Principles, Lake George, NY, Oct. 2003.

[3] Shiori KURAZUMI *, Tomoaki TSUMURA *, Shoichi

SAITO * and Hiroshi MATSUO *, “Dynamic processing

slots scheduling for I/O intensive jobs of Hadoop

MapReduce” in 2012 Third International Conference on

Networking and Computing.

[4] Harshawardhan S. Bhosale1 , Prof. Devendra P.

Gadekar2 “A paper on Big Data and Hadoop” in

International Journal of Scientific and Research

Publications, Volume 4, Issue 10, October 2014.

[5] M. Isard, M. Budiu, Y. Yu, “Distributed Data-Parallel

Programs from Sequential Building Blocks,” Proceedings

of the 2nd ACM SIGOPS European Conference on

Computer Systems, ACM, 59-72. 2007.

[6] Hadoop’s Fair Scheduler.

https://hadoop.apache.org/docs/r1.2.1/fair_sche Duler.

[As accessed on 9 Feb. 2015].

[7] Y. Chen, S. Alspaugh, and R.H. Katz, “”Interactive

Analytical Processing in Big Data Systems: A Cross-

Industry Study of Mapreduce Workloads,‟‟ Proc. VLDB

Endowment, vol. 5, no. 12, Aug. 2012.

[8] Umesh V. Nikam, Anup W. Burange, Abhishek A.

Gulhane, “Big Data and HADOOP: A Big Game

Changer”, International Journal of Advance Research in

Computer Science and Management Studies, Volume 1,

Issue 7, ISSN: 2321-7782, DEC 2013.

[9] N. Tiwari, “Scheduling and Energy Efficiency

Improvement Techniques for Hadoop Mapreduce: State

of Art and Directions for Future Research (Doctoral

dissertation, Indian Architectures, algorithms and

programming.” IEEE; 2011. p. 213–17.

[10] MapReduce NextGen aka YARN aka MRv2

http://hadoop.apache.org/docs/current/hadoop-

yarn/hadoop-yarn- site/CapacityScheduler.html

IJCATM : www.ijcaonline.org

https://hadoop.apache.org/docs/r1.2.1/fair_sche

